
Vol. 18 (1980) REPORTS ON M47HEM4TICAL PHYSlCS No. 2 

REMARKS ON THE RELATION BETWEEN QUANTUM AND CLASSICAL 
ENTROPY AS PROPOSED BY A. WEHRL 

ARMIN UHLMANN 

Department of Physics and NTZ, Karl-Marx-University, Leipzig, G.D.k 

(Receiced December 4, 1978) 

Using an inequality of Lieb one can compute a probability distribution which is less 
mixed than any (zjoz)dz, where z labels the points of phase space, w is a density matrix, and (zl 
the appropriate coherent state. 

According to Wehrl one associates to every state of a quantum system character- 
ized by a density matrix o a “classical entropy” build up with help of the probability 

measure (zlwz)dz. Here (zl denotes the coherent state labelled by the point z of the phase 
space, and dz is the Liouville measure. In [l] and [2] Wehrl stated a number of 
interesting properties of this classical entropy and its relation to quantum entropy. In 
[3] Lieb proved SC1 > 1 in appropriate units (Boltzmann’s constant equal one), an 

inequality conjectured by Wehrl. 
In this note we begin with the technical remark that the mapo + (zloJz)dz is dual to 

a “quantization map” and can be easily extended to singular states. Then we comment 
on the fact that the mentioned map is mixing enhancing. From this, using Lieb’s 
inequality [3], we arrive at an a priori lower bound for F”’ where F is any concave 
function. We conclude with a further remark on singular states. 

I. Let us denote the points of the phase space R2” by 

z = (49) = (41,...,4”,P1,...,P”} 

and the Liouville measure (i.e. the Lebesgue measure), multiplied by h-” by dz: 

dz:= h-“d”qd”p, h = Planck’s constant. 

For the “algebra of observables” we choose the WY-algebra M of all (equivalence 
classes of) bounded and dz-measurable functions defined on the phase space R*” 

M: = L”(R’:dz) 

Cl771 
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We denote the points of R” by x = (xi, . . . . xn}, its Lebesgue measure by dx, and by H 
the Hilbert space 

H : = l?(R”,dx) 

The “algebra of observable9 of the quantum system is 

B : = B(H), 

the algebra of bounded operators acting on H. 
Consider now the “quantization map” 4: M-P B defined by 

M:= J.Mz)(zIdz (1) 

where Iz)(zl denotes the l-dimensional projection operator onto the coherent state 1.~) 
of H. Explicitly, lz) is given as the C-function depending on x 

lz) : = (h/2)-“‘4exp{ [ -(x - q)2/2 + ipx]/(2nh)}. (2) 

Because there is no danger of confusion we denote the identity elements of both, M and 
B, by I, and the C*-norms in these algebras (the a.e. supremum and the operator norm) 
by /I* II. The following properties of 4 are well known: 

(i) 4 is contracting, i.e. llfll + IIcbf 11. 

(ii) 41 = 1 . 

(iii) 4 is positive, i.e. from f > 0 a.e. follows +f 2 0 in the operator sense. 

(iv) If f~ M is dz-integrable, f~ I_?(R2’, dz), then 4s is of trace class and Jfdz 

= Tr(4f). 

A state, w, of a IV-algebra is a linear functional on this algebra which is non- 
negative for positive elements of the algebra and which takes the value 1 on the identity 
element of the algebra. 

Now if w : a I-+ o(a), a E B, is a state of B, we can define a state 4*0 of M by 

(4*o)cf) = w(+fl for all ,fE M. (3) 

Due to (ii) and (iii) $*w is a state of M. Further, one can define $* in the same manner 
for weights (in the sense of A. Connes) and especially property (iv) shows that 4* maps 
the trace of B onto the Liouville measure, $*:Tr( ) ---f j( )dz. 

Before making to the first statement we introduce the following convention: for 
every density matrix p we denote the associated normal state of B also by p, thus writing 
Trbp = p(b) for all by B. 

THEOREM 1. Let co be a state of B. Ifo is singular, then c$*w is a singular state of M. Zf 

CO is normal and given by the density matrix co, then $*o is given by the measure (zlwlz)dz. 
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The predual of M is r)(R2”, dz) and its image under 4 is in the trace class, i.e. in the 
predual of B, and hence ($*o)v) = o($j) = 0 iffis in the predual of M and m is singular 
on B. This proves the first part of the assertion. The second one is well known and is 
only a rephrasal of 

jf(z)(z~o~z)dz = {f(z)Tr(o(z)(z()dz = Tr(o.+f). 

Let us recall for clarity that C#J*W with singular-o is not given by a measure supported 
on R2”. On the other hand, @%I, with normal o is not only a probability measure on R2” 

but even absolutely continuous with respect to tlz. This is characteristic of all normal 
states of M because two functions, which differ only on a set of dz-measure zero, are 
identified. 

II. Now we discuss the meaning of the statement “+* is mixing enhancing”. 

We consider first the interesting case of normal states and then we add some simple 
remarks concerning the general situation. 

Let s H F(s) be a real-valued function defined on [O, co) which is continuous, 
concave and fulfils F(0) = 0. Together with concavity the last condition guarantees 
that F(s)/s is decreasing for positive s. 

