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In this paper a functional characterization of stochastic evolutions within the state spaces of
commutative C * algebras with identity is derived. Consequences concerning the structure of
those linear evolution equations {master equations) that give occassion to stochastic evolutions are
discussed. In part, these results generalize facts which are well known from the finite-dimensional
classical case. Examples are given and some important particularities of the W * case are

developed.
PACS numbers: 02.10.+ w.

1. BASIC NOTIONS AND TOOLS

Let A denote a commutative C* algebra with unity 1.
Whereas the C* norm of x € A will be marked by |||,
the functional norm of an element w € A* of the topologi-
cal dual A* of A will be denoted by ||w|l,. As usually,
the state space of A, S, in sign, is defined as the con-
vex set S,={weA*: w(x*x)=0, w)=1},

Let B(A*) denote the linear space of all bounded linear
maps acting from the Banach space A* into A*. Then

i Il on A* induced norm on elements of B(A*) will be
denoted by the same symbol || -||,. Being equipped with
this topology, B(A*) becomes a Banach algebra. An
element ® € B(A*) is said to be stochastic if ®w(1)
=w(1) and & is positive, i.e., wec A% whenever we A%,
where A} means the positive cone in A*, The convex
set of all stochastic maps with respect to A will be de-
noted by ST(A). Let {®,},¢; be a net of elements of
B(A*). Then, we say that the net is weakly converging
towards ®cB(A*), &,= &, if lim,(®, (w)(x) = (@w)(x) for
every we A* and each element x of A. It is an import-
ant fact that ST(A) is weakly compact. Stochastic maps
are exactly those linear transformations on A* that
throw states into states. This property makes them
very useful for the abstract description of dynamical
evolutions of systems (in our case clgssical systems,
for only commutative C* algebras will be under con-
sideration throughout this paper).

In many applications we will meet commutative W*-
algebras. Then, by standard knowledge, we may identi-
fy the commutative W* algebra A with L*(Q, u), for a
suitable measure space  with measure . In this con-
text, besides the whole set of states, there is the set of
normal states deserving our interest. These states be-
long to the predual A, of A. In the sense of the canon-
ical identification from above, A, can be identified with
LY, ). Thus, normal states correspond to probability
distributions over certain measure spaces, and this is
the frame in which problems of classical statistical
mechanics usually will be dealt with. In this situation,
the set of linear transformations that take normal states
into normal ones will be referred to as ST _(A).

Let f denote a real-valued function on the positive
cone R} of n-tuples of non-negative reals:
f: RID(s,...,

S ) f(s,...48.) .
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We will refer to f as an k-convex function (of order n)
if f is finite, continuous, convex, and homogeneous of
first degree on R}]. We remark that homogeneity and
convexity imply that h-convex functions are subadditive
on R;. By means of h-convex function f we define a
functional S, on n-tuples of positive linear forms of A

by
Sp(wy, .., w,,)=sup{,.}2j(wl(a,), e wela)), (1.1)
»

where the sup runs through the set of decompositions
{a,} of 1 into finitely many positive elements a, of A
(i.e., 2pay=1). S, in this situation will be spoken of as
an h-convex functional (of order n), and S; is called
positive if f is non-negative on R}.

In order to get a better idea of an h-convex functional
S, , we will take notice of

Proposition 1.1: Let w,(x)...w,(x)€ L'(Q, u) corre-
spond to positive normal functionals w,,...,w, of the
W+ algebra L™(Q, u). Then, every positive h-convex
functional S, can be represented by

S,(wl,...,w,,)=f f,),..., 0,6 dulx) . (1.2)
0
A proof is given in the Appendix to this paper. The im-
portance of h-convex functionals (of arbitrary order) is
due to the following result (see Ref, 1):

Theorem 1.2: Let w,...,w,, 0,,...,0, be states of
the commutative C* algebra A with identity. Then,
there exists a stochastic map # ST(A) performing the
transformation

w, =0, VE=1,...,n, (1.3)
if and only if
Sp(wy,. v, w,)<8,(0,,...,0,) (1.4)

for every h-convex functional S, of order n over A}.
Moreover, the occurrence of (1.4) for all positive k-
convex functionals S, is sufficient to guarantee the ex-
istence of ® obeying (1.3).

We close our preparations by introducing a relation
>between indexed sets of states.

