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Abstract

Transition Probability (fidelity) for pairs of density operators can be
defined as a “functor” in the hierarchy of “all” quantum systems and
also within any quantum system. The Introduction of “amplitudes” for
density operators allows for a more intuitive treatment of these quantities,
also pointing to a natural parallel transport. The latter is governed by
a remarkable gauge theory with strong relations to the Riemann-Bures
metric.

1 Introduction

The topic of the paper concerns transition probability and fidelity for general
(i. e. mixed) states and some of its descendants. It belongs, metaphorically
spoken, to the “skeleton” or to the “grammar” of Quantum Physics in which
dynamics does not play a significant role. The needs of Quantum Information
Theory have considerably pushed forward this abstract part of Quantum Theory.

Transition probability between pure states is one of the most important
notions in Quantum Physics. It is basic within the probability interpretation as
initiated by M. Born and pushed into a general form by P. A. M. Dirac, J. von
Neumann, G. Birkhoff and many others.

Transition probabilities for pure states, expressed by vectors of a Hilbert
space, are a standard text book issue: Let H be a Hilbert space and 〈., .〉 its
scalar product. Let |ψ1〉 and |ψ2〉 be two of its unit vectors. Then

Pr(π1, π2) := Trπ1π2 = |〈ψ1, ψ2〉|2 (1)

is their transition probability. πj = |ψj〉〈ψj | denote the density operators of the
relevant pure states. This primary meaning of (1) is as following: Let us assume
the quantum system is in its pure state π1. Asking by a measurement whether
the system is in state π2 or not, there are two cases: Either we obtain “YES”
or “NO”. If the answer is “Yes”, the state π2 has been prepared. if the answer
is “NO” the state with the vector (1−π2)|ψ1〉 has been prepared. It is by mere
chance which case takes place in an individual measurement. The probability
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to get the answer “YES” is equal to the transition probability (1), showing up
approximately as the success rate for a large number of cases.

To circumvent heavy mathematical technics, see [5]1, we restrict ourselves to
“full” quantum systems based on finite dimensional Hilbert spacesH. States are
represented by density operators. Channels are completely positive and trace
preserving maps. We use the convention

fidelity =
√

transition probability .

2 Transition probabilities for density operators

What can be done if the system is in a mixed state with density operator ρ1 and
we like to prepare another mixed state, ρ2, by a measurement? This task cannot
be performed within the system itself2. We have to leave the system based on
H and have to go to larger systems in which one can perform appropriate “YES
– NO” measurements as used above to give to Pr(ρ1, ρ2) a clear meaning.

As it turns out, we do not have to consider arbitrary large quantum systems
for this task. It suffices to work within H ⊗ H. Taking this for granted, we
assume that |ϕ1〉, |ϕ2〉 are purifying vectors for of ρ1, ρ2 in H⊗H : The partial
trace of

π′j = |ϕj〉〈ϕj |, |ϕj〉 ∈ H ⊗H (2)

has to be ρj for j = 1, 2. By the reasoning above we obtain the probability
|〈ϕ1, ϕ2〉|2 to prepare the state π′2 from π′1 by a suitable measurement.

This value is not uniquely attached to the pair ρ1, ρ2. Generally, different
purifications give different values. However, within all these values there is a
largest one and this is called the transition probability from ρ1 to ρ2 and it will
be denoted by Pr(ρ1, ρ2).

In other words: There are measurements in larger systems preparing ρ2 from
ρ1 with probability Pr(ρ1, ρ2). But one cannot do it better. Thus, [29],

Pr(ρ1, ρ2) = max
all purifiations

|〈ϕ1, ϕ2〉|2 (3)

where the “purification conditions”

Tr ρjA = 〈ϕj , (A⊗ 1)ϕj〉, j = 1, 2 (4)

must be satisfied for all operators A acting on H.

