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“Quantum holonomy” as defined by Berry and Simon, and based on the parallel 
transport of Bott and Chern, can be considerably extended. There is a natural “parallel- 
ity” W*dW = (dW)* W within the Hilbert--Schmidt operators W This defines parallelity 
and holonomy along curves of density operators e = WW*. There is an intrinsic non- 
linearity in the parallel transport which dissolves for curves of projection operators. In 
the latter case one comes back to the Bott--Chern parallel transport. 

0. Introduction 

“Quantum holonomy” arises by considering in Hilbert space a path of vectors 
with linearly dependent initial and final vectors. Then one transports the phase 
along the path according to the parallel transport of Bott and Chern [l], or 
according to Berry [Z], by an adiabatic change in the sense of Ehrenfest [3] and 
Kato [4]. The equivalence of both procedures has been shown by Simon [S]. This 
method completely covers the case of pure states in which there are enough 
observables to distinguish every two linearly independent vectors by there expecta- 
tion values. 

Generally, however, a path in a Hilbert space may have linearly independent 
initial and final vectors, and, nevertheless has to be considered as “closed” by 
physical reasons. This situation appears when one assumes there are not enough 
observables at hand to discriminate between all pairs of linearly independent 
vectors. It is the intention of this note to show the existence of a rich formalism in 
this more general case extending and including the Bott, Chern, Berry, Simon 
procedure. 

It is convenient and usual to describe mixed states by density operators. To 
become not to technical we shall stick to this description though a more 
satisfactory one is that in terms of states of operator algebras. From the point of 
differential geometry we are working in the bundle of Hilbert-Schmidt operators 
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based on the manifold (with boundary) of density -operators. There is some 
nonlinearity in the parallel transport we are considering which seems unavoidable, 
and which dissolves by restricting to the projective manifold of the pure states (or 
to the Grassmann manifold of projections of a given rank). In the latter case the 
parallel transport is determined by the Kahler metric of these manifolds. 

At the time being we do not touch the problem of adiabatic changes. We hope 
to come back to this question. 

1. Parallelity 

In the following we consider positive trace class operators, Q, which we shall 
interprete as (unnormalized) density operators: 

Every such operator uniquely defines a state 

A -+ (A), = Tr(&YTr e, (1) 

which is, in general, a mixture of pure states. 
One calls (1) “faithful”, iff all the eigenvalues of Q are non-zero. At first, until 

removing this restriction explicitly, we shall consider faithful states and their 
(eventually unnormalized) density operators only. 

We shall introduce some simple terminology. An operator W is called an 
“amplitude of Q”, and a unitary U is called a “phase factor of Q” iff 

@=WW* and W = $1’ U (2) 

is valid. Thus the phase factor comes from a polar decomposition of the ampli- 
tude. Let us next consider an ordered pair /ei, e2/ of density operators and 
corresponding pairs /WI, W,/ and /Vi, U,/ of amplitudes and phase factors. These 
pairs of amplitudes and phase factors ‘are called parallel if and only if 

w:w,= w;tw, >o. (3) 

The requirement (3) is a known and quite natural one in the theory of “transition 
probabilities” for pairs of mixed states [6, 71: The square of the trace of (3) is the 
“transition probability” of the pair /ei, es/. One simply deduces that the spectrum 
of the operator (3) is an invariant of the pair /ei, e2/. 

Let /WI, W,/ be a pair of parallel amplitudes and /VI, U2/ of phase factors of 

lel, e2/. Then 

(a) /W2, WI/ and /U,, Vi/ are parallel pairs for /e2, el/. 
(b) If rl and r2 are positive numbers then /(r,)“’ WI, (r,)“’ W2/ and /VI, U2/ 

are parallel for /I~ ei, r2 e2/. 
(c) /VW,, VW,I and /VU,, VU,/ are parallel for /I+, V*, Ve, V*/ for all 

unitaries E 
Most important, however, is the following. Let /Wi, W2/ be another pair of 
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parallel amplitudes belonging to the same pair /ei, ez/ of density matrices. Then 
there are unitaries, V,, V, such that ~j = ~j I$. 