Let N =(wy )jer, N’ =(w]);e; be two indexed sets (lab-
eled by the same index set) of states on A. Then, we

© 1981 American | nstitute of Physics 2345



define

Definition 1.3:(>) N>N' if, for any natural n and
every choice i,,...,i, € 1, we have

Sp(@gypeee, @ IS8 (W), wi )

for every h-convex functional S, of order n.

2. THE MAIN RESULT

We start our considerations in fixing the sense of what
is called siochastic dynamics. Assume thereisgivena
set of stochastic maps (T,,), the members T,, labeled
by the pairs (¢, s) of non-negative reals ¢, s with ¢> s,

Definition 2.1: (stochastic dynamics) (T,,)is called
stochastic dynamic if

T,=id Vi30, (2.1)
T, =TTy VS2t2u20, (2.2)
T,,(A*) is dense in A* , (2.3)

In case of a W+ algebra A, (T,,) is said to be a no7r-
mal stochastic dynamic if T, €ST,(A), and (2.3) is re-
placed with “T,,(A,) is dense in A,.” A simple exam-
ple of a stochastic dynamic is given by

Example 2.2: Let A=1"({1,...,N}), and assume M
=(M;,) an N XN matrix with properties:

) ZiMy =0, V&

(i) M;<0, vy, M, 20, Vi#k,

Then, {T,,= expM(t - s)} is a stochastic dynamic within
Ax=1({1,...,N}).

Let we S,, and define a “trajectory” (w,), =, within
S, by
w;=T,,w, V t20. (2.4)
Then, w=w, will be called initial state of the trajectory
(wg )¢ =, under this stochastic dynamic (T,,). The total
system {(w;); 2ot e s, Of the trajectories generated by
(T';,) has the following properties

Ar=[(w,)ye sAj is dense in A* for t20, (2.5)

(w,),,,esA > (w,)wes, Whenever t>s20, (2.6)
where in (2.6) we referred to Theorem 1.2 and Defini-
tion 1.3 with 1=S,, and [ ] in (2.5) means the operation
of taking the linear hull. In the next step, let us ignore
the presence of the generating dynamic (T,,), and ex-
tract from (2.5) and (2.6) the following notion:

Definition 2.3: (c system) Let S, be a subset of states
A. We call {(w,); 20} we s, the ¢ system (of trajectories)
in one case that

Ar={(wy)ye so] is dense in A* for all ¢ >0, (2.7
where w,=w is supposed;
{wg}uESo»{w;}ue so V t2s20. (2.8)
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In the case that A} =A* for all ¢t>0, we will speak of
the c-system in question as a proper ¢ system. The
elements of S, will be referred to as initial states of the
¢ system.

Remark 2.4: Let A be a commutative W*-algebra.
Then, {(m,),;,,}wes is called a normal ¢ system
(resp proper normal ¢ system) if the trajectories be-
long to A+, (2.8) is fulfilled, and (2.7) is replaced with
the requirement that A,, =[(w, Jues,) be dense in the
Banach space A* (resp. Ay, =A, V ¢>0).

We note that in the case of a normal ¢ system the
meaning of (2.8) becomes quite transparent due to the
representation offered by Proposition 1.1. In the con-
text of normal states, heuristically interesting geo-
metrical and physically motivated interpretations of
h-convex functionals are possible (we will not give them
in this purely mathematical paper). As an example of
a c~-system we give

Example 2.5: [see Ref. 3, for instance| Let A
=L"(R®). Then, A,=L'(R®). Take for the set of initial
states S, the probability distributions belonging to
C;(R?) (space of all infinitely often differentiable func-
tions with compact support in R®). Then, due to the fact
that Cy (R?) is dense in L*(R?®), we find the linear hull
of S, to be dense. Look at the heat equation d,V
=4AV. Then, the Cauchy problem of this special master
equation has a unique solution to the initial state Ve S,
and {V,); =0} yes, forms a normal ¢ system that is gen-
erated by a stochastic dynamic (the heat transformation)
given in form of a stochastic integral operator

T (¥,%)= (21r(t 33))3/z exp (—‘é'(t—l__—s')‘ ly —xlz) )

with t >s, and T, =id by definition.

We remark that Example 2.5 is not bounded to R3, and
by extending A from C; (R?) in a suitable way a general-
ized heat equation solvable uniquely through the whole
L*(R3) could be obtained.

