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ON THE SHANNON ENTROPY 

AND RELATED FUNCTIONALS ON CONVEX SETS 

A. UHLMANN 

Physics Section, Karl Marx University, Leipzig 

We give the definition of functionals r (Ii, z) and r(K, S, 2) defined on convex 
sets K without or with respect to locally convex topology with the help of a 

strongly convex function r(p) on a unit interval. If r = --p In p we refer r (K, 2) 
to be the Shannon entropy of z relative to the convex set K. In the case of the con- 
vex set Z, of density matrices this definitiorl gives the usual Shannon-Gibbs en- 

tropy and yields a new defining inequality for the entropy which is independent 
of the representation of the algebra of ‘n x r&-matrices. 

1. Introduction 

In 1957 E. T. Jaynes [l, 21 (see also [3,4]) gave strong arguments in favour 

of using a Shannon like entropy [5] in thermodynamics, developing ideas which 

can be traced back to Gibbs. This concept, regardless its considering the 
entropy concept or not, is a very interesting one because of the possibility to consider 

it as a function on the set of nil states of some not necessarily commuting *-algebras. 

Thus the definition of a Shannon entropy does not depend on the possible inter- 

pretation of states as being probability measures (a case covered by the Kolmogorov- 

Sinai approach). The very aim of the paper is to define Shannon entropies without 

referring to spectral decompositions of density matrices by the introduction of the 

concept of “the entropy of an element of a convex set” (for simplicity we exclude 

conditional entropies and entropy densities). It turns out that important properties 

depend on the convexity of--p In p only, and therefore we use an arbitrary but fixed 
strongly convex and continuous function throughout. Heuristically, the functionals 
we are constructing may be considered as estimates of the “degree of mixture” of 

an element of a convex set or, in case of *-algebras, as estimates for the “degree 
of reducibility” of the associated GNS-construction. 
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For convenience we give some elementary definitions. Let us denote by L a real 

linear space and let M be a set of elements of L. An element X E L is said to be con- 

vexly dependent on M, iff there is a finite subset xi, . . . . x% of M and real numbers 

P1, . . . . pn with 

Pi >O; c 
pi = 1 (1.1) 

and 

X== c Pixi * (l-2) 

For shortness, a linear combination (1.2), the coefficients of which satisfy (1. l), is 
called a “convex sum”. Iff for all pi # 0 we have X = Xi, the convex sum is called 

“trivial”. The set I 

[M] = {x E L : cc depends convex on M} (1.3) 

is called the “convex hull” of M. We have always 

[CM11 = [Ml - (1.4) 
A set K is called convex, iff it equals its convex hull. If X E K and if there is no 

non-trivial convex sum (1.2) with x, E K, x is said to be an extremal element 
of K. The set of all extremal elements of the convex set K is denoted by exK and 

we have 

exK= niV with [N] = K. (1.5) 

2. Some Convex Functionals on the Set of Density Matrices 

We shall start with the set Z, of all n xn-density matrices, i.e. of all matrices 

d with 
d = a*; d 30; trd = 1. (2.1) 

As is well known, 2, is isomorphic by 

d +fJa) = tr(ccd) (2.2) 

to the set of states (positive linear forms f with f(e) = 1) of the *-algebra of all 

n X n-matrices. 
Now on the interval [0, l] we consider a continuous, strongly convex function r 

2r Pl-tPZ 

( J 
___ > r(PJtT(P2); 

2 
Pi fP2i Pi E r0 9 11 

(i. e. convex in the sense of convex from the above) satisfying 

and use the definition 

r(0) = r(1) = 0, 

r(d) = 2 r(&). 

(2.3) 

(2.4) 

(2.5) 
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Here il,, . . . . 1, denotes the complete set of eigenvalues of d. 

LEMMA 1: If x1, . . . . x,, denotes a complete orthonormal set of vectors, then 

r(d) ,< 2 r(< xi> dxi >) 

and the equality sign holds if and only if 

{xi} is a set of eigenvectors of d. 

The main tool for the proof is Jensen’s inequality [5]: 

If iii E [0, I] and the convex sum L = ,.Z,‘pi;li is not a trivial one, then 

r(A) > 2 W(4). 

