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The Cartan algebra
of exterior differential forms
as a supermanifold:
morphisms and manifolds
associated with them
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Abstract. A supermanifold, M ’"/", can be caracterired by its smooth superfunctions
which constitute an algebra A (Leites, Kostant). We associate canonically ¢a la
Gelfand» certain fibred manifolds on which the automorphisms (the Jordan auto-
morphisms) of A act as diffeomorphisms. For example, the kernels of all homomor-
phisms from the algebra of superfunctions onto the Grassmann algebra of dimen-
sion n form naturally a manifold of dimension m2t1 if n is even. To be more
specific we explain this and similar constructions in the case of the algebra of
smooth exterior differential forms defined on a smooth manifold. This algebra
defines a particular supermanifold M m/m

1. INTRODUCTION

A smooth supermanifold M™/" (see (1, 2, 3, 4]) uniquely defines the algebra of
smooth superfunctions. Locally, superfunctions can be considered as germs of
(smooth) maps of a smooth manifold into the unital Grassmann algebra with n
generators over the real or complex numbers. We consider here the real case.
It is known that in the smooth, i.e. class C™ case the algebra of superfunctions
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completely characterizes the supermanifold.

Let A be the algebra of real and smooth superfunctions defined on M™".
Because A isanalgebra with a large radical its maximal ideals are too coarse to
give more than the structure of the base manifold M. This changes, however, in
considering other classes of ideals and related structures.

Thus the set «G-space M™"» of all ideals, J, of A with the property that the
factor algebra A/J is isomorphic to the unital real Grasmann algebra with n gene-
rators naturally carries the structure of a smooth manifold: Indeed, there is only
one way to equip this set of ideals with the structure of a smooth manifold
allowing the representation of all automorphisms of A as diffeomorphisms. The
dimension of this manifold equals

m?271 resp. m@" 1+ 1)

depending wether » is even or odd.

Likewise, the set «JG-space M™"» consisting of all Jordan ideals of A with
A/J Jordan isomorphic to the real unital Grassmann algebra of n generators may
be considered a manifold on which all Jordan automorphisms of our algebra of
superfunctions act as diffeomorphism.

Evidently one can construct in the manner indicated above even higher dimen-
sional spaces by considering not the set of kernels but the set of (Jordan) homo-
morphisms of A onto the Grassmann algebra. To control this behaviour one needs
to know a large enough set of automorphisms and Jordan automorphisms of the
algebra of superfunctions. It is, indeed, possible to enumerate all of them [5, 6]
but we shall restrict ourselves to those we need.

Further, we shall not go into the most general smooth supermanifold though
this would be possible with the methods explained below. To be more definite
we will restrict ourselves (with the exeption of the next section) to the Cartan
algebra of smooth real exterior differentials on a smooth manifold M. Then
m=n.

A final remark is the following: Starting not with the real but with the complex
Grassmann-valued superfunctions we get, by performing the announced construc-
tion, quite other spaces. Namely, the set of kernels which form the «G-space»,
the «JG-space», and so on is much larger than in the real case, and the groups '
of (Jordan) automorphisms are of correspondingly higher dimensions.

2. SUPERCOMMUTATIVE ALGEBRAS

Let A be an algebra with unit element which we denote by 1 4 of simply by 1.
For definiteness only we assume A to be an algebra over the field of real numbers.
A supercommutative algebra is a pair consisting of an algebra A, and an auto-
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morphism, w, fulfilling

i) wl=id.
ii) if w(a) = a then a is contained in the centre of A
iii) if w(a) = —athena? = 0.
An element a € A is called «even» if w(a) = a and «odd» if w(a) = —a. The set

of all even resp. odd elements of the algebra we denote by A, respectively A _.
There is a direct sum decomposition

(1 A=A, +A.

The radical, S, of an algebra A is by definition the intersection of all its maximal
ideals.

PROPOSITION 1. The odd part, A_, of every supercommutative algebra, A, is
contained in its radical, S.

(2) A CS.