The way we arrived at Definition 2.3 and the examples
given suggest that one asks the following question:

Problem 2.6: Given a ¢ system in the state space of
a commutative C* algebra A with identity, can one find
a generating stochastic dynamics?

In this context, the stochastic dynamics (7,,) is said to
generate { (w,) ,Zo} wes, if W =Ty, WES,. “The de-
cisive step toward an answer to the questlon is in prov-
ing the following

Lemma 2.7: Let (w;);e1, (@f)e; €S, Then

(Wi )ie1 > (@] )ie (2.9
if and only if there is TeST(A) with
w;=Tw] v ic] (2.10)

Proof: That (2.10) implies (2.9) is evident from
Theorem 1.2 and the meaning of >in 1.3.

Assume (2.9) to be fulfilled. Denote by F(I) the set
of all finite subsets of indices taken from [. In defining
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A=A for A, A'e F(1) in case that A DA’, we may think
of { F(1), =} as a directed set. Then, for A € F(I),

we are assured of the existence of T, €¢ST(A) such that
w; =T, w;, ¥ icA, where we made use of Theorem 1.2.
Since ST(A) is weakly compact, we find a converging
subnet (T, )ge Of the net (7)), e Denote the limit
by T. Assue x=A, and ic]. Then, we find B,= K such
that A 4> {i} whenever 8>8,, thus (Tw;)(x)

=1img(T, wi)(v)=1limg, e,,(TA K2H )(x)=(T, 5 wj ){(x)

= w, () by definition of T,. The latter happ%ns for every
x=A, so Tw;=w,; has to be required. Since i could
range through the whole set I, we have arrived at the
desired result.

Theorem 2.8: Every ¢ system in the state space of a
commutative C* algebra with unit is generated by a
uniquely determined stochastic dynamic. In case of a
commutative W* algebra and a normal ¢ system a
stochastic dynamic in ST (A) is uniquely given,

Proof: Let {(w,);>o},es, e the ¢ System in question.
Then, (W,)yes,> (wy),¢s, Whenever £=5>0, thus Lem-
ma 2.7 applies to the time cuts (w, )we&.0 and W, )y es
with I=§,.

That is we have T~ST(A) with w, =Tuw, for any
w=S,. Since A is dense in A* and T is bounded, there
is no other bounded linear map performing the transition
from s-cut to ¢ -cut. Hence we may define 7,,=T. This
can be made for every pair with ¢ s =0, and since w,
=tdw,, T,,=id has to hold. Lett>u>s20. Then, w,
=T,T,,w, and, by the same reasoning as above, we
necessarily have T,,7,.=T,,, and T, ,(A*) dense in 4,
by triviality follows. Finally, in case of a W* algebra
and a normal ¢ system the assertion follows from the
fact that A, is a Banach space and the above con-
structed stochastic maps throw a dense set of A, into
Ay, 80 the restriction to A, is in ST (4).

To make the correspondence between c-systems and
stochastic dynamics complete, let us note that due to
(2.3) any system of trajectories {w,=T,,w},~, With w
running through a set S, with [S,] being dense in A *
yields a c-system [(2.4) corresponds to S,=S,].

Let Z={(w,), 20}“'550 be a c-system in S,. Z is said
to be a continuous ¢ system if any trajectory is contin-
uously depending on ¢ at any instant {20, Z is said to
be differentiable if the time derivative d,w, exists at
any instant (at O the right derivative). Clearly, differen-
tiable ¢ systems will deserve our main interest, for the
state solutions of many important master equation num-
ber among them (cf. Example 2.5).

We will justify the subsequent formulated regularity
properties for continuous and differentiable ¢ systems,
respectively:

Proposition 2.9: Let Z be a continuous ¢ system in
S 4. Then, the Z generating stochastic dynamics (7,,)is
strongly continuous, i.e.,

Tyw= lém Tegrw, YWEA®, t25,
£t
s’ -s

=3

Proof: 1t is plain to see that limy  Tp,w=T,w,
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vweA*, v it=s=0, for, the relation holds on a dense
subset A¥ of A* and (T, ) is uniformly bounded there.
On the other hand, for s=¢=0, s=¢’'2 0 we have

f Tywe -T.;g'wgﬂxsl Teyw,=Tgprwy I

+l T,c'("’c"wt)ul ’ (2.11)
and since T ,w, =T, .w; = w,, by the uniform bounded-
ness of (T,,) it follows from (2.11) that | T,,w, - T,,.w,|;
< wgr =welly, iee., lim,., T, 0, =T,w,. Then, taking
into account the denseness of A} in 4, and stressing
again the uniform boundedness argument, we see that
lim,,, T, w=T,w for every w. A%,