Parallelity requires 

I@ Wz = VT IV: IV, V, > 0 

together with (3). By the uniqueness of the polar decomposition one now 
concludes V, = I$. 

STATEMENT 1. Let /WI, W,/ and /U, , U,/ be pairs of parallel amplitudes and 
phase factors of /eI, ez/ respectively. Then all other parallel pairs are gained by the 
simuttaneous replacement 

Wj --t Wj V and Uj + Uj V, (4) 

where V runs through all the unitary operators. 

One sees that 

K I+? and U, Uz 

only depend on the ordered pair of density matrices and not on the particular 
choice of the pairs of parallel amplitudes and phase factors. 

Thus we may uniquely define relative amplitudes and phase factors 

AMP(e1, ez) = w, w- and RPF(e1, ez) = u, UT. (5) 

Before giving explicit expressions we draw some conclusions from (2) and (3). 

AM&?,, ez) = e:” RPF(e1, Q2) e:“? (AMW = e1 e2. (6) 

It is easily seen that 

iff el 

i.e. a commuting 
relations can be 

for all unitaries, 

e2 = e2 e1 then AMP = Q:‘” Q:/’ and RPF=I, (7) 

pair of density matrices gives raise to trivial RPF. The following 

expressed also through AMP by using (6): 

RPF(er, e2) = RPF(e2, el)* (8) 

RPF ( VeI V*, Ve, V*) = VRPF (eI, Q2) V* (9) 

V For all positive real numbers rI, r2 the equality 

RPJ’(ri el T r2 eJ = RWel y e2) (10) 
holds. Hence RPF depends only on the states (1) induced by the density operators 
involved. 

There are several ways of constructing parallel pairs of amplitudes and phase 
factors for a given ordered pair /er, e2/ of density matrices. An example is 

W, = &“, W, = e; I/* (e:/’ e2 etj2)l12. (11) 
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It provides us with 

AMP(&) ez) = e:‘“k?:‘” e2 eY2Y2 e; l/2, (12) 

RPF(&) e2) = (&2 Q2 &2)1/2 @; l/2 @; 112 = (&2 Q2 &2,- 112 &2 &#2. (13) 

To get the last expression in (13) the unitarity of RPF has been used. Let us adapt 
the notation of absolute value IAl = (AA*)l12 for operators. Then 

IQ:” ,&‘I = (($2 Q2 &2)1/2 (14) 

and we see from the last expression in (13) that 

Q;l” @iI” = le:‘” e;‘“l RPF(el, e2). (15) 

Remark 1. Equation (15) provides good grounds for extending our notations 
to all (not only faithful) density operators. To define RPF by this equation one 
considers it as a polar decomposition, i.e. one demands RPF(el, e2) to be a partial 
isometry the left (and right) support of which coincides with the right (and left) 
support of Q:/” Q:“. W e shall adapt this as a definition of RPF for all pairs of 
density operators. Then AMP will be defined through the first relation of (6). In 
(7) in the case of commuting density operators, RPF is equal to the support of 
AMP. 

EXAMPLE 1. Let P, and P, be two projection operators of rank m. They can 
be represented by two orthonormal systems of m vectors as 

pj = lj, 1) U,jl+lj, 2) (2, jl+ . . . +lj, m> Cm, jl. (16) ’ 

Using the freedom in the choice of the orthonormal systems we can achieve 

(k, 112,i)=O if k#i and (k, 112,k)>O. (17) 

If then II), 12), . . . . Im) denotes an arbitrary third orthonormal system of the 
same length the amplitudes 

y = lj, l><ll+lj, 2)<21+ . . . +lj, m><ml (18) 

of the projections satisfy (3). Using (15) to define AMP and RPF according to 
Remark 1 we get 

RFP(P,, P2) = II, 1) (1, 2l+ll, 2) (2, 2l+ll, m> Cm, 21 = AMP@‘,, P2). (19) 

Remark 2. Using Remark 1 it is possible to define RPF and AMP for pairs 
of normal states in W*-algebras in a .representation independent manner. 