Indeed, let b, ..., b, denote odd elements. By using decomposition (1) and
the properties of w we see that every element of the form

alb]c1 + ...+ akbkck

is nilpotent for any choice of the 4, ¢ out of A. Hence the ideal generated by
A_ consists of nilpotent elements only and is, therefore contained in every
maximal ideal.

A Jordan subalgebra, F, of A is a linear subspace containing a2 if it contains

We denote by P the projection operator onto the even part of A.
3) Pa=(1/2) (w(a) +a), a€A.
PROPOSITION 2. Let F be a Jordan subalgebra of A. Then
) F, = P(F)

is a subalgebra of A.
Proof. Let a, b€F and denote by a,_,b,  their even parts which are in F_.
Then P(ab + ba)=a,b_+ b,a, +ab_+b_a_, which equals 2a, b, by super-

commutivity,isin F .

DEFINITION. A Jordan subalgebra, F, of A is called «splitting» iff
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&) A=F+S, FnS={0}

PROPOSITION 3. Let F be a splitting Jordan algebra. Then FJr is splitting.
This is an easy application of proposition 1.

PROPOSITION4. Two splitting Jordan subalgebra are canonically Jordan isomor-
phic.

Namely, let F and F' denote two splitting Jordan subalgebra and a € F. There
is exactly one a’ € F' such that a —a’ € S. This defines canonically a one-to-one
mapping

(6) i gp:a—>a'

from F onto F'. It is plain to see that this map is a Jordan isomorphism. Moreo-
ver, if both, F and F’, happen to be subalgebras then (6) is an isomorphism of
algebras. Clearly,

) ipp=1d., ippip pe =igpe.

In a particular case we already know more about these morphisms:

(8) Ip F= Plg.

We now consider the morphism which is invers to (8). Let us write

9) iF’F’a=a+r(a), aeF+.

Let a, b be two elements of the commutative algebra F, . Then
2(ab + r(ab)) = (a + r(a))(b + r(b)) + (b + r(b)Xa + r(a)).

Taking into acount that F, is in the centre of A we get from this

(10) Va,b€F+ :r(ab) =r(a) b + ar(b).

Hence r is a derivation from F, into A satisfying in addition

(11) VaeF, :r(a)eA_.

Let us denote by

(12) Deriv (F,, A_)

the set of all maps, r, satisfying (10) and (11). It is again elementary to see that
every r fulfilling (10) and (11) defines a splitting Jordan subalgebra which is the
set of all elements
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(13) a+r(a) with a€F .
This reduces the question for all Jordan splitting subalgebras to those splitting
subalgebras which are central ones.
PROPOSITION 5. Let F, be a splitting subalgebra consisting of even elements
only and r € Deriv (F_, A_) then
(14) F={a+r(a),acF }
is a splitting Jordan subalgebra of A and every such algebra can be obtained by
varying F,_and r.

An odd derivation of A is by definition a linear map, R, of A into A satisfying
(15) wR+Rw=0 and
(16) VYa,be€ A :R(ab) = R(a) b + w(a) R(b).
An odd derivation maps A | into A_.
LEMMA 6. Let re€Deriv(F,, A ) If there is an odd derivation, R, of A the
restriction of which to ¥, coincides with r then
17 T=id.+RP

is a Jordan automorphism of A. T maps F onto F as defined by (14).

(17) coincides with iF.F‘ on F+. (15) shows
(id. —w)R =R(@Gd. +w),
and from this we infer
(18) T-l=id. —RP.
On the other hand we get by a short calculation
(19) VYa€A :(Ta)=T(a%

showing T is Jordan.

Lemma 6 reduces the problem to list all splitting Jordan subalgebras to the
description of all even splitting subalgebras, provided we can obtain all elements
of Deriv (F,, A ) by restricting suitable odd derivations.

From (18) or from (17) one obtains

20) TwTw=id. and wTw=T"1.
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A map with this property we shall call «w-inverse».

3. THE CARTAN ALGEBRA

From now we assume A to be the Cartan algebra of smooth exterior differen-
tial forms on a given manifold,
2D M, dimM=m.