Finally, because T, T,, =T, for every u with
s'=uzt’, we get from the proven separate continuity,
and uniform boundedness once more inserted, that with
s>u>t

lim Topw=lm T\ T, pw=T, T,,w=Tgw,

s’ s’ s

¢t t'—t

and for s=¢ we may use (2.11) to make the argument
complete. Q.E.D.

For a differentiable ¢ system Z we have to state the
following fact:

Proposition 2.10: Let Z be a differentiable ¢ system
in S ,. Then, there is a family (L,),», of linear opera-
tors, each of which is densely defined in A *, such that
Cauchy problem of the master equation

dyo=L,@, (2.12)
has a solution for the dense set [S,] of initial elements,
and the trajectories of the c-system Z are among the
state solutions of (2.12). Moreover, a solution of (2.12)
starting out from a state contained in[S,] evolves in S,
exclusively.

Proof: By Theorem 2.8 we are assured of a stoch-
astic dynamic (7, ) with

W =Tew,, WES,. (2.13)
Since Z is differentiable, we get from (2.13)
dywilieg =lm (=) YTy ~idw,, weS,. (2.14)

t s

On the dense linear set A¥ we define an operator L,
acting into A * by

“’:‘Zriw:*‘Luw:‘zridtw‘g'g:, . (2.15)

Then, due to (2.13) and (2.14), we can be sure that L, is
linearly well defined on A, . Let we[S,] be a state.
Then, w=73,7;w'e S, with certain reals », and states
w'e S, Since T,,eST(A), we have

w;=Tpowe S, , (2.16)

with w, =37, »,w}. Because of (2.14), however, we see
diwl, . =27 dywb ], =27 Lyw! = L,w,, i.e.,
(wy )y 50 for we[Sl NS, is a solution of the Cauchy prob-

P. M. Alberti and A. Uhlmann 2347



lem for d, ¢ = L, ¢ evolving totally in S , [due to (2.16)].
That the problem has a solution for any ¢,c{S,] is seen
in the same way. Q.E.D.

In other words, any differentiable ¢ system can be
interpreted as a subset of solutions of the Cauchy prob-
lem for a suitable master equation that is solvable on
a dense set of initial conditions such that the equation
admits the trajectory of an initial state to evolve in the
state space.

Remark 2.11: In one case of a commutative W* al-
gebra A, all the derived results of this part remain
true statements if we make the following replacements:

A* replaced with A,
S, replaced with normal states,

(proper) c-system replaced with (proper) normal ¢
system,

ST(A) replaced with ST, (A),
stochastic dynamic replaced with normal stochastic
dynamic,

etc.

3. ¢ SYSTEMS AND MASTER EQUATIONS

The aim of this part is to clarify the structure of
those master equations on A* that admit proper ¢ sys-
tems as state solutions. We start with a class of mas-
ter equations which are quite regular from our point of
view,

Theorem 3.1: Let {L, };», be a family of bounded
linear operators on A*, Assume the following condi-
tions to hold:

fL.)l,sC<=forvt=0, (3.1)

L, w depends continuously on £ for Vwc A%, (3.2)

Vs 2071 B,>0 such that

id+pB, LyeST(A) for te(0,s]. (3.3)
Then, the Cauchy problem for

dip=Li g (3.4)

is uniquely solvable through A*. Moreover, the solu-
tions starting out from states form a proper c-system.

Proof: Because of (3.1) and (3.2) the solution w; to
weA* is uniquely given by

t s m
=w+f medm+f L,,,f L,wdrdm+- + +(3.5)
o (] 0

= Ttow .
Fix s 20, and define bounded linear maps by

s’

To,@=0+ tuf " Logdram-oe,
S 3

‘l
L, pdm +f
S

(3.6)
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We are going to prove a formula for T;, that explictly
shows the stochasticity that we are looking for.