2. Transport of phase factors,: the discrete case 

We shall now consider ordered sets of density operators, at first discrete ones 
and then curves, and try to transport phases “parallely” along them. As previously, 



PARALLEL TRANSPORT ALONG DENSITY OPERATORS 233 

we suppose the density operators induce faithful states. Thus let 

c =I&, e2> . ..Y Qn+l/ 

be an ordered set of density matrices. For every ej we choose an amplitude wj and 
a phase Uj according to (2) as follows. We choose IV, (or U,) arbitrary. But then 
we choose inductively II$+ 1 to be parallel to ~j for j = 1 to j = n. We obtain 

ordered sets 

lw,, K, ...? IX+,/ and IU,, UZ, . . . . Un+J, (21) 

where nearest neighbours are parallel in the sense of (3). 
Apart from C in (20) these sets depend on the choice of IV, (or U,) only, and 

changing IV, into IV, I/ and U1 into U, V with a unitary 1/ implements the change 
of y and Uj into ~j I/ and Uj I’ for all j. 

Therefore the expressions 

RFP(C) = U, U;+l and AMP(C) = WI W,+, = Q:‘” RFP(C)Q;‘~ (22) 

are uniquely attached to the ordered set C of density matrices we started with. 
One may glue together two ordered sets provided the last member of the first 

coincides with the first member of the last : If 

C’=/en+1, ..., e.+J then CC’=/el, e2, . . . . enfl, . . . . e,+J. (23) 

Now the following rule is obvious from the definition 

RPF(CC’) = RPF(C) RPF(C’). (24) 

Define further C* = /Q,+~, Q,, . . ., el/ if C is given by (24). Then 

RPF(C)* = RPF(C*). (25) 

The map C - RPF (C) is the “discrete” version of the “parallel transport of phase 
factors” in the case where all density operators give rise to faithful states. 

We shall now skip the faithfulness assumption. Thus let C be given as above 
but we allow the ej to have zero eigenvalues too. We then try to write 

Rf’F(C) = Rf’Fh> e2)RPf’k2> es). . -RPF(e,, en+ 11 (26) 

and try to assure this to give an partial isometry. 
Let us call C “admissable” iff for j = 2 to j = n the right support of 

RPF(gj_ 1, ej) equals the left support of RPF(ej, ej+ 1). This, indeed, guarantees 
RPF (C) to be a partial isometry, and it gives no further condition in the “faithful 
case”. 

We shall abbreviate the notion “discrete ordered admissible set of density 
operators” by the three letters AOS. 

Let us now consider two AOS, C and C’, as in (20) and (23). We then allow to 
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form the “product” Cc’ iff the right support of RPF (en, Q,+~) equals the left 
support of RPF (en+ 1, Q,+ 2). With this condition CC’ is an AUS for admissible C 
and C’. 

The family of all AOS now forms a groupoid. RPF is a morphism into the 
groupoid of the partial isometries. In the latter multiplication of two partial 
isometries is allowed only if the right support of the first and the left support of 
the second factor coincides. 

We have to add some technicalities. 
1. It is worth considering an AOS consisting of one density operator only. We 

define 

i.e. if the 

2. We 

f@/!lfQ, e’, ‘. -/ = IQ, e’, . .-i and I.. . , e’, e//d = I.. . , Q’, e/, (27) 

product exists /Q/ acts as a left (or right) unit. Furthermore, we set 

RPF fj~j) = support (Q). (28) 

want to introduce an equivalence relation between admissible ordered 
sets of density operators. To this aim we consider certain subsequences of 
neighbouring density operators in such an AOS and replace them by “equivalent” 
ones. 

Two AOS, C and e, are called “equivalent” iff they can be transformed one 

into another by a sequence of the following steps: 
a. A subsequence of the form Q, Q is replaced by g. 
b. A single element Q is replaced by Q, Q. 
c. A subsequence Q, Q’, Q is replaced by Q. 
d. A single element Q is replaces by ,Q, Q’, Q, where /Q, Q’, Q/ is admissible. 
We shall write C - e iff C and e are equivalent. 

STATEMENT 2. If C - e then RPF(C) = RPF(e). 