2.1 Transition probability and channels

With the increase of the quantity (1), the possibility to distinguish ψ2 from
ψ1 becomes more and more difficult. In the above definition of Pr(ρ1, ρ2) we
had to look for a pair of purifying states the discrimination of which is as

1It is possible to work within the category of von Neumann or of unital C∗algebras.
2Except ρ2 is pure.
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difficult as possible. In this sense the problem (3) is “inverse” to that of state
discrimination, [20].

Now, sending two states through a quantum channel, the possibility of their
discrimination is diminishing. This should imply a better chance to convert
one of the images into the other one and, therefore, should result in a larger
transition probability between the output states than between input ones. This,
indeed, is true. Let us make this more transparent.

Cum grano salis we live in a “quantum world” consisting of an hierarchy
of quantum systems. The physical meaning of an individual system is highly
determined by its “place” within other quantum systems. Here we are interested
in the corresponding state spaces and in the quantum channels acting on or
between them.

We consider functions (“functors”), Q = Q(., .), attaching a real number to
any pair of density operators on any quantum system. With this in mind let us
assume the following two conditions:

• For pairs of pure states, π1, π2, we require

Q(π1, π2) = Trπ1π2 ≡ Pr(π1, π2) (5)

• For all quantum channels Φ and all pairs of density operators:

Q(ρ1, ρ2) ≤ Q(Φ(ρ1),Φ(ρ2)) (6)

At first we convince ourselves that for all Q satisfying (5) and (6) we get

Pr(ρ1, ρ2) ≤ Q((ρ1, ρ2)) . (7)

To see this we return to the purification procedure. While ρ1, ρ2 are living
on H, their purifications are pure density operators πj on some H⊗H′. Then,
abbreviating the partial trace over H′ by Tr′, it is Tr′πj = ρj . In the case of
a finite dimensional Hilbert space the maximum in (4) is already attained in
H⊗H by certain purifications π1 and π2. With them it follows

Q(ρ1, ρ2) = Q(Tr′π1, Tr′π2) ≥ Q(π1, π2) = Trπ1π2 = Pr(ρ1, ρ2)

and (7) is established.
Does Pr(., .) belong itself to the set of functions obeying (5) and (6)? The

answer is “yes”. Indeed, Pr(., .) fulfills (6) even for trace preserving and just
positive maps, [4]. By (7) this guaranties

Pr(ρ1, ρ2) = inf
Q

Q(ρ1, ρ2) (8)

where Q runs through all functions satisfying (5) and (6).
While by (3) the transition probability is symmetric in its arguments, we

did not require this for a general Q in (8).
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Pr(., .) can be consistently extended to all positive operators3 by

Pr(λ1ρ1, λ2ρ2) = (λ1λ2) Pr(ρ1, ρ2) . (9)

Two examples follow for illustration. The first one reads

(Tr ω1)1−s(Tr ω1)sTrωs
1ω

1−s
2 ≥ Pr(ω1, ω2) (10)

Because of (9) it suffices to prove it for density operators. However, one knows
that Q := Tr ρs

1ρ
1−s
2 satisfies conditions (5) and (6).

Another example is

4Pr(ω1, ω2) ≤ (Tr ω1 + Trω2)2− ‖ ω1 − ω2 ‖21 (11)

where ‖ . ‖1 denotes the trace norm. (11) is consistent with (9). Its right hand
side respects (5) and (6), proving the assertion. Applied to density operators
(11) reduces to a know inequality, see [24] (exercise 9.21).

There are many other bounds, older [19] and newer ones, [22], [23].

2.2 Explicit expressions

The transition probability between two density operators ρ1 and ρ2 of a quan-
tum system can be evaluated within that system. To do so, one needs explicit
expressions, [29]. One can find them in text books, for instance in [24], [8]. We
present them in terms of fidelity:

F (ρ1, ρ2) = Tr ( ρ
1/2
1 ρ2ρ

1/2
1 )1/2 = Tr ( ρ

1/2
2 ρ1ρ

1/2
2 )1/2 (12)

Remind that in the present paper we call “fidelity” the positive square root of
transition probability. Both, F (., .) and Pr(., .) behave nicely with respect to
direct products:

F (ρ1 ⊗ ρ′1, ρ2 ⊗ ρ′2) = F (ρ1, ρ2)F (ρ′1, ρ
′
2) (13)

as follows directly from (12).