PROOF OF LEMMA 1: Let us denote by Y1, . . . . Y% a (necessarily complete) 

normal system of eigenvectors of d. It follows from Jensen’s inequality that 

(2.6) 

ortho- 

i k 

3 2 1 ( xi, Yk > I2 r(nk) = 2 r(h)- 

Now the equality sign can hold iff for every given i all such numbers & for which 

< xi, yk ) is different from zero, are equal one to another, i.e. iff all the xi are 
eigenvectors of d. 

LEMMA 2: r(d) is strongly convex on 2,: For every non-trivial convex sum 

d = 2 pid;, di EZ,, (2.7) 
we have the inequality 

r(d) > 2 pir(di). (2.8) 

PROOF : Consider an orthonormal system Yi, . . . , yn of eigenvectors of d. By Jensen’s 

inequality, we have 

r(d) 2 CM< Y,U’ 4 Y/c >) 3 2 pir(di)* 

According to Lemma 1, the second inequality sign becomes an equality sign iff 

yl, . . . . Y,~ is an eigenvector system for every di. 

However, the first inequality becomes an equality iff ( yk, di y,< ) does not 

depend on i and hence the equality sign holds in (2.8) iff d, = d for all i. 

Remark 1: The definition (2.5) may be extended to hermitian matrices, the 

eigenvalues of which are in [0, 11. Then Lemmas 1 and 2 remain valid. For 
another proof of Lemma 2 see [9]. 

R em ark 2 : r(d) is continuous with respect to the matrix elements of d, for r(d) 

is a symmetric continuous function of the eigenvalues of d [lo]. 

Before we begin the main object of this section, we note the following: 
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LEMMA 3 : ex 2, consists of all projectors of trace one, i.e. all projection operators 

on one-dimensional subspaces. 

Namely, we can write the spectral decomposition of d E Z, in form of a convex 

sum of projection operators on one-dimensional subspaces, the coefficients of which 

are the eigenvalues of cl. If therefore d E ex Z,, this spectral decomposition has to 

be trivial and cl has to be a projector. On the other hand, for every projector r(d) = 0, 
and because of Lemma z this equation implies d E ex 2,. Lemma 3 is the well-known 

statement that exZ, represent the pure states of the physical system. 

THEOREM 1: Let be d E 2, and consider any convex sum 

a = 2 Pi& with aj E exZ,, Pj # 9. (2.9) 

Then we have 

r(d) G 2 r(Pi) (2.10) 

and the equality sign holds if and only if (2.9) is a spectral decomposition of d. 

Theorem 1 provides us with an intrinsic characterization of r(d) as an infimum. 

Let us note that the trace condition implies 

ajq=o for j+k (2.11) 

as a necessary and sufficient condition for (2.9) to be a spectral decomposition. 

Before proving Theorem 1 let us go a step further. We denote by A the set of all 

sequences 

{Pi}> i = 1, 2, . . . with Pi >,Pz 3 P3 3 .‘. > 0 (2.12) 

cpi = I. (2.13) 

The set A is partially ordered by the relation 

(Pi> E (13:) iff 2 pi > 2 pE for a,11 j. (2.14) 
i=ir i=l 

Consider next the subset A, of A defined by 

(pi> E A,, iff (pi) E A and pj = 0 for j >m. (2.14) 

A, may be considered as a compact subset of the m-dimensional number space. 

The union of all sets A,, called A”, consists of all {pi} E A having an almost 
finite number of components pj different from zero. 

D e f i ni t i on : For d E Z, we denote by (d} the sequence 

{a) = {A,, A,, . . . . A,, 0, 0, 0, . ..} (2.15) 

constructed with the help of the ordered set A1 > . . . > ;1, of the eigenvalues of d. 

Now we formulate 
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THEOREM 2 : Let be d E 2, and {pi} E A”. The elements d; E ex 2, satisfying 

d = 2 Pjdj, convex sum (2.16) 

exist iff 

W E (Pa>. (2.17) 

Theorem 2 may be looked at as an example of what Kato [9] calls “perturbation 

theory in the large”. 
Now Theorem 1 is quickly deduced from Theorem 2, because (2.17) is a necessary 

and sufficient condition for the existence of a bistochastic matrix (uik) 

such that [lo, 111 

uik >, 0, 2 uik = 2 akj = 1, (2.18) 
i 3. 

