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I. Introduction

In the Wightman axiomatical approach [1] a quantum field
is defined by a positive functional W on a x% -algebra R of
teast-functions [2,3] . Por sake of simplicity we restrict our-
selves to the case of a neutral scalar field. This positive
functional W must yet satisfy certain further conditions
which arise from the Lorentz invariance, the spectrum condition
end the lokal commutativity. Such a functional is called Wwight-
man functional.

The ,main problem”™ £1] of axiomatic field theory is still
to prove the existence of a nontrivial model satisfying the
Wightman axioms. Till now, it has been impossible to establish
e eingle nontrivial theory. But this fact does not appear un-
netural, if one remarks that even for much simpler theories one
cannot write down & nontrivial solution.

Consequently, one must try to prove ,only" the existence of
a nontrivial Wightman field. A first step to this aim one has
to prove the existence of, in one sense or another, ,suffi-
cently large" collection of Wightman functionals. Then one might
hope to find among these such which descripe a nontrivial case.
For a ,field-theory-like™ axiom system Ruelle iﬁ] has obtained

such a ,sufficently large" collection of solutions.

In a natural way are two possibilities to prove the exis-
tence of ,sufficently many" Wightman functionals.
Pirstly, one can start to state conditions for the functionsls

which follow from the spectrality, locality and Lorentz invari-
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ance, and then try to prove that among these functionals are
wsufficiently many® positive functionale. Secondly, one can try
to solve the existence-problem from the other side, by beginning
with a survey about the positive functionals on R . Then one
has to show that among the positive functionals one can find
wBufficiently many® functionals which satisfy the other con-
ditions for Wightman functionals.

On the second way we have gone some steps [5,6] « We have
proved that for every ,positive™ element b &€ K there is
a positive functional W on R with W(b) > 0 (Sect. IV).
To prove this we have applied the well-known results about the
seperation of convex sets in a linear topological space. The
existence-proof is based on the fact that the set X of posi-

tive elements is a cone, what will be shown in Sect. III.

Till now we was not able to prove with this methods the
existence of Wightman functionals. In Sect. VI some words will

be said about the difficulties arising by it.

As an application of the results of Sect. IV in Sect. V
it will be proved that the algebra R can be faithful repre-
sented as an algebra of (unbounded) operators in a separable

Hilbert space.
In Sect. II the algebra R will be introduced and some
fundamental properties of it will be summarised.
II. The 3 - Algebra R

Y% will denote the 4n -dimensional Buklidian space and
8 point x ¢ E*® will be written as X = (x,....,xn) =
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L] (x”,....81‘.82‘,..o,xn‘) where xi - (811.....xt‘) is a

point of B . The symbols J, L eot. will denote a 4n -$udle
J = [311""’Jn4] of nonnegative integers snd [J| = EE‘ 34a

1= 1,...n, A= 1,...,4. xJ is an abbreviated notation for

J J J
Xy4 11.112 12. cee .xn‘ n4 and DJ an abbreviated notation

3‘:”

ax, 3L X, I

for

¥e denote by R, the space of complex numbers and by R, =
= s‘n the Schwartz’space of strongly decreasing test-funotions,

n=1%,2,... . The topology in 8 ies defined by the countadle

4n
set of norme

o = J
| 'n x':ps‘n l x¥ DY £(x) 2 y L(x) € nn. n >
|L1,1J) ¢m (Ix)+ 1)

(1.1)

'.o lm -'.ol) .oe Ro' .-0.1.coo

With this topology R, is a complete looally convex space.

Kow we define

)
(1.2) R = (:) R,

n=0
the topological direct sum of the spaces Ry .

The elements a of R are the sequences a = {.o.a1.....-,.o.o,..

