REMARK ON THE FUTURE TUBE

By Armin Uhlmann

Theoretisch-Physikalisches Institut, Karl-Marx-Universität, Leipzig*

(Received July 2, 1963)

It may be of use to note that the (open) future tube T^+ is holomorphic equivalent to a well known irreducible bounded symmetric domain. Further the group Γ of biholomorphic maps T^+ onto T^+ is transitive and consists of the orthochronous conformal transformations continued into T^+ .

Let σ_1 , σ_2 , σ_3 be Pauli matrices and denote with E the 2×2 unity matrix. Consider the map $z^{0}E + z^{1}\sigma_{1} + z^{2}\sigma_{2} + z^{3}\sigma_{3} = Z$. For $\vec{z} \cdot \vec{z} = |Z|$ and $2z^{0} = \text{Tr. } Z, Z$ belongs to T^{+} if and only if $(Z-Z^*)/2i = \text{Im}Z > 0$. (*denotes the Hermitian conjugate and > 0 means positive definite.) If Im Z>0 then $|Z+iE|\neq 0$ and the Cayley transformation $Z\to W=(Z-iE)(Z+iE)^{-1}$ exists. Now ImZ>0 turns out to be equivalent with $E-WW^*>0$. Therefore the domain G given by $E-WW^*>0$ is biholomorphic equivalent to the future tube. G belongs to the irreducible bounded symmetric domains, classified by E. Cartan¹, and is of type I (with p = q = 2) and of type IV (with p = 4). The symmetric and hence transitive group of biholomorphic mappings of G onto G has been found by E. Cartan to be $W \rightarrow (AW + B) \times$ $\times (CW+D)^{-1}$ with $AA^*-CC^*=DD^*-BB^*=E$ and $AB^*=CD^*$ (this is the connected component of the identity) and $W \rightarrow W'$ (W' is the transposed of W). The Minkowskian line-element ds^2 is the boundary "value" of an holomorphic absolute differential form, which reads in "W-representation" $-4|E-W|^{-2} \times |dW|$. A straight-forward calculation shows, that Γ is a group of conformal transformations with respect to this form and (because Γ is a closed 15-parametric group) the elements of Γ are the orthochronous conformal transformations of Minkowski space, analytically continued into T^+ . Time reversal transformations are of course represented by antiholomorphic maps for instance by $W \rightarrow W^*$.

^{*} Address: Leipzig Cl, Linnéstr. 5

¹ Cartan, E., Abh. Math. Sem. Univ. Hamburg, 11, 111-162 (1936).