Pi = 2 aikh. (2.19) 
k 

Therefore Theorem 1 follows from Theorem 2 with the help of Jensen’s inequality. 

PIIOOF OF TrreonEM 1: Let us denote by B, the set of all sequences {Pi} E A, for 

which there exist di E ex2, satisfying (2.16). Clearly B, is a compact set of the 

m-dimensional number space (remind the compactness of ex2,) and therefore there 

exists for every (Pi> E B,, a sequence (Pi) E B, which is with respect to the order 

relation > a maximal element of B, and which majorizes (pi), i.e. {pi} 3 (pi). 

Thus we have to prove that there is only one maximal element in B,, namely the 

element {d} (or B,, is empty, in which case the number m was chosen not large 

enough). To do this, let us consider a representation (2.16) and choose two numbers 

i, k. The matrix 

Pid,SP& = dik, i > k, (2.20) 

has at most two eigenvalues different from zero and we may call them ,ur > ,I+ 

Now it is a matter of elementary calculations with (2x2)-matrices to prove that 

d, can be represented in the form (2.20) if and only if 

/%+,& = PidPk and f% > Pi 2 r)k 2 O&Z. (2.21) 

Moreover, the equality sign holds if and only if did, = 0. Hence, if the equality sign 

does not hold in (2.21), we can replace the components pi and P,~ of (pjj) by ,ur and ,IA~ 

and get, after reordering in the natural order, a new sequence (pi.> which can be shown 

[ 1 l] to be larger than {pi} with respect to our ordering. Hence{pi} can be a maxi- 

mal sequence of B, if and only if d,d,c = 0 for all i, Ic with p;~,~ # 0. But this 
condition is satisfied by the sequence (d> only. On the other hand, if {pj} 3 {d} 
there is [II] a finite sequence of steps (each step consists of replacing two compo- 

nents pi, pk of a sequence by pie, pso satisfying 

Pi+P7k = PiufPko, Pi 3 Pi0 > Pko 3 PIE: 
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and reestablishing the natural order of the new sequence), such that starting with 

{d} we arrive at (pi). B ecause of condition (2.21) for the form (2.20), we can 

associate with eachofthese steps a certain representation (2.16). Hence B, consists 

only of all sequences fulfilling (2.17) q.e.d. 

3. The General Definition 

Theorem 1 suggests to define r(d) by the infimum of the sums (2.10) and to derive 

formula (2.5) and other properties, because going this way we start with the structure 
of the convex set 2, as a whole. Then one could try to generalize this for arbitrary 

convex sets. However, in general, only for a finite-dimensional compact convex set 

the convex hull of its extremal points covers a given convex set. So we shall not 

start with any assumption on extremal points. 

Let us denote by M a subset of a real linear space and let us fix a certain strongly 

convex function r = r(p)) on [0, 11, vanishing at the endpoints of the interval. 

D e f i n i t i on : If x depends convexly on M, we denote by 

r/l(x) 
the infimum of all sums 

(3.1) 

where {23j> runs over all such sequences of A0 for which there exist element’s xi E M 

with 

(3.2) 

Remark : In the case r(p) = --r, In p, the number r”‘(x) is called “entropy of 
21 relative to M”. 

T.“(X) is a non-negative finite function on the convex hull of M. Further, if x 
depends convexly on M 

Y”-I(X) > P(X) for J!JcN, (3.3) 

XEM implies r”Q) = 0. (3.4) 

We now derive an estimate, showing how rapidly rM increases near the points of 
M. We consider first an identity. If x and y are convex sums 

it follows 

(3.5) 

x-y = -$ P’i(Xi_-y). 
i=m+l 

(3.6) 
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Next we use an arbitrary seminorm q defined on L and form the number 

d,(W ==,S,uFM q(x--x’) =z “5”F[Mq(+x’) (3.7) 
, ’ , ’ 

which may be called “q-diameter of M”. Let us choose a natural number m and 
a number 0 < p,, < 1. r is convex, and therefore the following inequalities hold: 

P~(P& <p,r(p), if o <p <PO, 

(I-P)r(Po) < (I-Po)r(P), if PO GP G 1. 