Every element a € A can be uniquely decomposed

22) a=ag+ag+...+a,,

(U} (C1

where a0 is a smooth function and Ay k > 0, is an exterior differential form of
class C*. The radical, S, of A consists of all elements (22) with ag = 0. One
introduces in A a superstructur, w, by

(23) w(a) =2 (—1)a,,.

The pair A, w is the supercommutative algebra we are aiming at, i.e. the Cartan
algebra of M. Denoting by A(k) the set of homogeneous elements of degree &, i.e.
the set of all elements (22) with a;) = 0 for j # k, we see the direct sum decom-

positions

O Ay=Ag tAg+.... A=A +AG+. .
and

(25) A=A, +8S.

O

Thus, A(O) is a splitting subalgebra containing only even elements. let F be
another splitting even subalgebra and let us consider the canonical isomorphism
between them. There is an integer, k, with

i 2%
(26) ae A(O) :a zF,A(O)a es.
because both algebras contain even elements only. Hence we may write
27 VacA, a= iF’A(o)a + g(a) + o(a)
where o (a) is contained in S2¥* 2,
(28) Va—>q(a), a€Agy,

is a linear map from A(O) into A(zk)' Using the fact that ip 4 © is an ismorphism
we get

(29) Va,b €A :q(ab) =q(a) b +aq(b).
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Thus ¢ is a derivation from A(O) into A(2k). Applying onto g any sequence of
2k pull backs with 1-forms, we get a derivation from A(O) into itself. But every
such derivation is known to be a certain Lie derivation. Hence there exists a
vector differential of degree 2k, denoted by b ={b/}, such that locally on M

(30) VacAg q(a)= b/ (8/3x7) a.

Let now E = {EJ.} denote the covector operator of pulling back the coordinate
differentials, i.e.

3D Ejazdxj_!a, locally.
(The notation «E i for this operation is due to Kihler). Then the expression
(32) L:=@®E)d+ d(beI.),

where «d» denotes total differentiation, is an even derivation of A into A that
coincides on A(O) with g. It is, indeed, a Nijenhuis derivation [7]. Let

(33) Tzk:=id.+L+(1/2)LL+...

be the Lie series exp L. It terminates for L is nilpotent. As a consequence T,

2% 1S an

automorphism. It is

(34) T,

wW=wlhy, dh, =T,d.

Now we consider the algebra

(35) F' =T, '(F)

which is again an even splitting subalgebra. It satisfies
36 VacA,  a—i., acS¥+2

(36) () F\Aq

The radical S being nilpotent we can now conclude by induction

THEOREM 7. Let F ba a splitting subalgebra of A containing only even elements.
Then there exists an automorphism, T, with

37 F= T(A(O))
and
(38) wTl=Tw, dT=T4d.

Indeed, we may choose for that purpose an automorphism, T, which is of the

form LT, Ts' .. where the T2k are given by suitable automorphisms (33), (32).

Our next aim is a similar construction for splitting Jordan subalgebras. Taking
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into account lemma 6 we need to prove

LEMMA 8. Let r € Deriv (F_, A_), where F_ is a splitting even subalgebra. Then
there is an odd derivation, R, of A coinciding on F, withr.

Proof. Using theorem 7 we may restrict ourself to the special case

F,=Ag.

Further, Deriv (A(O), A_) is the direct sum of the vector spaces
Deriv (A(O), A(Zk N 1)). Arguing, for every k, as in the case of the derivation (28),
(29) and adding the resulting vector forms we see the existence of an odd vector
differential, b = {b/}, with

(39) Va€ Ay, :r(a) =b/(3/dx/)a.
But for odd b the a la Nijenhuis defined operator
(40) R:=(@ E)d—d E)

turns out to be an odd derivation [7] the restriction on A(O) of which coincides
with r. Hence lemma 8 is valid if F = A(O). But the general assertion follows
easily by the help of theorem 7.

Now the corresponding Jordan automorphism

41) T=id.+RP

is the one to use in the situation described by lemma 6.

THEOREM 9. Let F be a splitting Jordan subalgebra of A. Then there exists an
even automorphism, T1 and a w-inverse Jordan automorphism, T2 such that

(42) F=T(Ag,), T=T,T,.

Indeed, we first to to F, by the described above Jordan automorphism. Then
we use theorem 7.