This simple consequence of the definition is satisfactory: Looking at an AOS it 
is tempting to interpret it as a discretized path. From this point of view equivalent 
sets should be modi~ations not touching the result of a “parallel transport”. 

The equivalence classes form a groupoid in a natural way: Assume C - 2 and 
c’- c?. If CC’ exists then there exists &’ and it follows that CC’ - &‘. 

Let us now consider the AOS ’ 

c1 = 1Ql.Y @2, .‘.> Qn9 @l/P **.* cj = lPj9 ***> @a, @19 .-*T @j/9 *** (2% 

They mimic a “closed path”, the first starting and terminating at ei, the j-th doing 
the same at ej. We shall call an AOS “closed” iff it is of the form 

l&l Q27 e--T e,, ed with le,, el, e2l adksi&. (30) 

There are some obvious facts. If one AOS is closed then all members of its 
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equivalence class are closed. If one of the AOS listed in (29) is closed then all AOS 
of (29) are closed. 

Let us call holomony invariant each fun&or associating to every equivalence 
class of closed AOS an object which is constant on every family (29) of closed 
AOS. 

Let now (29) and (30) be fulfiled. Then one finds, according to our rules, 

Cz - /ez, e1l C1 IQ1 > ezl (31) 
and 

RPF(CJ = V* RPF(C,) I/ with v = RPF(e1, e2). (32) 

STATEMENT 3. Up the zero eigenvalues the spectrum of RFP(C) is an holonomy 
invariant for closed AOS. 

EXAMPLE 2. Let C = /PI, P,, . . ., P,+ I/ be an AOS of l-dimensional projec- 
tions. Then either Pj Pj+ 1 = 0 always (trivial case) or never. In the non-trivial case 
we know from Example 1 that RFP(Pj, Pj+l) = lj) (j+ll iff (jlj+l) is a 
positive real number and the vectors are normalized. It follows that RFP(C) 
= ll)(n+lI. If now P, = P,+l, then C is a closed AOS. In this case there is a 
unimodular number E with 11) = &In+ 1). The essential spectrum of RFP(C) 
consist of the eigenvalue E only. It is clearly a discrete approximation to the Bott, 
Chern, Berry holonomy along a closed path of pure states. 

3. Transport of phase factors 

LA 

c: S-+@(S) (33) 

describe a path of density operators of sufficient regularity, in particular differen- 
tiability. We shall allow these operators to have a non-trivial null space. 

The parameter, s, is supposed to run through a closed interval of the reals. We 
often write equations in a more general manner allowing s to vary in a higher 
dimensional manifold. If we wish to emphasise this we call (33) a manifold of 
density operators. 

In particular, we sometimes prefer the use of the total differentiation, dw 
instead of dW/ds even in the one-dimensional case. 

Given (33) we consider smooth paths (or manifolds) of amplitudes and phases 

satisfying (2). 

s + W(s) and s --* U(s) (34) 

In defining parallelity we need to translate the hermiticity statement of the 
requirement (3). Heuristically this is very easy: Applying (3) to two “infinitesimally 
near” amplitudes, W and W+ dw we arrive at 
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W* dW = (dW)* W or w* (dW/&) = (dW/ds)* IN (35) 

We call a path or manifold (of amplitudes or phases) parallel iff (35) and (2) is 
fulfilled. 

Let us consider two examples. 

EXAMPLE 3. Let s ---* P(s) denote a smooth path of m-dimensional projection 
operators, and let us try the ansatz 

W(s) = Js, 1) (11 +ls, 2) (21+ . . . +Is, m) (ml (36) 

similar to (18) of Example 1. Here Is, k), k = 1, . . . , m, denotes an orthonormal set 
of eigenvectors of P(s) with eigenvalue 1. (1 ), 12), . . . denotes an auxiliary ortho- 
normal system of length m. Inserting this into (35) one gets 

(k, s /(d/h)/ s, i) = 0 for i, k = 1, 2, . . . , m (37) 

using the fact that the matrix (37) is antihermitian by the orthonormality condi- 
tions. In the example at hand it even follows from (35) that W*dW = 0. Further- 
more, one sees how (35) induces the Bott, Chern parallel transport [l] in the 
bundle of orthonormal m-frames of a Hilbert space over the Grassmann manifold 
of its m-dimensional subspaces (assuming a finite-dimensional Hilbert space). 
Evidently, for l-dimensional projections, i.e. for pure states, (37) reduces to the 
Berry-Simon transport [2, 51 giving the Berry phase factor for closed paths. 