(3.8) 

(3.9) 

Let us now assume mr (po) > (1 -po) r”‘(z). Then x can be represented as a convex 

combination (3.5) with xi E M and we may assume p1 3 pa > . . . and 

mr(Po) > (I-PO) 2 T(Pi) 3 (l-PO) 2 T(P)i) 
i Pi > PO 

and hence 

mr(po) > 2 (l-pJr(po) > (m’-Wpo), 
Pi a PO 

where m’ is the number of coefficients pj with pj > po, It follows that m’ ,< m 

and m’ <pi’. Now we use (3.6) to get_ 

q(r-y) < 2 piq(ri-~) <~or(~o)-~d#W 2 r(r)& 
i > m’ i z m’ 

The last inequality results from (3.8). Thus we have proved 

LEMMA 4: If II: E [JV], 0 <.po < 1 and one of the inequalities , 

m-l 3 p. or me1 > r”(x) (1-po)r(po)-7. (3.10) 

is valid for the natural number m, then there exists a convex sum 

such that 
y = p,x,+ ..* +13,x,,; xi E M, 

r (~0) 4 (X-Y) < pod, W) +%). 

(3.11) 

(3.12) 

This inequality is especially interesting in the case p-ir (p) +- 00 for p -+ 0. 

Next we consider an arbitrary convex set K in L. 

Definition: r(K, x) = sup?‘(x) with K = [N]. (3.13) 

Clearly 

~,(~‘~(x)<r(K,~)<co if [M] = K. (3.14) 

If K is the convex hull of M, we have of course ex K c M. Inequalities (3.3) and 

(3.14) now tell us 
r(K, x) < Y’“~(z) for x E [ex K]. (3.15) 
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LEMMA 5: If K = [exK], we have 

r(K, X) = ?“exK(X). (3.16) 
In particular, 

Y(&, d) = r(d). (3.17) 

This follows from (3.14) and (3.15) and Theorem 1. For K = 2, it is just an- 

other form of Theorem 1. The inequality (3.14) provides us further with 

LEMMA 6 : Lemma 4 remains valid if we replace r”(z) by r([M], X) in (3.10) 

and (3.12). 

A convex subset K, of a convex set K is called an “extremal part of K”, iff 

for every non-trivial convex sum 

c ~ixi EK-, with x+K, 

it follows: xj E K, for allj with pj # 0. The intersection of extremal parts ofa convex 

set is an extremal part again. 

LEMMA 7: If the convex set K, is,an extremal part of the convex set K, then 

for x E K, 
r(K,, x) = r(K, x). (3.18) 

For the proof we consider a set N, that generates K,. The set N = N, u (K\N) 
then satisfies K = [NJ and because K, is an extremal part of K, we have ‘rN(z) 

= rNo(z) for x E K,. Hence r(K, x) > Y(K,, x) because N, was arbitrary up to the 

condition [N,] = K,. On the other hand, if [N] = K we obviously have (again by 

virtue of the extremality of K,) [(Nn K,)] = K, and therefore we get every set 

N, that generates K, by an intersection N, = N n K, with [N] = li and we have 

always rN = rNo on K,. Hence (3.18) is valid. 

Examples: Denote by R a *-algebra with unit element e and by ZR the set of 

states of R, i.e. the set of all positive linear forms normed by the conditionf(e) = 1. 

(a) Denote by J a left ideal of R and define 

K = {fEZR:f(a) = 0 all aE J}. 

K is an extremal part of ZR. 

PROOR: Let be f~ ZR. Clearly f~ K if and only if p(a*a) = 0 for all a E J be- 

cause f is positive. Let f = 1 pifi b e a non-trivial convex sum. Again, by the positi- 

vity of the linear forms, f(a*a) = 0 iff fJa*a) = 0. 
(b) Denote by 4 a symmetric multiplicative seminorm on R 

q (ab) < q(a) q(b), q(b) = q(b*) 

