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We start from a given Lorentz metric and a vector field of world lines along which observers 
and measure devices may move. We describe a procedure to associate one-particle Hilbert spaces 
and one-particle Hamiltonians to space-like hypersurfaces using a transi, tion to a Riemannian 
metric. With the aid of suitable boundary conditions one can confine the particle within a world 
tube ("box quantization about curved space-time manifolds"). 

Our aim is to treat a rather restricted problem in quantizing about curved space- 
time manifolds concerning Klein-Gordon partMes, in particular their one-particle 
states. In this approach [1, 2], see also [3], we try to follow the spirit of  Euclidean 
quantum field theory as described, for example, in [4]. 

However, the lack of any symmetry in the general case forces us to reformulate 
this approach in terms of potential theoretic concepts without using either symmetries 
or analytic continuations. Aiming even at a sort of box quantization we cannot rely 
on the Cauchy completeness of the hypersurfaces involved either. These features 
distinguish the following from other treatments rather clearly. (For an overview 
of other methods, most of them much more ambitious, see [3, 5, 6].) 

The presentation in this paper deviates, influenced by [7], at one point from [1, 2], 
though this deviation does not affect the stationary case, which as is well known, 
may be treated by a couple of methods. The merit of this change is that now all 
the physical quantities depend, explicitly, and implicitly only on the systems and 
the observers past - a feature which is even in the Euclidean theory a rather implicit 
truth. 

Let M be a 4-manifold and g~k a Lorentz metric on M, the diagonal form of which 
may have signs + - -  

On M we consider a time-like, forward directed, and normalized vector field 

(1) {eQ,  oikeie j =  1.  

This vector field may be interpreted as the 4-velocities belonging to some set of obser- 
vers, measure devices, moving along world lines given by the solutions of 

(2) t ~ y ( t ) ,  dyi/dt  = e i .  

A box quantization is defined by a world tube T outside of which there is a potential 

*) Dedicated to Professor Ivan ls on the occasion of his sixtieth birthday. 
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energy of infinite height preventing the particle and the observers to escape out 
of the tube T. We assume the tube to be an open, connected subset of M with the 
property: An integral curve of (2) is either contained in the tube completely, or the 
intersection of it with the tube is empty. We need further a fibring of T by relatively 
open pieces 1,] of space-like hypersurfaces, s a real parameter. 

We demand: 

(3) (i) Vsn V~, = empty if s *  s ' .  

(ii) V~ depends causally on I~ if s > t. 

(iii) Every integral curve of (2), contained in T, intersects every V~. 

(iv) Tis the union of all the Vs. 

It is useful to define 

(4) T~= (union.of all Vt with t < s} 

in particular, 

(5) T =  

Next we have to consider an auxiliary metric 9ik given by 

(6) gig + ~Tik = 2eiek.  

The metric ~Tik is a Riemannian one. As a matter of fact 

(7) ei = gig ek = 9~k ek 

Further, the four-volumes d% of the two metrics appearing in (6) coincide. 

We shall consider the Laplace-Beltrami operator 
t 

(8) 

with respect to ~7~. 

Let u be a regular function with compact support and 

(9) supp u _~ Ts. 

We shall consider solutions f of 

(10) ( - ~  + , , ,2)f = ,  

where m is the rest mass of Klein-Gordon particles. We need two different solutions 
of (10) which we describe now. At first let f satisfy the following Dirichlet condition: 
For every e > 0 the set If[ >= is a compact set consisting of interior points of T, 
only. This and (10) uniquely define f and we write 

(11) f = G f u .  
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Next we define G~ by requiring for f 

(12) t~ j ~3 ~ x i f = 0  on V~, 

where t~ ~ is the normal vector of V~ with respect to tT~k, and furthermore, that the set 
Ifl > e for every e > 0 is contained in the set V~ w (interior points of T~). Then 

(13) f = G~u 

denotes the solution of (10) respecting the just mentioned boundary conditions. 

We are now prepared to consider the Dirichlet integrals 

(14) D(f, g)s = f {.~ ,k m2f#} d4v .ig g :. + 
d T s  

We need some general inequalities. If  

(15) gs=  G~u, .fs= G~ s u p p u _  T~, 

one knows 

(16) D(ft, f,)t < D(gs, g~)s if t > s  

and again fot t > s, 

(17) D(f, , f ,) ,  > D(f,,y,)~ > D(f~,f~),. 