We put @4 =T,,¢0. Then, @, obeys the equation

¢,:=¢+f L,p, dr fors ss’st, (3.7)
s

Suppose that (f -s)C=8<1, and fix p €A*, Since ¢,
depends continuously on 7 and (3.1) and (3.2) hold, ¢,
and L, ¢, are uniformly continuous on [s, t]. Let €>0.
Then, we find an integer N such that, with =(¢/N)(¢t
-s)+s for £=0,..., N, the following conditions are
fulfilled

L, e,= Ly, P, lh<e lo,~ Zh lh<e v relt, -uh I,
and (3.8)
(1+eC¢=5) gl 8¥<e.

Then, from (3.7) it arises

"I L, ¢, dr"'u =$) Z Ltkwt "1 s2¢(t- s),

R=1

(3.9)

whenever ue| ¢, _,, h |. Let us define @®=¢, rels, t],

@)= <p+ )ZL,.%. forrelt;_, t ), (3.10)

and inductively

-

@y = ! for relty., ti). (3.11)
k=
One easily checks that (3.8)-(3.11) guarantee that
lo? - o7t I, s2€(t=s)B8" (3.12)
and in summing up over z running from 1to N
lo¥ -0, ll, <2e(t-s)1-p7, Vvrels,t]. (3.13)

In using (3.10) and (3.11) we will also obtain a repre-
sentation of ¢! in the following form

1
o =11 (id +(—'§,—s—)— L,‘) ¢ +Dy, (3.14)

(t-S) {E L., ,E L, Ll oy

-1, .Lth,} . (3.15)

From (3.6) it arises that ||, |, <e¢ -9l ol,, vrels,t]
hence we may estimate the norm of Dy given by (3.15) as

I Dyll, < 8" lgll(e®“=*+1)< €, (3.16)
where we made use of (3.8).
We define
= (id +_(_t__—NS_) L.N) (ld +U =s) '1) ,
and from (3.13) and (3.14) comes that
P. M. Alberti and A. Uhlmann 2348



2(t-5)
loi=Thol < (1 + =50 < (3.17)
and since €>0 and ¢ €A* were arbitrarily chosen, we
may take as proven

Tis = st- lim T§, (st- strong), (3.18)
N

with T7, defined as above (where ¢; =(i /N)(t—s) +s).

Because of (3.18) and the special structure of T}, we
see that T/, € ST(A) for N>(t~5s)B:', so with ¢, s
fixed, T,, in the strong limit of a sequence of stochas-
tic maps, so that T;, € ST(A) due to weak compactness
of ST(A). Moreover, for (¢-s)C< 1/2 we see

1t-s)C

lid-T8& < =gy

<1, VN,

hence |lid=-T,,],< 1, too. The latter means invertibil-
ity of T;, in B(A*). Since Ty;T=T:y fort 2s2u
holds, T, is stochastic and bounded invertible for every
pair ¢, s, i.e., the state solutions of (3.4) form a pro-

per ¢ system, Q.E.D.

We remark that Theorem 3.1 is a statement which
closely relates to Example 2.2.

Let us close our considerations in proving that the
class of equations described in Theorem 3.1 is primary
in the set of all master equations that admit a proper
€ system as a solution

Theorem 3.2: Let {L, }, =, be a family of linear oper-
ators on 4 * such that the Cauchy problem for

do=L g

admits state solutions that form a proper c¢-system.
Then, every L, is bounded and there exists a sequence
of families {(L});=,}, Of bounded linear operators,
each of them being of the type described inTheorem 3.1
such that
L;=st- lim L}, v¢t=0, (3.19)
n

Proof: Let {w)i=o}we s, denote the proper ¢ system
known to be a solution of the master equation under dis-
cussion (the choice of S, =S, is not a restriction!). By
Theorem 2.8 we are assured of the existence of a gen-
erating dynamic (T,) which, due to Proposition 2.9, is
strongly continuous since (w, ), =0 iIs a solution of a mas-
ter equation. We define

LY =n(Te, /0y ~id). (3.20)

Inserting w,, we see from (3.20) and the assumptions

lim L7 w, =lim Lttu/n =@ =diw =L w,.
n n (1/n)
Since (3.21) is valid on (w; ) e s, it is valid on
() yes,d =A%, too, i.e., lim, Liw=L;w, VWweA*,
The principle of uniform boundedness (Banach-Stein-
haus theorem) then gives that L, has to be bounded for
every ¢t > 0. Strong continuity of (T,,) implies L} to be
strongly continuous, Finally, the special form of (3.20)
makes all the other requirements of Theorem 3.1,
(3.1)-(3.3) hold for {L}},,. Q.E.D.