&, € R, , with a =0 for n > N(a). The element

{0..... o, -n.o,... } we denote by a and consequently one

n

can write a = :i a, . a, is called the homogensous compo~
nzo
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nent of & with the degree n . For an arbitrary element a ;6 0,
& € R, W& define the degree d(a) by

(1:3) d(a) = n ire .nfo and & =0 for k>n
and the subdegree s(a) by

(1.4) s{(a) = m ire amaﬁo and a, =0 for k<m

The topology in R can be defined by the noncountable

set of norms

(1.5) Kol (oeypy « 2 7 Mla

n’om n 20 n B Bn
where (Tn) is an arbitrary sequence of positive numbers and
(mn) an arbitrary sequence of nonnegative integers. Consequently;

a complet system of convex neighbourhoods of zero is given by
(1.6) Vg dmy) =t VeV (q @y <1

Purther we define in R & multiplication a.b for two

elements a,b € R and a X -operation a’® by

2.b = 2 (a.b),
n 20

(1.7)

(a.b)n (11.....xn) - k+%n ak(x1,...,xk)(xk“,...,xn)

and



(1.8)

(.* )n(x1o°-°pxn) = ;; (xno-'-ox«‘)

wshere the bare denotes the complex conjugate function.

It is easy to see that the operation a — a™ is con-
tinpuous and that a,b — a.d is continuous as a function
of the two variables a,b . The topological linear locally
convex space R equipped with the multiplication (1.7) end
the ¥ - operation (1.8) becomes a topological ¥ - algebra,i.e.

a topological symmetric algebra.

Now we will briefly review some fundamental properties of

the topological structure of R.

1+ x2 2

Erep: 2.1 The Hermitian funoctions Hy= e (DJ X

J = (Jgeeewsdy) s 2o x? e i+ 2.2, form a basie in the

Schwarte’ space Sn and consequently sn is sebarabdle.

The assertion HJ to fora a basis in 8n means that for

every f € S, there ie an unique sequence EJ(f) of ocom-

plex numbers with

: def
(1.9) e a2 Eunm s 2 En)
J
8+ |Jl £8

Por & proof of Prop. 2.1 we remark that the Hermitian func-
tions HJ form an orthogonal basis in Lz(nn) and therefore
every f € 3, has a decomposition (1.9) oconverging in Lz(En)
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with respect to the strong topology. It remains to be proved
that the right-hand side of (1.9) converges even with respect
to the topology of S,+ This one may obtain from the well-known
properties of the Hermitian functions [7] .

Remark:
The decomposition (1.9) for the elements f € Sn may

be of use, because the Hermitian functions HJ are eigenfunc-

tions for the Pourier transform, HJ = (-1)J HJ, with (--:I.)J -

. (-1)“’1 (-1)3“.

Prom proposition 2.1 1t follows immediately

Erop., 2.2 The topological algebra R is separable and has

a baseis.

Brgof; Por an arbitrary finit set v = $Vy0eeey Vol of

natural nuabers we construct the elements

fv - {1. f1-v1’oto. fm 'vm, O.... g of R,b.ins fk ,vk

an element of the basis for s‘k. The set {f,v } is denumerabd-
le and forms a basis for R, how it is easy to see. Since R

has a basis 1t is separable.

Remark:

The property of R and 8 +$0 have a basis is a more fine
one than the separadility. In general a locally convex space

has not a basis even not if it is separabdle.

2r9p.2.3 A sequence a'’ ¢ R converges to zero if and only
if the homogeneous components ‘n' are zoero for n > K 4n-



\4

iz;endent of v and if a,° - O for v - oo and arbitra-

-y =.

Iraof; The sufficiency is clesr. We have only to prove the

v

necespity. Let a be a sequence which does not satisfy the

condition nnv =0 for n > N. Without lose of generality

we may assume the existence of an increasing eequence n, of

indices for which (&Y || > 1 _ S 0 holds. Por the in-
n, Toy

dices n different from all n we choose 1’n arbitrary

positive. With the so constructed Tn and o, =0 we ob-

tain for the in (1.5) defined norm fa' | > 1
(Yy)(0)

Hence a' cannot tonverge to zero.

Remarks:
The topology of R is not determined by the convergence of

usual sequences { a¥ } because in R exist sets with adhe-
rence points which are not limite of usual sequences out of the
set, how the following example shows.