(17) is the well-known monotonicity of the Dirichlet problem by enlarging the domain 
for g~ minimizes the Dirichlet integral. (16) is derivable from 

(*) D(y,,yJ = ILu d',: = D(:,,:,),. 
dt 

Indeed, using D(f, - 0,, f ,  - g,), > 0 one gets from (.) 

D(gs, g~)s > 2D(f,, f , ) , -  D(f, ,f ,) ,  > D(L,f , ) ,  

where (17) has been used in the last step. 

Our next task is to define a Hilbert space Ns as follows: N~ is the completion 
in norm of all regular functions u with supp u ~ T~ by the scalar product 

(18)  ( u , ,  u2)s ' N . 

According to the inequality (16) the sesquilinear form 

(19) (ul ,  u2), = D(G',u~, G~ 

is bounded and positive semidefinite on a dense domain of the Hilbert space N~ 
for s < t. Hence there exists a bounded and positive semidefinite operator Es, t 
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acting on N~ and satisfying 

(20) < . , ,  .2>, = ( . , ,  es.,.2)s. 
Furthermore, as a consequence of (17), we get 

(21) Es,t>=E~,r if s < _ r < _ t .  

All this is the prelude. We are now going to construct one-particle Hilbert spaces 
sitting on the hypersurface pieces Vs. If r < s, it is obvious from potential theory 
that there are elements of Ns representable by distributions the support of which is 
contained within Vr. There is a closed subspace, N .... of N~ consisting of all distribu- 
tions 

(22) h . ( h )  = jha d3v 

where the integral is extended over Vr, and fi is a measurable function on Vr satisfying 
certain growth conditions, d3v is the three-volume induced by the metric on Vr. 
However, because we have assumed Neumann conditions on V~, the same is true for 
the limit N~,, --* N~,.,, where the distributions concentrated on V~ have been transport- 
ed along the world lines (2) of the observers. We define 

(23) F, = Ns,s 

and we denote by P~ the orthoprojection of N~ onto F~. Fs is the one-particle Hilbert 
space for a neutral scalar particle at the "instant" V~ in the Tomonaga-Schwinger 
sense by definition. 

From (21) it is seen that 

(24) PsE~,tP~ >= PsE~,~P~ if s _< r -< t .  

Now in a stationary metric and with e ~ parallel to the Killing field intersecting 
the submanifolds V~ orthonormally, the operator (24) may be viewed as 

PsE~,tP~ = 1 - exp ( - ( t  - s) H~) 

with Hs being the one-particle hamiltonian. Furthermore, one can identify all the F~ 
and all the H~ with different s. Generally, however, (24) cannot be connected with 
a semigroup due to non-stationarity of the metric. Therefore we have to define 

(25) H a = lim ( t -  s ) - ' ( P s E , , t P  s - P,Es,sP,~) 
t - * + S  

accordingly. F~ is concentrated on V~, and E~,~ demands for Dirichlet boundary 
conditions. From this one infers 

(26) PsE~,sP ~ = O. 
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Thus 

(27) = lira ( t -  s) 
t-* + s 

where the domain of strong convergence of (27) is the domain of definition of H,. 
Clearly, and in the Euclidean-Riemannian treatments trivially, the spectrality re- 
quirement 

(2s) = 0 

is satisfied guaranteeing stability at every "instant of time" V~, but of course this 
does not imply stability in the flow of time, giving possibilities for particle creation 
processes. 

Remark: The constructions above may not work without modification if the boundary 
of T is touching an horizon of a singularity. For  then gik may become degenerate 
or not regular enough to pass all the needed arguments, in particular this concerns 
the manipulation (*) and the solutions of the boundary problems. From (*) there 
may arise extra terms. Concerning the solutions of equation (10) there seems to be no 
general theory in case the boundary is not regular enough. 

Having constructed Fs and Hs let us see how it works for stationary metrics. Let 
us use a coordinate system {x ~ = t, x 1, x 2, x 3} a metric dr 2 depending only on x 1, 
X 2, and X 3 such that 

(29) ds2 = goo dt2 - dr2 

where 9o0 does not depend on t. ~ shall be given by the equation t = s, locally, and 
in this frame. 

eo = (g00) 1/2 , el = e 2  = e3 = 0 

We need the reflection operator Rs relative to 

(30) Rsf ( t  , x ' ,  x 2, x 3) = f ( s  - t, x 1, x 2, x 3) 

which enables us to express all the occurring Dirichlet integrals in terms of (19) 
for t = o% i.e. 