(3.21)
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It should be clear from the proof that Theorem 3.2
can be modified in various aspects. So, for instance,
we may replace “proper ¢ system” if we require valid-
ity of (3.19) only on a dense subset (i.e., A¥). Also, in
the case of a W* algebra it is possible to formulate a
‘normal” variant of Theorem 3.2, Finally, we remark
that the results of Proposition 2.10 and Theorem 3.2
which have been derived essentially on the basis of
Theorem 2.8 give only one aspect of applications of
Theorem 2.8, Another field for application and further
concern is to ask for stability properties of ¢ systems
etc.

APPENDIX

Let A be a commutative W* algebra we may identify
with L™(f, u) for a suitable measure space § with mea-
sure u. Let w,...,w, denote normal states on A.
Then, there are functions w(x),..., w,(x)e LY, )
representing the states via the formula w; (a)
= Jwi (%) a(x) du(x), with a(x)eL™(Q, ) being a repre-
sentative of a€ A [more precisely, a(x) is the repre-
sintative of the class in L™(%, u) which corresponds to
Al

With this notion in mind, we are going to prove the re-

- sult we touched on in Sec, 1.

Proposition: For any non-negative #-convex function
S on RY the corresponding k-convex functional is

Sp(wyyeen, wy) =J’nf(w‘l(x), ceey, wp(¥))du(x)y. (A1)

Proof: Our first task will be to show that representa-
tion (A1) is valid in the case that w,(x),..., w, (%) 20
are simple functions in LY, u). As usual, w(x) is said
to be a simple measurable function if w=Y,,;7,x; with
certain 7; € C' and {x; }denoting the characteristic func-
tions of a finite number of measurable sets that are
pairwise disjunct.

Let us assume the simple functions w; to be repre-
sented by

“i*IZtan i=1,...,n. (A2)

Let {Q,}f., be a finite orthogonal decomposition of 1

into orthoprojections Qs. Let @, correspond to the
characteristic function X3 ‘0f some measurable set G}.

Look at

Fwy (@), ..., w,(Q,))

=J (Z:, LaBGNG)),... )-Ztnl KGN G;)> .
7

Employing subadditivity and homogeneity of f, (A3)
turns into the inequality

(A3)

flw,(Q,), ..., w, (Q,)) s‘Zu(cm COf(tyyyeenytu)

(A%)

As usual, we adopt the convention = +0=0 which, due to
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f(0,...,0)=0, gives no contradiction in transition from
(A3) to (A4). Because of U, G, = and since G, N G{=§
for s #¢, from (A4) it follows that

'z;fw,(on,...,w,(o.))sZ) WG f(Erryeeey tur),

(A5)

and the right-hand side of (A5) equals [of(w,(%),...,

w, (%)) du(x). We may suppose that {X; } corresponds to
a finite orthogonal decomposition of 1 into orthoprojec-
tions [then, for u(f)==, one of ¢;;’s has to vanish], so
we see from (A5)

sup, 2@, ..y 0, (Q,))

{e

= fn flwy(x),. .., w,(x) du(x), (A6)

where the sup runs through all finite orthogonal decom-
positions of the unity. The left-hand side of (A6), how-
ever, equals S;(w,, ..., w,) by the results on k-convex
functionals [ see (5.9) in Ref. 1], i.e., we may take as
proven

TN AT fn SR, ..., 0n(2) du(®)
(A7)

for simple 0,,...,0, € LNQ, u) .