One finds the set of all products 7, T, where T} is even and T, is w-inverse
(— and constructed according to the procedures described above —) forming
a group.

In this group the w-inverse Jordan automorphisms constitute a normal sub-
group. The whole group is a semidirect product of that normal subgroup with
the subgroup of its even elements.

In the case m = dim M is odd there are w-inverse Jordan automorphisms of
the form (41) which are ordinary automorphisms. They are obtained by perform-
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ing the construction with vector differentials of degree m. Then these w-inverse
automorphisms form a commutative subgroup of the normal subgroup of w-
-inverse Jordan automorphisms.

4. MANIFOLDS CANONICALLY ASSOCIATED TO THE CARTAN ALGEBRA

The following construction can be performed for every smooth supermanifold
which is given by their algebra of smooth superfunctions. The smoothness is
necessary. In the continuous case the following construction becomes trivial.

We restrict ourseves, however, to the Cartan algebra, A, of smooth exterior
differentials defined on a manifold, M.

Let m = dim M and let A be the unital Grassmann algebra over the reals gene-
rated by m Grassmann variables.

DEFINITION. An ideal, J, of A is called «G-point» iff A/J is isomorphic to A.
A Jordan ideal, J, of A is called «JG-point» iff A/ is Jordan isomorphic to A.
Every G-point is at the same time a JG-point.

If J is a JG-point there is a maximal ideal, I, of A with A/I isomorphic to the
real number field and J C 1.

Indeed, assume § to be a Jordan isomorphism of A onto A. Then every nilpotent
element of A will be mapped onto a nilpotent element of A. Hence 5(S) is con-
tained in the radical of A, and there is a proper Jordan ideal I in A containing J
and S. This Jordan ideal I induces a Jordan homomorphism from A onto the reals.
Then A(O)/I N A(O) is Jordan isomorphic to the field of real numbers. Both algebras
being commutative this is an ordinary isomorphism. Therefore there is a point
p €M such thatIn A(O) consists of all functions vanishing at p. But I is generated
as a Jordan ideal by I N A(O) and S. Taking into account that A(O) is a splitting
algebra one sees that I is an ideal. It is plain that S(I) is in the radical of A for
there is only one maximal ideal in the Grassmann algebra, its radical. Hence
B(I"™ * 1 contains only the zero element. Thus we have proved

LEMMA 10. Let J be a JG-point. Then there is a point p € M such that the maxi-
mal ideal Ip of all elements the zero component of which vanishes at p satisfies

m + 1
(43) mricicl,.
The set of all JG-point is, therefore, a subset of the so-called 7 ™" infinitesimal

neighbourhood of the supermanifold the fibres of which are given by A/I;" +1
where p runs through all the points of M.
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Our next aim is to show: The group of Jordan automorphisms introduced at
the end of the last section acts transitive on the set of all JG-points. Let § denote
a Jordan homomorphism from A onto A, and let e, e
base of A.

We may write

P € be a Grassmann

(44) Vb €A :B(b) =y(b) + B,(b) + B,(b) + . ..
with
(435) Bib)y=%B,, . (De ...e

e M} 1 i

where all the coefficients in (45) are assumed to be real numbers. At first,
b— 50(1)) is a Jordan homomorphism onto the field of real numbers. It is ﬁO(S) =
= O for there are no nilpotent real numbers. Thus BO induces an homomorphism
of the commutative algebra A(O) onto the real numbers. It follows the existence
of a point, p € M, with

(46) Vg € A(O) : Bo(g) = S(P)

Now assume B] =...=f, =0, identically. Then the kernel J of § is generated
as an Jordan ideal by the ideal Ig of A, consisting of all functions vanishing at
p. This generating set is in the centre of the algebra. Therefore J is an ideal gene-
rated by 11(7)’ too. It consists of all differentials the coefficients of which vanish
all at the point p of M.

Next we assume the existence of an integer, k, such that for 1 <j <k itis
ﬁ]. = 0 identically, but §, # 0.