<u~, uz>oo. 

The reflection R~ is an isometry of the original and of that metric introduced by (6). 
It commutes with the Laplace-Beltrami operator. 

Suppose now supp u _ Ts. Then G~(u + Rsu) will have vanishing normal derivat- 
ives on Vs. Thus, on V~, this expression coincides with G~u. Therefore 

(31) 2(ul, u2)s = �89 + Rsu2, ul + Rsu2>~o 

provided the carriers of ul, u2 are contained within T~. This is due to (14) and the fact 
that V~ divides Tin to  two parts which are isometric images one of another by Rs. In 
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going to F~ we obtain Rsu = u, and hence 

(32) (ul, u2)s = (u l ,  u2)~ for u j ~ F ~ .  

In the papers [1, 2], (32) has been used as a definition. This seems to be unphysical 
for non-stationary metrics. In the modified approach presented here, the s-indepen- 
dence of the scalar product is completely due to the stationarity of the metric. 

We now use the reflection operator again supposing supp u ~ T,. The expression 
G~(u - R~u) fulfils Dirichlet conditions on Ts. It coincides on T~ with G~ therefore. 
We get 

i 

(33) ( u x ,  Uz)s  = ~ ( u l  - RsU2, Ul - RsU2)o~ = ( I l l ,  U2)oo .Aft ( U l ,  R~u2)oo 

an equation which, if combined with (17), expresses what is called "reflection 
positivity". 

Assuming now u / e  Fs and s <= t we get from the definitions 

(34)  2 ( u i ,  H~u2)~ = l im (t - s) - 1  { ( u  1, u 2 ) ~  - ( u ~ ,  Rtuz)o~} = 

= - (d /a t ) (Ul ,  Rtu2)~ at t = +s  

where a further simplification can be achieved by (32). The factor 2 in front of (34) 
is due to the fact that a reflection R s is equivalent to a transport along the Killing field 
by an amount of 2(t - s) provided u e F~ and s _-< t. 

The explicit calculation is now straightforward and we only describe the result. 
The Laplace-Beltrami operator can be written as 

(35) /~ = gOO Oz - - + K  
gt 2 

where K does not depend on t and is elliptic on every Vs. Using the Hilbert space 

(36) L2(V~, ga/2 dx ~ dx 2 dx3) 

where g is the determinant of the 4-metric (and not of drZ!) we define a self-adjoint 
extension K D of K imposing Dirichlet boundary conditions on Vs. In (36) there is a 
unique self-adjoint and positive operator H = H~ satisfying 

(37) H 2 e l l /4(  z D  1T/2) -'I 1/4 
/JO0 ~ - - a x  -q- ~00 " 

Let us now consider a state vector 

(38) 

Then we get 

u = w(xa, xZ, x3) 6(t--  s), u ~ F s .  

(u, u)s = rc~(wH-lw) g l / 2  d3x 
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with g being again the 4-determinant. One sees that the index s does not play any 
important role in the stationary case. It is easy to see now the correctness of the iden- 
tification 

(39) H, = H .  

Remark: As a matter of fact (u, u)s is given for the Minkowski metric ds 2 by 

ffi(x) u(y) WE()' x) d'x d4y 

where W 2 denotes the two-point Wightman function, provided u is of the form (38). 
At the end we point a class of metrics for which the results of our procedure cannot 

be gained by any analytic continuation. They are given by 

dt 2 -- S(t) 2 dr 2 

where again dr 2 is a 3-metric not depending Oll t. We choose V~ orthogonal to (e i} = 
= {1, 0, 0, 0}, i.e. as t = const. This problem appears in the Klein-Gordon problem 
with Robertson-Walkers-type metrics. 

Let us identify A3 with the Dirichlet self-adjoint extension of  the Laplace-Beltrami 
operator belonging to the metric dr 2 within the Hilbert space Fs. 

Then we have the following fact in our procedure: H~ commutes strongly with A 3. 
For  compact manifolds or essentially bounded ones ("box quantization") the eigen- 
functions of A 3 and Hs coincide. The eigenvalues of H~, however, depend in a complic- 
ated manner on the world time instant t. Their calculation depends on the behaviour 
of Green functions of a certain second order ordinary differential equation, allowing 
in principle numerical computations. 

Received 18.5. 1981. 
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