EXAMPLE 4. Let Q and Q’ denote a pair of non-singular density operators and 
/W, IV’/ a pair of parallel amplitudes. Then 

s-(1-s)W+sW’, O<s<l, (38) 

is a parallel path of amplitudes belonging to 

s-Q1-s)~,+s2,‘+s(1-s)(w’w*+w(w’)*). (39) 

In particular, every AOS gives rise to a piecewise smooth path of density operators 
and parallel amplitudes. 

If (33) is a path starting at the parameter value s’ and terminating at s”, one 
defines AMP and RFP by 

AMP(C) = W(s’) W(s”)* and RPF(C) = U(s)) U(s”)* (40) 

provided W and U fulfil the parallelity condition. 

. . There is, however, the problem of uniqueness of this definition. We shall 
discuss this and other problems below. We shall ignore the many technical 
questions arising in the analysis in infinite dimensions. 

Let us consider a given path (33) and the paths (35) belonging to it. Let us 
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denote by 

s - Q(s) = U(s) U(s)* (41) 

the path of supports of the density operators which is equally well the path of left 
supports of the amplitudes and phases (34). We further introduce 

s + R(s) = u(s)* V(s). (42) 

To shorten notations we do not write explicitly the dependence on s. 
One concludes from (41) and (42) in the usual manner that 

WR=W, QW=W, UR=U, QU=U. (43) 

Let us introduce the expressions 

X = W*dW-(dW)* W and Y = U(dU)*. (44) 

The knowledge of Y along a path (33) determines the curves (34) of amplitudes 
and phases completely up to the choice of initial data. Clearly, X = 0 is the 
parallelity condition. 

STATEMENT 4. One has 

If X = 0 then dR = 0. (45) 

In particular, U* U = R is a constant projection operator on every sufficiently 
regular parallel manifold. 

To see this one multiplies X = 0 from the right by R, and uses WR = R to get 
the equality of W*dW and W*dWR. Differentiating WR = R and using this 
equality, we get W* WdR = 0. The support of W* W is R, and hence RdR = 0. 
This implies (dR) R = 0. Because R is a projection operator one has dR 
= (RdR +(dR) R) which implies the assertion. 

We shall look at the transformation properties of X and Y in passing to 
different choices of the amplitudes for the same path (33). Hence we consider the 
change 

W-W’= WV and u-U’=Uv, (46) 

I/ = V(s), VI/* = R, I/* I/= R’. (47) 

Using the substitution (46) we define Q’, R’, X’, Y’ by the help of the amplitudes 
W’ and the phases U’. 

Taking care of the support properties, a short calculation yields 

Y’ = Y+ U (V(dV)*) U*, (48) 

X’ = I/* XV+ I/* W* WdV-(dV)* W* WV. (49) 
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As a first application let us solve the unicity problem. If X = X’ = 0, we conclude 

IV* IV* IV&V* = VU* IV* wVV*. (50) 
One has 

VV* = R, RW* = W*, WR=W 

which yields the equivalence of (50) with IV* W&G’* = VdV* IV* II! From (45) we 
know that VdV* is antihermitian because R = 1/V*. Hence 

VdV* IV* Iv+ IV* WVdV* = 0. (51) 

But W*W is positive and of the trace class with R as its support. It follows that 

I’dV* R+ RVdV* = 0. (52) 

From this and RV = V we get Ef/dv* (1+ R) = 0. However, 1+ R is invertible. We 
therefore get VdV* = 0 and Y = Y’. 

STATEMENT 5. For suf’j’jciently regular paths C of density operators AMP(C) 
and RFP(C) is uniquely defined by (40). 