In the next step, let w,(x),..., w,(x) correspond to nor-
mal states on L(R, #). Then, due to the continuity of
f» flw,(%),...,w,(x)) is measurable, and positive by
assumption. First, let us show the existence of an in-
creasing sequence @, of measurable sets with u(y,)
<o, wy(x)X, ()€ L7(Q, ), Vi, and

lim fn Flwlz),..., w (%)) dx)

=fn Flw(®), ..., w0, (%) du(x) (A8)

where x, stands for the characteristic function of ,.
In fact, let us define @, = {xc & (1/7) <h(x) s7}, with
h(x)=Y,; w;(x). Then, ,C Q, C -+, and Q)< =
since h(x) € LY(Q, ). Setting Q'=U, Q,, we see
Jarfl@,(2), .oy @, (2)) du(%) = Jo FL@, (). .., 0, (¥)

x du(x), for, from x¢ Q' it follows that either A(x) =0
by homogeneity, or 4(x) =<, which happens at most on
a set of measure zero | he L}, p)!]. Thus, by Leb-
esgue’s monotone convergence theorem we see equal-
ity (A5) to be true (f is positive!),

We are going to show that
fﬂf( @,(¥), .0, wa (2) du(x) <Sy(wy..., @) . (A9)

Since wy X, < L™(R, 1), we find decreasing and increas-
ing sequences {wjy },, and {w™,,} respectively, which
consist of simple functions with support in Q, such that

w2 > = . s N N . N
in ZWiX = Wiy VI, wm=z: thxy (with x§70),
1

(A10)
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lim wjy =w X, =lim wiy in a uniform sense.
N N

Now, define on L(, ) a contraction EY by

1

ENg=) ——
T WGy) g

o(x)x §(x) dulx) x 7 , (A11)

where G, is the measurable set for which x| is the
characteristic function, Since E" is a positive linear
map with w}f, being fixpoints, we get with (A10)

wiy < E"w, < w}y, where we used E'w; = Ew; X,
(A12)
and from the second part of (A10) and from (A12) we see

lim EYw; =w; X, uniformly Vi. (A13)
N
Because the adjoint map of E¥, E¥*, is positive and
E¥*1=y,s1, fromthis, together with positivity of f and
the original definition of 5, [cf. (1.1)], follows

S(E'w, ..., E¥w,) <8 (wy, ..., wy) . (A14)
The E¥w; being simple functions makes (A7) to be ap-

plicable, thus from (A14) we are led to
f FUEY @, (%), ..., B w, (%)) dp(x) $Sp (@, .0 vy wa)
Qk
(A15)

Applying (A13) and recalling p(§) <, (A15) yields
L ), e 0 (D) i) <§ (3, cr @), (AL6)
Q.

from which inequality by means of (A8) the desired re-
sult (A9) can be seen.

Let us demonstrate the validity of the reverse of the
inequality just proved. To this sake, by standard meth-
ods (see Ref. 4) we construct increasing sequences
{s,x}y of measurable simple functions with 0 <s;, <s,,
S++- s wy, and limy s;4(%) =w; (x) for all vxe Q. We
can choose the sequences in such a way that the conver-
gence is uniform on any subset of  where w;’s are
bounded.

Especially, {s;4} tends uniformly to w; on §, as de-
fined above. One also easily recognizes that _] qr wy(x)
X du(x) =1. Now, by definition of S,, we have

Sf(ol""’on)zs‘ulp Sf”(oll" "all),
(A17)

with

s¥o,, . ..,0,.)=sugz fO (@), ..., % @),
{a. k

with the sup running through all positive decompositions
of 1 into, at most, M positive elements. It is plain to
see that S is | + ll, -continuous, so from I[s;yXs

— wy X Il %0 follows that
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s;’(wlxh, ey “’nXh)=1i;nSI'(SUVXhJ . ”)anxl)
sli:ns, (S ¥Xks+++sSanXy) (A18)

=1im fn FS (%), ooy San(¥) du(x)
e h

= f F(wy(x), ..., w,(x)) du(x)

ak
< J feoo, ..., wn() dum
Q

where in the last steps we made use of (A") and the uni-
form convergence of {s;y} towards w; on §, with fin-
ite measure, and positivity of f makes the conclusion
of (A18) complete. Since the increasing sequences

{wi Xa }» converge pointwise to w; on ', from the pro-
perty of Q' (see above) and positivity of w; comes that
B wixs - w; ll, 0. Hence, from |- |,-continuity of

S) comes that (A18) can be turned into

S,"(w,,...,w,.)st(wl(x),...,w,,(x))dp(x), (A19)
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and in applying (A17) to (A19) we have arrived at

Sp(Wyyeee,wy) s ff( W,(X), o vu, w, (X)) du(x) . (A20)
Q
Taking together (A20) with (A9), the desired result
(A1) is obtained. We remark that the value = is includ-
ed in all considerations. Q.E.D.
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