For later use we rewrite (12) in a particular way, suggested by the geometrical
mean [25, 1]. defined For invertible positive operators the latter is defined by

ω#ρ = ρ−1/2(ρ1/2ωρ−1/2)1/2ρ−1/2 (14)

and it extends
√

ωρ from commuting pairs of positive operators to general ones,
see for instance [8] and [15] for more. It can be seen from (14) that ω#ρ−1 is
well defined by continuity for all pairs of positive operators, wether invertible or
not. To make it more transparent we use the quasi-inverse ω[−1] of ω. It enjoys
the same eigenvectors as ω, but all non-zero eigenvalues are inverted. Now

ω#ρ[−1] = ρ[−1/2] (ρ1/2ωρ1/2)1/2 ρ[−1/2] . (15)

Finally, we rewrite (12) in the following manner:

F (ρ1, ρ2) = Tr (ρ2#ρ
[−1]
1 )ρ1 = Tr (ρ1#ρ

[−1]
2 )ρ2 (16)

3of trace class if H is infinite dimensional
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3 Amplitudes

Let ρ be a density operator, not necessarily normalized. We call amplitude of ρ
any operator W which satisfies

ρ = WW † . (17)

The square root of a density operator is one of its amplitudes.
To be consistent we have to call “amplitude” of a pure state π = |ψ〉〈ψ| any

operator W = |ψ〉〈ψ′| with unit vector |ψ′〉.
If W is an amplitude of ρ then so is WU with U unitary. The change

W −→ WU (18)

is a gauge transformation with respect to a natural gauge potential as we shall
see later on. Here we need the following: Let Wj be an amplitude of ρj . By the
help of gauge transformations we can alter W †

1 W2 to U†
1W †

1 W2U2. Therefore,
there are amplitudes with W †

1 W2 ≥ 0.
A pair of amplitudes Wj of ρj , j = 1, 2, is called parallel if

0 ≤ W †
1 W2 = W †

2 W1 . (19)

Parallel amplitudes allow to “take the root” in (12). Indeed,

(W †
1 W2)2 = (W †

1 W2)(W
†
2 W1) = W †

1 ρ2W1 .

By polar decomposing we can write Wj = √
ρj Uj . From (19) it follows that for

any pair W1, W2, of parallel amplitudes there are unitaries Uj such that

W †
1 W2 = U†

1 (ρ1/2
1 ρ2ρ

1/2
1 )1/2U1 = U†

2 (ρ1/2
2 ρ1ρ

1/2
2 )1/2U2 (20)

3.1 A gauge invariant

Let W1 be invertible. The operator W2W
−1
1 remains invariant if Wj → WjU ,

see (18). For invertible parallel amplitudes Wj one gets

W2W
−1
1 ≥ 0, W1W

−1
2 ≥ 0 (21)

The assertion can be seen from

W2W
−1
1 = (W−1

1 )†(W †
1 W2)W−1

1 ≥ 0 .

By some algebraic manipulations one establishes

W1W
−1
2 = ρ1#ρ

[−1]
2 , W2W

−1
1 = ρ2#ρ

[−1]
1 . (22)

for invertible ρj . These operators play a role in the no-broadcasting theorem
[7]. Another application is in [9], [18].
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3.2 Amplitudes and Purification

Let |ϕ1〉, |ϕ2〉 be purifying vectors for ρ1, ρ2 in H⊗H′ with dimH ≤ H′. That
means, similar to (4),

Tr ρjAj = 〈ϕj , (Aj ⊗ 1′)ϕj〉, j = 1, 2 . (23)

With two purifying vectors at hand we define ν12 to be the partial trace of
|ϕ2〉〈ϕ1| over H′,

ν12 := Tr′|ϕ2〉〈ϕ1|, Tr ν12A = 〈ϕ1|(A⊗ 1′|ϕ2) (24)

for all operators A acting on H.
Now let W1, W2 denote a pair of amplitudes for our two states ρ1, ρ2. We

choose a maximally entangled vector ϕ in H ⊗ H′. Such a vector purifies the
maximally mixed state on H. It follows that

|ϕj〉 = (Wj ⊗ 1′)|ϕ〉, ν12 = W2W
†
1 . (25)

and |ϕj purifies ρj for j = 1, 2.