Let f1 be an arbitrary element of 81 and fn- f"...'f1

( n times). Further let P be the set of all positive rational
numbers. Then we construct the set Mc R by a €M if and

only if a -.{%3 £, 8y Tofpy e o Tpfp, 0, 0, oo }

with arbitrary ry € P. It is easy to see that O 1is an adhe-

rence point of M , but there is no sequence a’ € M with

a’ —> 0. Then for if al o 0, it would bde a; = 0 for

n N and consequently, by definition of M le i > % in
0

oontradiction with the convergence to zero.
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Since M 1is denumerable we can it write as a sequence
M= ib’*}. So we have an example for the interesting cese that
gero is an edherence point of a ssquence M = {'b*’} but no

subsequence of M converges to gero.

II1I. The Cone K of Positive Elements

Let K, be the algebraically convex hull of the set of ele-

ments a *

a8, a € R, and K the topological closure of Ko
with respect to the direct-sum topology of R defined by the
norms (1.5). The main aim of this section is to prove that K 4is

a cone.
Pirst of all we have
e m .

is a cone, 1.e., a) if k, k' € K, and s8,t two arbi-
trary positive numbers, then it is 8k + t ke K, and
b) if k € K, end k ¥ O, then it is -k ¢ K.

The proof of this lemma follows from

Lenma 3.2

Let k ¥ O be arn element of K, and 8 = s(k) the subde-
gree (1.4) of k. Then it holds

1) s =2 r 18 an even number
i1) kg = kzr(x1.....x2r) is nonnegative on the get
rs = {x - (11,...,82r); 21- 221‘, x2z x2r-1,,,..xr- xr+1}

o
414) for at least one x € [

) o
® it 1s k.(x1....,xs) > 0.
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The same assertions hold when the subdegree s « g(k) 4is re-

placed by the degree 4 « d(k).

REroof:

To prove this lemma we first note that the properties
1) - 111) are additive, i.e., if two elements a,b € R
have the properties i) - 11i), then a + b has these pro-
perties, too.

Because each element k € K can be written as

[o

N
N AN CO LIRS
i=1
(3.1)

1w L > (1)
a 20 e, (x,,...,xn) € R
and a(i)* a(i) has the properties 1) - 1i1), how it is
easy to see from the definitions (1.7) and (1.8), the remark

made before proves the lemma.

Now to prove Lemma 3.1 we remark that if k has the pro-
perties 1) - 1ii1), then -k can not satisfy these conditions.
Por that what followa we need the following definition.
Let k be an element of K, with the decomposition (3.1).
We define the numbers

(3.2) N ROl |

These 1n are not uniquely determined by k, but they depend

on the decomposition (3.1) of k. I "o is the norm (1.1)

in R2n with m = O.
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About the oconnection between k and the ln it holds
the following
Lemma 3.3

Yor an arbitrary k € K, with the decomposition (3.1)
the following inequalities hold, where k _ 1s the homogeneous

n
ocomponent of the degree n of k :
(1)% (1) <
(3.3) 12 o s N, & 11
n
&
(3.4) be, 1, € zo 1,1,
n
2
(3.5) 1,°-2 :2:.} Liyw oy Sk 0,0 n=0,1,2,...
Eroof:

PFrom the definition (3.2) 4t follows

1n2 ) x1'up x, l % _‘fxi‘)(’n"“"ﬂ "x(zi)("nn""’zn)
goeey n
(3.6)
2
2 sup %I.gi)(x19000.xn)

11,...,1n

Hence we obtain (3.3) by the Oauchy-Schwarz-inequality

(V¥ (O (G R

! Wy, L 2 L2
(3.60) 120y ay I, ¢ ﬁf%la,l.s\;fgia, e L4,
L)
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(3.4) followe from (3.3) by summing over all p, q with
P+ q=n . Pinally, from the definition of k, we obtain

2n

<3 (1)» (1) ‘
‘?al(‘i)* .l(‘i) no - n? vZE) Son-v 8y vo §”ki’n Ll

n

vé
and from this it follows (3.5) by (3.2) and (3.3).