The set ZR (q) of states of R which are continuous with respect to q is an extremal 

part of ZR. 
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PROOF : Consider a non-trivial convex sum f = 2 pifi E ZR (q). Because of the 

positivity fj(b*b) < ~~:‘f(b*b). But f(b*b) < cp(b*b) and hence with !Zj = cpJ:l 

we get 

Our next task is to generalize an argument used in the proof of Lemma 7. We 

shall deal with linear mappings and therefore we cxplicitely note the linear space in 

which the convex set is imbedded : By a paSir [L, K] we shall denote a real linear space 

L and a convex set K of L. 

be 

D ef ini t i o n : Consider two pairs [L, K] and [L’, K’]. A linear map q is said to 

a “c-linear map of [L, K] into [L’, K’]” iff 

(i) p is a linear map of L into L’, 
(ii) q maps K into K’, 
(iii) If K’ is the convex hull of the set N’, then 

N =(xEK:~xEN’) (3.19) 

generates K, i.e. K = [N]. 

R em arks : It is straightforward to prove : (a) The composition of two c-linear 

mappings is c-linear again. (b) Every c-linear map a) can be decomposed naturally 

q = q~~.q~~, where q2 is an epimorphism and q~i is a monomorphism. pli and p2 are 

c-linear maps. By virtue of (a) we may consider the pairs [L, K] to be the objects 

and the c-linear mappings to be the morphisms of a category. Further we note the 

essentiality of condition (iii) : To be c-linear, it is necessary for the map q to satisfy 

y(exK) E (exK’). 
Let us consider a map q from [K, L] into [K’, L’]. If K is the convex hull of M, 

then qK = K, is the convex hull of J4, = cpfi1. The set M’ = {x’ E L’ : x’ E M, or 

x’ E K’\M,} has the property K’ = [M’] and M’nK, = M,. Therefore 

inf TM(x) 3 ?(x’) for x’ E K,. (3.20) 
d = qlz 

Let us now assume the map to be c-linear. If Jl, generates I<‘, then ill 

= q’-l(K,,n Ml) generates K convexly. The construction above shows Hr s _M’ with 

41, = K,nMl. Therefore (3.20) remains valid if we replace &!’ by l’K1 in this 

formula. 

Applying definition (3.13), we arrive at 

LEMMA 8: Let be 9 a c-linear map from [K, I;] into [K’, L’]. If x’ = vx for 
x E R we have 

r(K, x) 2 r(K’, x’). (3.20) 

As an example of a c-linear map we mention the restriction on a C*-subalgebra 

of the states of a C”-algebra. 
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4. Topological Considerations 

According to Treves [13] we call a set of seminorms S an irreducible one, iff 
(a) X is a convex cone and (b) with 4 E S and q’ < q also q’ E X. 

If K is a convex set in L, then the set of all seminorms q satisfying the condition 

d,(K) -=C 00 (4.1) 

is an irreducible set of seminorms. It will be denoted by SK. By ker S we denote 
the set 

kerS = {zEL:q(x) = 0 all qES}. (4.2) 

The topology defined by S is called a Hausdorff topology iff kerS consists of the 
zero element of L only. 

LEMMA 9 : Let K = [Ml. Then r”(x) = 0 for x E K if and only if 

x E M+ker SK. 

The “if-part” is trivial and the “only-part” is a straightforward application 

of Lemma 4. From Lemma 9 we conclude: 

THEOREM 3: If SK defines a Hausdorff topology, then 

exK={xEK:r(K,x)=O}. (4.3) 

Namely, in this case, r(K, x) = 0 iff x is contained in every set M with [M] 

= K. But the intersection of this set equals ex K. 

We now introduce for a given seminorm q the notation 

U”(q, x) = infr”(Y), Q(Z-Y) < 1. (4.4) 

If U(q) denotes the set 

U(q) = (2 EL: q(z) < 1)’ (4.5) 

the definition (4.4) makes sense if x is contained in 

[M+U(dl = [M,l; JG = M+U(d. (4.6) 

Here we have used the fact that U is a convex set and therefore [M+ U] = [Ml+ U. 

Now if x is represented by a convex sum 2 
pixi with xi E Ml, then xi = Yi+Zi 

with Yi E M and zi E U(q), and therefore x = z -p?Yi+z with x = 2 P~z,~ E U(q). 