We shall now calculate Y if X = 0. Note that QY = Y because of (43). 
Differentiating (41) and multiplying from the right by (1 -Q) provides us with 

YV-Q)=(dQ)(l-Q) =QdQ. (53) 

We apply (49) to the following situation: 
We set X = 0 but W’ = e”‘, and U’ = Q. 
Then (46) is fulfilled by V = U*. 
One gets 

@1’2d(Q1’2)-d(,1’2), ‘I2 = UW* WdU*-dUW* WU* 

= @JdU* -dUU* e, (54) 

where we had used Q = UU* and Qe = Q. Multiplying by Q from the left, and 
remembering that Q(dQ)Q = 0, one arrives at 

QCe "', dql”] = eY+ Ye. (55) 

To solve this equation one may use (for every s) a complete system of eigenvectors 
k) for the eigenvalues e(k) of to get: 

If e(j) > 0 then 

<jlYlk) = (e(_#” -e(V2)(e(_i)+e(k)) <jld(e”2)I k). (56) 

It is well known that such an expression may be converted into an integral 
relation. Denote by u a real auxiliary parameter. Then 

Y = UdU* = Q g(exp -uQ)[Q”~, dQ”‘](exp -ue)du. (57) 
0 
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Let us mention two important cases: 
If C is a path of projection operators then (53) suffices to determine Y On the 

contrary, if C is a path of non-singular density operators, for example Gibbs 
states, then Q = 1, and (53) is trivial. In any case, (54), (55), or (56) completely 
determine Y 

One can further see explicitly that Y only depends on the states (1) induced by 
the density operators, i.e. it is insensitive to the normalization of the density 
operators building up the path C. 

There is a possibility of simplyfying the equations above. To this end let the 
path or manifold (33) of density operators be given by 

@= Vov, F = I/*& (58) 

where s + V(s) is unitary, and s ---t o(s) is a commuting manifold (path) of density 
operators. Then one can rearrange the left-hand side of (54) to the form 

vp2, [F, a1’2]] v*. (*) 

Let us denote by P the support of a such that Q = I/PI/*, and let us try out the 
decomposition 

u = I/s, (59) 

which implies, because of QU = U, the relations 

PS = s, ss* = P. (60) 

It is now straightforward to express the right-hand side of (54) as 

I/ [as&S* - dSS* o] I/* - I/ [Fo + oF] I/*. (**I 

Now the equation (54) means equality of the expressions (*) and (**). Computing 
the double commutator in (*), we get 

20’~~ Frs112 = oSdS* - dSS* CT. (61) 

If the supports P = P(s) of the commuting set c commute themselves, then P is 
constant along the manifold (path). 

In this case PdS = 0, and 

2~“~ FatI2 = oSdS* + SdS* CT. (62) 

Of course one may now immediately write down resolutions for SdS* as was done 
in (54) and (55) for Y Explicit calculations of RPF remains difficult nevertheless. 

EXAMPLE 5. We consider in an irreducible representation of the angular 
momentum (or spin) operators J’ an unormalized density operator of the form 

0 = exp(aJ,). (63) 



240 A. UHLMANN 

We define a path of density operators (33) by (58), where V denotes a rotation 
around an axis that crosses the 3-axis by angle a. Hence we may choose 

I/ = expis(sin(a)J, +cos(cl)J,). (64) 

It is then more or less straightforward to compute S by (62). Denoting by ch(a) 
the hyperbolic cosine of a one can express the result as 

S = expis(bsin(cl)J, +cos(a)J,) with b ch (a/2) = 1. (65) 

A full turn around the rotation axis gives 

RPF = U(O)U(2rc)* = fS(2$*, (66) 

where the even or odd sign comes from an integer or half integer representation of 
the rotation group under consideration. 

The eigenvalues of (66) only depend on the closed path and not on the starting 
density operator (63), i.e. they do not depend on s in U(s) U(s+ 2x)*. They are 

given by 

fexp[2im(b* sin(cr)*+cos(cr)*)“*], (67) 

where the number m runs through the eigenvalues of J, in the representation at 
hand. 

In this example we had assumed not only constant eigenvalues of the density 
operators along the path but also a very simple path given by the action of a 
l-parameter group of unitaries. If the latter is not the case, path integrals with 
Dyson ordering seem to be unavoidable in calculating relative phase factors. 
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