Next we prove the basic lemma for the main theorems.

hempg 3.4
There exists a sequence o(n, ns0,1,..., of positive
sumbers 8o that for every k € Ko with the decomposition (3.1)

the relation

2 2 < (o} ” "
. 1l = k

(3.7) n>o B 030 n 2n o
holds.

Rxroof:

By (3.5) the Lemma is proved, if we show that for a mono-
ton decreasing sequence l%o > /51 DI ﬁm Doeiee 201

there exists a sequence o n* 23" O,150¢+ , 0f positive numbers

so that for each infinit vector 1 = (lo. 11,..'., 1., 0, Opecs)
with 1n =0 for n > m the inequality

(3.8) {%. 212520(12-220(115

nyo ® n3o Bm n3o0 loev

Vel Tn+v "n-v

holdes.
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We prove the existence of the X, by induction over m .

If we have already constructed the o(n for n &N -1 80
that the relation (3.8) holds for each 1 with m =N - 1,
then (3.8) for m = N is satisfied if

N-1

( Py - ) 2 12 € oa2- 2 D o 1.1
PN f"n—d peo B Xy vys N-v °N “N-2v

(1m « 0, m 21) holds. By the Cauchy-Schwarz-inequality thig

follows from

-1 .L
0 < (Pyy =Py Z 12 -2(30 0&2) ,(ngol) + &2

Hence, the relation (3.8) holds for m = N, too, if we choose
oy satisfying

N-1
3. K, > 2 2
(3.9) Ll §<1~ PN p=o Xn
(3.9) 1s a recursive definition for the A, - Q.E.D.
In what follows we denote by | I a special norm (1.5),
namely
- |
(3.10) (. l v('lfn)(O)

(b"an - o(n ' q‘2n+1 arbitrary positive, m =0

With thig norm it follows from (3.7)



(3.11) 2 12 | x|

for every k € Ko .

Now we atate and prove the main Theorems

Theorem 3.1
Let K1 be the topological closure of Ko in R with
respect to the norm | I (3.10) , then every element k # O,

k &€ Ky» satisfies the conditions i) - 1ii) of Lemma 3.2 .

T heorem 3.2

Let K1 be the set of the previous Theorem, and let K
be the topological closure of Ko in R with respect to the
direct-sum topology defined by all norms (1.5), then it holds

K C.K1 and K and K1 are comnes.

Rroof of Theorem 3,2
K C K, holde, since the topology in R defined by the

special norm i | 4is weaker than the direct-sum topology
defined by all norms (1.5).
Purther it is immediately clear that K1 is a wedge, i.e.,

K satisfies the condition a) of Lemma 3.1 . By Theorem 3.1

1
we can show, as for Ko s that K1 satisfies the condition
b), too , i.e., K, 1is a cone. In the same way one can see

that K 418 a cone.

() rem J.

Let k ¥ 0O be an element of K1, then there exists
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a sequence k' & K, ~converging to X with respect to

norm | | ,1.e., lk-kK |} - ¢ for v » o.
We remark that in general k¥ does not converge with hESPecT
to the direct-sum topology of R .

v

Each k has a decomposition (3.1) and 1Y

n
the numbers (3.2) for these decompositions. Since i kVH

is bounded, it follows from (3.11) that the sequences l;

Va=1,..., @ , are bounded. Further, since k # 0, there

exists one r s8uch that

lim 1

<

= 0 for 0 £ n & r-1

1; does not converge to zero

From this and the estimations of Lemma 3.3 we obtain

m 1k, b, = }k

v =» oo

nlo = 0 for 0O < n<2r-)
(2.13)

Um ok by = Hig. |
V> 00

o ¥ O
(3.13) 18 the assertion i) of Lemma 3.1 . It remains %o DOV
11) and 1ii) . Now, by the estimation (3.3) and the assump-
tion (3.12) we obtain

r
|y - 2 2l alt) ) e Pk, - k) [ +2 2 L, 1n

1 vF % - r+p

i.e. »
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(1)

—(i)
kzr(x1,...,x2r) = 1im :2 a£ '(xr,....x1) Sr ’(xr+1,...,x2r)

V- 00

Prom this it is immediately clear that k satisfies 11).