Thus y = xpiyi E M and q(x-y) < 1. On the other hand, if q(x- y) < 1 and 

Y = 7 piyi with yi E M, we have 
4 

x= c Pi(Yi+“-Y); yifx-Y E Ml. 

Therefore we can conclude 
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LEMMA 10: Define with a seminorm q 

Ml = MfU(q). 
Then for x E [M,] we have 

rM(q, 2) = PQT). (4.7) 

From the definition (4.4) we get 

*(q’, x) < r”(q, x), if q’ < q, (4.3) 

whenever the left-hand side of this inequality is defined. Next we consider a convex 

set K and an irreducible set S of seminorms (defining a not necessarily Hausdorff 

locally convex topology). 

LEMMA 11: K is contained in the S-closure of [M] if and only if 

K 5 [M+U(q)] for all qgs. (4.9) 

PROOF : If the element x of K is a limit point of [Ml, then for every q E S there is 

an element y~[ih!] with q(x-y) < 1 and hence x~[Ml+U(q) = [M+U(q)]. 
On the other hand, if 

Ye n CM+U(dl, qE% 

then y is not contained with a certain q’ of S in M+ U (q’) and hence 

Y+U(3q’)*Wl+U(3g’) = 0 (4.10) 

because otherwise with a certain y0 E M and 3q’(z,) < 1, s = 1,2, it would follow 

fb-4 G 41(3--x,) c 213 

and that contradicts (4.10). Hence the intersection 

f7 CM+UWl, qES, (4.11) 

is closed in the S-topology. 

Definition: 

r(K, S, x) = sup P(q, x), (4.12) 

where the supremum is taken with respect of all q E S and all sets M with 

S-closure [M] = S-closure K. (4.13) 

Rem ark : r (K, S, x) is defined (by virtue of Lemma, 11) for all x contained in 
the S-closure of K and because of the definition 

r(K,, S, x) = r(Kz, S, z), (4.14) 

if the S-closures of Kl and K, coincide. 
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LEMMA 12: r(K, S, x) is an S-subcontinuous function. 

PROOF : Let r(K, S, x) > b 2 0. Then there is a set M satisfying (4.13) and 

a seminorm q E S with r”(q, x) > b. It follows 

r”(y) >, r”(q, x) > b for all y with q(y-x) < 1. (4.15) 

Now we may choose y0 with q(y,--x) < I/2. Then for q(yo-y) < I/2, the inequality 

(4.15) remains valid. Hence r”(2q, y) 3 r”(q, x) and r”(q, y) > b for Sq(y--x) < 1. 

Therefore the set of all x with r(K, S, x) > b is an open one. This proof shows 

further that 

r”(S, x) = sup rM( q, x) ; PES (4.16) 

is a subcontinuous function. 

Now assume S 5 SK. Then r”(q, x) = 0 implies that x is contained in Jl+ 

+u(q)+kerSK but ker SK c U(q) if q belongs to SK. Hence XE U(q)+M. On 
the other hand, x E M+ U(q) implies r”(q, x) = 0. From Lemma 11 follows 

LEMMA 13: Under the condition S 5 SK we have 

S-closure ib? = {x: r”(S, x) = 0} (4.17) 

and under the condition (4.13) 

{x:r(K,S, x) = 0} = n (S-closure M). (4.18) 
M 

From this follows 

THEOREM 4: Let K be a compact convex set with respect to the Hausdorff 

topology S. r (K, S, x) = 0 if and only if x is contained in the S-closure of ex K. 

PROOF : By the Krein-Millman theorem [7, 81 ex K fulfils condition (4.13) 

as well as S 5 SK for S-compact K. By Lemma 13 it follows for r(K, S, x) = 0 that 

x is in the S-closure of ex K. On the other hand from x E exK it follows r(K, S, X) 
- 0. But by Lemma 12 the same is true if x is in the S-closure of ex K. - 

Next, if N is the S-closure of N we have M+ U(q) = N + U(q) for q in S. Hence 

we can restrict (4.12) to S-closed sets. According to Krein- Millman, the S-closure of 

ex K is the smallest S-closed set satisfying (4.13). Hence 

LEMMA 14: For S-compact convex sets K with Hausdorff topology S we have 

r(li, S, x) = rexK(S, x). (4.19) 
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