For every normal state p of B, given by the density matrix p, we define 

F’Q) : = Tr F (p) (4) 

if F(p) is trace, class,and lim F(s)/s otherwise. Now going over to F”’ we first note the 

dependence of this construction on the measure dz which is not distinguished by the 
algebraic structure of M - in contrast to the trace functional on B. Hence F”’ depends 
not only on the structure of the state space of M but also on the “additional” given 
Liouville measure dz. Let us now consider a probability measure, du, on R2”. To define 

F”‘(du) consider an arbitrary decomposition of R2”, R2” = uNj, into non-intersecting 

measurable subsets N,,N,,... of the phase space. Assume mrther for all k 

O<jdz<oO. 
Nk 

Then F”(dc) is the i&mum of the numbers 

C UjF (L;jlUj) with uk = [dz and vk = j do. 
j Nk Nt 

The infimum is taken over all possible decompositions of R’“. It is known that these 
coarse grained quantities decrease (for concave F) if the coarse graining becomes finer. 
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If du is absolutely continuous with respect to dz, and thus yields a normal statef-t jfdu 
of M, then 

F”‘(dv) = J F(du/dz)dz. (5) 

This applies to $*o if u is a normal state of B. 
As Wehrl has shown, we have for all normal states o of B 

F”‘($*o) > P(O). (6) 

This we express by saying that “$* is mixing enhancing”. This property is equivalent to 
the one in the following 

THEOREM 2. Let w be a normal state of B and let us denote by 1, > I, 2 . . . the 

eigenvalues of the density matrix o. For every positive real s between the integers m and 

m + 1 we have 

j(zlwlz)dz < Iz, + . . . + 1, + (s - m)R,+l 
N 

lf only the Liouville measure of N is smaller than s. 

Here we shall not derive this from (6) but prove the theorem directly: we take a 
measurable functionffrom Msuch that 0 <f < 1 (almost everywhere) and Jfdz < s. 

Then jf(z)(z[wlz)dz = w($f). B ecause of (ii) and (iii) the operator q5f satisfies 

0 < +f d 1 and Tr $f < s. However, the right-hand side of (7) is equal to the supremum 
of the numbers o(b) with b < B running through all the elements fulfilling 0 < b < 1 

and Tr b < s. 

At this point we see the importance of the number 

es:= sup($j), fc(O <f d 1, jfdz <s>. (8) 
f 

Obviously, there is a set N c R2” with dz-measure s such that integrating (zlwlz) dz 

over this set, we get exactly e,. Let us denote the characteristic function of this set N by g. 
Then e, = jg(z)(zlwlz) dz. We try to estimate this integral using Holder’s inequality. 
Clearly, the LP-norm of g equals s’lp. 

Now we use an inequality of E. H. Lieb [3] : ‘f 1 w is a pure normal state one has 

l(z(w(z)4dz d (l/q)“, q 2 1. (9) 

The convexity oft + t4 for q 2 1 makes (9) valid for every density matrix. Applying now 

Holder’s inequality we get 

e, d s”p(l/q)“q” with l/p + l/q = 1. 

Taking the infimum over 1 < p < 00 we arrive at 
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THEOREM 3. LA o be a normal state and let the Liouville measure of the subset 

N c R2” be smaller than s. Then 

2 co z !‘I IId z d sexp( - s”/ne) for 0 < s” < e; (10) 

here, e = 2.7182... 

For pure states (10) is much sharper than (7). It would be nice to get an estimate 
which sharpens Theorem 2 so that it includes Theorem 3! 

Theorem 3 gives a lower bound to every Fcl in the following way. We construct a 
probability measure which is, relative to the Liouville measure, less mixed than all the 
distributions (z(olz)dz. Then if one calculates (5) with such a measure, one gets this 
lower bound. Doing so we obtain 

THEOREM 4. Let F be concaue and continuous on [0, l] and F(0) = 0. Then for every 
normal state o of B 

with 

F”‘(o) 2 F, (11) 

F, = e”“iF[(l - t”)exp(-t”/n)]dt. 
0 

(12) 

Remarks. At first fix n = 1. (a) For F = -9, q Z 1, our estimates are worse than 
Lieb’s. For example, for q = 2 we get only - 0.58 instead of Lieb’s bound - 0.5. This is 
unavoidable, because the order structure cannot be determined by these concave 
functions only. (b) We get, however, also estimates for other functions by easy numeric 
estimations. An example is F, = 1.492 if F = s112. (c) Quite another example provides 
the function F = 0 for s < r and F(s) = r - s otherwise. With r in the unit interval 

choose u to satisfy u exp u = re. Then F, = er(2 - u - l/v). This, again, is easy to handle 
numerically. 

III. Now let us shortly comment on the total state space. If A is a w-algebra, o one 
of its states we have a unique decomposition with some 0 d p < 1 

0 = PO, + (1 - P)(%, 

where the indices s and n refer to “normal” and “singular”. Then we define for con- 
cave F 

F.44 = pF,&,) + (1 - p)F&,). 

In case A = B we identify 

FL&,) = F4b,), F&o,) = sup F(s)/s . 
SAO 
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Similarly one must have 

FM bd = ~“‘ht) and F, (0,) = lim F(s)/s . 

s-0 

According to Theorem 1 we then always have F,(o) 6 F~~*cB). 
This seems to be a tautology. However, one can give a more intrinsic definition for 

the F-functionals. 
One example of such a definition emerges from [4] and from the lower 

semicontinuity of FB, which is proved as in [l] for the entropy. This definition is 

F,(a) = supinf C F(tj), 
C tj = 1, 0 < tj. 

Q j 

Here the supremum is taken over all weak neighbourhoods Q of the state o in the state 
space, and the inlimum runs through all the indicated sums restricted as follows: there 

are pure normal states p1,p2, . . . such that the state 1 tjpj is contained in Q 

CfjPjEQ. 
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