Using the uniqueness of the decomposition (44) we conclude then

(47) Vg, 8, € Ay, B8, 8,) = 8,(P) B (8,) + 8,(») B (g

Performing any sequence of & pull backs with the Grassmann generators e,. . . . , ¢,
we arrive at a derivation from A(O) into the real numbers. Taking into account
(43) one concludes that these objects have to be Lie derivatives taken at the
point p. Hence Bk can be written in the following form: There is a (local) vector
differential, ¢, of degree k with

(48) Vg € A, B, (8) = (c(3/3xD)g)(p).

Depending whether & is even or odd we choose an even or an odd derivation L
of A with the property

(49) Vg c A(O) : Bk(g) = (L g)(p),

which is possible in many ways using either (30), (32) if k is even or, if £ is odd,
(39), (40).
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Hence there is an automorphism (for even k) or a Jordan automorphism
(for odd k), 7;(, with the property

(50) VEE A, (1)@ =g(p) + Bf, (&) +. .. .

By induction we arrive at a Jordan automorphism, T, the property of which we
describe by a theorem:

THEOREM 11. Let B be a Jordan homomorphism from A onto A. Then thereis a
Jordan automorphism, T, of A and a point p €M such that

)] Vg €Ay (T 1B)e) =8(p).

If B is an homomorphism then T can be chosen to be an automorphism of A.

The last assertion arises this way: With the eventual exception of the highest
degree, Bzi+1 = 0 for homomorphisms.

We know already how the kemel of § is constructed if the form (51) is reached.
Taking advantage from the (Jordan) morphism properties we easely get:

THEOREM 12. Let Y be a JG-point. Then there exists a point p €M and a splitting
Jordan subalgebra, ¥, such that ¥ is Jordan generated by the intersection F N Ip.
If Y is a G-point then F can be chosen to be an algebra. The group of all automor-
phisms of A acts transitively on the set of all G-points. The group of the Jordan
automorphisms acts transitively on the set of JG-points.

Indeed, the transitivity of the later groups if acting on those G-points resp.
JG-points which belong to a fixed p €M, ie. J C Ip is seen from the construc-
tion above. This transitivity is already true for the set of (Jordan) automorphisms
constructed in section 3. The restriction to a fixed point of M can be removed
trivially for we have all the diffeomorphisms of M which induce automorphisms
of A: Let S, be a diffeomorphism of M. There is just one automorphism S of A
with

(52) Vg €Ay, (Se)p) = g(Sy), ds = 8d.
Let us denote by
(53) G -space (A), G, -space (A), JG -space (A),

the set of all G-points, even G -points, and JG -points, respectively. Here an even
point is a point which is generated as an ideal by the intersection of a point ideal,

Ip, and an even splitting subalgebra. It is not difficult to see that all sets (53) are
th

closed subsets of the m™ infinitesimal neighbourhood of A, m =dim M, i.e. are
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closed subsets of a smooth fibre bundle over M.

On the closed subsets (53) of that fibre bundle act large groups transitively.
However, taking into account the constructions of section 3 we see that, locally,
finite-dimensional subgroups are already sufficient to reach, from a given point,
a whole neighbourhood. Therefore, the sets (53) turns out-to be genuine smooth

th infinitesimal neighbourhood. Furthermore, from this

submanifolds of the m
observation one can deduce the dimensionality of that manifolds. In doing so

we get

THEOREM 13. There is a unique way to equipp the sets G-space (A), G_-space
(A), and JG-space (A) with the structure of a smooth manifold in such a manner
that the group of all automorphisms, of all even automorphisms, and of all Jordan
automorphisms of A acts respectively as a group of diffeomorphisms.

LEMMA 14. [t is, under the assumption

dim M =m:
(54) dim G-space (A) =m 2™ 1 if m is even
(55) dim G-space (A)=m(Q2™ 1+ 1) if mis odd
(56) dim G,-space (A) =m 2™ !
(57) dim JG-space (A) =m2™.

Thus the dimensions of the space are, respectively,
Form=1:2,1,2. Form=2:4,4,8.
Form =3 :15, 12, 24. Form =4 :32, 32, 64.

The superstructure w is represented as a reflection of JG-space on its subspace
G , -space.
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