To prove iii) for k we first remark that from (3.2)

\
and (3.6') for r = p = q it follows sup %Iai‘i, ‘ 2 42

r
Now, 1if k2r(x1""'x2r) vanishes' on the set r—zr’ then
for every £ > O there is a Vo Wwith
2
sup % \ agi) ] L € for VvV > Vg4

But this means lﬁp 1r = 0 , which condradicts the assumption
(3.12) . Thus 111) holds for k , too. Q.E.D.

IV. Positive Punctionals on R

In thie section we prove the existence of nsufficiently

many" positive functionals on R 4in the following sence:

Theorem 4.1
Por each b€ R, b#O, there exists a positive conti-

nuous linear functional Wy (a) on R with Wb(b) # 0
and Wy (k) » O for k 6K1. For b € x1 the funotio-

nal W, (a) can be chosen so that |wb (a) ] <« Ral holds.



- 17 -

This means, the topological  -algebra R 18 reduced ( [10]
pP.270).

For the existence-proof of positive functionals on the to-
pological algebra R , i.e., of linear functionals, which are
nonnegative on K1, we want to apply a special lemma, lLemma
4.1, from the well-known complex of separation-theorems [9] for
convex sets in a linear topological space. For this we need a
ocone with interior points. Since our cone K1 contains only
symmetric elements k = k*-, it does not contain an interior
point. Therefore, in the firs part of the proof we extend K1
in a suitable way to a cone K, with interior points.
Eropo fi

Let first b # O be an element of K,. Since K, 1is
a cone, it holds O 7§ b + K,. Purther, let U =fu : Huyedt
be such a neighbourhood of the origin that U N (b+K)= @
holds. We define L = { i(k, - k) t ky,k, € K, , 1% = =1}

and Ki-{k+n.b+s.u:k€ K‘.’ B)O,ueU}. L Isa
regl linear space in R and K; a cone with the interior

point b, and we find L 0O Ky = §01 (the origin).

After these preparations we can apply the following
Lemma 4.1 (Razur 8.)

Let K be a convex set with an interior point b in a real
locally convex space R and 1L a linear subspace of R , which
does not contain a interior point of K . Then there exists a
1inear continuous functional f£(a) on R with f£(k) > 0 for
ke x, £(d) > 0 and f(a) =0 for a € L [9] .
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Now we regard R as a normed linear space with the norm over
the real field. Then it follows from the last Lemma that there
exists a real linear continuous functional f(a) on R with

f(a) =0 for a € L, and (k) > o for k € Ky and

f(b) # 0 . Then wb(a) = f(a) - 1 £(ia) 18 a linear functio~
nal on the complex linear space R , continuous with respect to

the norm-topology in R and it holds wb(b) F 0 and
wb(k) = f(k) -1 f£(ik) = £(k) > 0 for k € K1, because

i1 k € L . This implies wb(a) is a positive functional on
the algebra R . Evidently, we can choose wb(a) 80 that
[wb(a) | € ) all holds. of course, these functionals are con-

tinuous with respect to the direct-sum topology in R, too.
Since for every b = a¥a € K, a positive functional

Wp(a) with W (b) # 0 exists if b # 0 » there exists such
& functional for an arbitrary b £ 0 of R ( [10] p. 271)
which is continuous with respect to the direct-sum topology.

In general, it is not continuous with respect to the norm | | .

ITheorem 4.2

The set [ W, :be K, } of these positive functionals
is a relatively bicompact set in the weak topology of R’ (ihe
dual space of R ).

Since for these functionals |Wb(a) | < )al holds,
the Theorem follows from the following general
Lemme 4.2
Let R Dbe a linear topological space and let oc(a) be
a reel function on R. Then the get G = {Q’:‘W € R', W(a) & c(a)}
is bicompact in R’ with respect to the weak topology [8].
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V. Paithful Representations of R

In thies section we prove the following

lheorenm 3.1
The topological X% ~-algebra R can be faithfully repre-

gented as a % -algebra of (unbounded) operators in a separable

Hilbert space H .