The Cauchy-Schwarz inequality bounds the right hand side of (24) by

〈ϕ1|A†1A1|ϕ1〉 〈ϕ2|A†2A2|ϕ2〉 = (TrA†1A1ρ1) (TrA†2A2ρ2)

and, therefore, ν12 is restricted by

|Tr ν12A
†
1A2|2 ≤ (Tr A†1A1ρ1) (TrA†2A2ρ2) (26)

Now we assert

Pr(ρ1, ρ2) = sup |Tr ν12|2 (27)

where ν12 runs through all operators satisfying (26).
The right hand side cannot be smaller neither than Pr(., .) as defined by (3)
nor than the squared F (ρ1, ρ2) as given by (12). To see the other direction we
choose parallel amplitudes and set A†1A1 = W2W

−1
1 and A†2A2 = W1W

−1
2 for

invertible density operators. Now, as a short calculation like

Tr ρ1W2W
−1
1 = Tr ρ2W1W

−1
2 = F (ρ1, ρ2)

shows: (27) can be saturated. By continuity the degenerate cases can be settled.
The latter reasoning also shows

Pr(ρ1, ρ2) = inf
A>0

(Tr ρ1A) (Tr ρ2A
−1) (28)

because every term of the right side must be larger than any Tr ν12 again by
Cauchy - Schwarz.

As an byproduct we see that equality in (28) can be reached with equal
factors on the right. This can be used to see the equivalence of (28) with

F (ρ1, ρ2) =
1
2

inf
A>0

(
Tr ρ1A + Tr ρ2A

−1
)

(29)

In full generality, i. e. for unital C∗-algebras, (28) has been proved in [3]
using an idea of [6].
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3.3 Concavity and monotonicity

(29) is particulary suited to prove concavity. It presents fidelity by an infimum
of linear functions and tells us

F (
∑

λjρj ,
∑

µkρk) ≥
∑ √

λjµj F (ρj , ωj) (30)

for all choices of non-negative λj , µk. Combined with (12) one concludes that
equality holds in (30) if and only if

ρjωk = 0 for j 6= k . (31)

Regarding concavity of Pr(., .) see [4].
Let us prove monotonicity as asserted in subsection 2.1: Returning to (29),

let Φ be a trace preserving positive map and Ψ the adjoint of Φ. Ψ is positive
and unital. Using Choi’s inequality Ψ(A−1) ≥ Ψ(A)−1, valid for unital positive
maps and positive A, one proceeds according to

TrΦ(ρ2)A−1 = Tr ρ2Ψ(A−1) ≤ Tr ρ2Ψ(A)−1

However, the set of positive operator of the form Φ(A) is not larger than the set
of all positive operators. Asking for the minimum over all A ≥ 0 we arrive at

F (ρ1, ρ2) ≤ F (Φ(ρ1),Φ(ρ2)) (32)

for all stochastic, i. e. trace preserving positive maps.
(32) justifies the assertion (8). Remark in addition that we do not need

complete positivity of Φ.