Let us first recall the definition of a faithful representa-
tion.

b g t :
A representation of a topological % -algebra R as (unboun-
ded) operators in a Hilbert space H 1s given, if for every
@ ¢ R there is a linear operator A(a) in the Hilbert spa~
ce 8o that
1. for all a € R the domain D(A(a) )= D 1e the
same dengse subspace of H and D is invariant for all
A(a) , A(a) D C D, and it holds D (A(a)®) DD .
2. for a,b,E R and ¢ € D 4t holds A(a.b){Y =
= A(a) A(D)
A(ka + D) = « A(a) ¢ + A A(D)Y and A(e®)y = A @ .

3. (A(a)¥,¥) with ¢ ,¥eD 1is a continuous function
on R.
The representation is said to be faithful, if a — A(a) 18
an one-to-one mapping.

That Theorem is already an interesting information about the
ptructure of R , but it is desirable to solve the problem, wether
or not the representation A(a) can be chosen in such a way that
for a symmetric element a=a¥c R A(a) 1is an essential-

self adjoint operator.
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To prove the Theorem we apply the following

Lemma 9.1

If X 1is a seperable linear topological space and G a
bicompact set in the weak topology in X’ , the dusl space of
X , then the weak topology in G ocan be given by a metric. [8]

Proof of Theorem 5,1
Let G be the weak closure of the set {Wb 1 d € Ki } .

It 18 easy to see that G contains only positive functionels,
and by Theorem 4.2 G is bicompact in the weak topology in R® .
In consequence of Proposition 2.2 and the last Lemma, G 1is

a bicompact metric epace and therefore separable. Let P be

a countéble dense subset of G , then for each b€ R, b #. o,
there exists a functional W € P with Wb X b) ¢ 0.

By the Neumark-Gelfand-Segal construction we have for each
wWer a cyclic representation Aw(a) of R 4in a Hilbert
space H, with the invariant domain Dy and a cyclic vector
q)w. For this representation it holds W(a*a) = HAW(a) q" |2

a € R, and since R 1iB separable H' is separable, too.
Let A(a) = é;?P Aw(a) be the direct sum of all these

representations Aw(a). A(a) 1s a representation of R in

the Hilbert space H = Hy with the invariant domain D =

WE P
- 2 D
WEP

Since P 18 countable and these Hw are seperable H

w .

is seperabdble, too.
Purther this representation A(a) is faithful, becsuse
vor each b § O there isa W € P with NA(b)q’wﬂz -

2 *
= | Ag(d) P = W b) 40 . Q.E.D.
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Vi. Conclusion

In Sect. IV we have only proved the exisience of positive
functionals. The other conditions for Wightman functionals we had
not regarded. In the formulation given in [2,3] a positive fun-
ctional W on R 1is a Wightmen functional if

W(a* a)= 0 for a € Je U Jap
and
‘.Y(a't -a)=0 for ’Cé@
where Jc denotes the locality-ideal, Jsp the spectrality-

ideal and q) the inhomogeneous Lorent%group. e — at for
T € GD ie the automorphism of R defined by a (x1,...,xn) =

= e (AT xy = ) AT ) ) T e (8N

Now let N be the (complex) linear subspace of R genere-

ted by the elements aXa for ac¢ Je U Jsp and at - a.

If we want to prove the existence of ,sufficently many" Wightman
functionals with the method applied in Sect. IV , we should prove
that for ,sufficently many" b € K1 the cone K1 canu be
extended to a cone Ki with the interior point b 1in such
a way that the real 1linear space L + N does not contain an
interior point of Ki . But this to prove we need more infor-
mation about the structure of the elements of K1 . We hope to
handle this problem in a later paper.

Pinally we remark that one could immediately say more about
the existence of Wightman functionals, if the cone K1 has
interior points relatively to the subspace of symmetric elements

a* = @ . But this is not so.
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