4 Geometric Phases

At first let us remind some essentials of phases for pure states. Starting with a
curve of pure states πs, 0 ≤ s ≤ r, one asks for resolutions or lifts

s → |ψs〉, πs = |ψs〉〈ψs|, 0 ≤ s ≤ r . (33)

Given an initial vector |ψ0〉 the parallel (or adiabatic) transport condition pro-
vides a unique lift of a given (regular enough) curve s → πs. The condition is
completely independent of dynamics and reads

〈ψs| d

ds
|ψs〉 = 〈ψs| d

ds
|ψs〉∗ . (34)

(34) is determining geometric (Berry) phase of closed curves s → πs.
Any lift (33) can be obtained by a gauge transformation

|ψs〉 7→ |χs〉 = εs|ψs〉, |εs| = 1 . (35)

Let us abbreviate the derivatives d/ds by a dot. One finds

〈χ̇|χ̇〉 = 〈ψ̇|ψ̇〉+ |ε̇|2 . (36)

Hence, a parallel lift comes with the shortest Hilbert length within all lifts (33)
of a given curve s → πs of pure density operators. This minimal possible length
is the Fubini-Study length of s → πs.
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4.1 Parallelity and the minimal length condition

At first we extend the minimal length condition.
Consider a given curve of density operators and their possible amplitudes,

s → ρs, s → Ws, ρs = WsW
∗
s (37)

Required: Neighbored amplitudes should be “approximately” parallel in the
understanding of (21). It results the parallelity condition [30]

(
d

ds
Ws)†Ws −W †

s (
d

ds
Ws) = 0 . (38)

In the following we abbreviate (d/ds)W by Ẇ . Apart from some singular cases
one can go into (38) by an ansatz Ẇ = GW . After inserting one finds

Ẇs = GsWs, G∗s = Gs . (39)

Gs can be determined by differentiating ρ = WW † and inserting (39),

ρ̇s = ρsGs + Gsρs . (40)

ρ̇ is a tangent at ρ. G is a cotangent at ρ with respect to the Riemann metric
form Tr G2ρ. Indeed, the latter is the Riemann metric determined by the Bures
distance. In particular,

lengthBures[s → ρs] =
∫

(Tr GsρsGs)1/2ds . (41)

By (39) we now see that

lengthBures[s → ρs] =
∫

(Tr ẆsẆ
†
s )1/2ds , (42)

provided Ws satisfies the parallelity condition (38). One can show that the
latter integral cannot become smaller by any gauging Ws → WsUs of the parallel
amplitudes Ws.

The Bures distance [12] is well described in [8] and in [15], [24]. That it is a
distance of a Riemann metric has been seemingly overlooked for long, [31], [11].
A systematic way to find the metric tensor is in [17]. dimH = 2 is discussed in
[8], dimH = 3 in [26]. See [10] how to solve (40).

5 A gauge theory

We look for a gauge potential (connection form) A with the following property:
The restriction Asds of A to s → Ws should vanish if and only if Ws satisfies
the parallelity condition (38). Being a gauge potential we have to have firstly

A + A† = 0 , (43)

and, secondly, a gauge transformation Ws → WsUs must result in

A → U−1AU + U−1dU . (44)
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Let us find A for invertible4 Ws. We rewrite (40) as a relation between operator
valued differential 1-forms,

dρ = Gρ + ρG, G† = G . (45)

We now define A by

dW = GW + WA . (46)

By the help of (45) and (37) one can establish (43) and (44). Thus, (46) indeed
defines a gauge potential. To see that it fulfills our requirement one inserts (46)
into (38), [16]. The result is

W †dW − (dW †)W = W †W A + AW †W (47)

proving that the parallel condition can be implemented by a genuine gauge
theory, [32]. To identify W †W let us shortly return to the purification process,
attaching |W 〉 = (W ⊗ 1′)|ϕ〉 to a maximally entangled |ϕ〉 and an amplitude
W . Taking the partial trace over H in H ⊗H′ one obtains the density matrix
W †W belonging to H′.

As we have seen, the phase transport along curves of density operators can
be described either by a minimal length condition or by a gauge theory. This
suggest further relations between the Bures Riemann metric and the gauge
potential. One of them concerns the curvature form dA + A ∧ A and the
Cartan curvature form of the metric. Remarkable enough it turns out [32] that

(dG−G ∧G)W + W (dA + A ∧A) = 0 . (48)

[13] is a general reference to the geometric phase for general states. For
relations to Einstein-Yang-Mills systems see [28]. For comparison with other
approach see [27]. A treatment of the dimH = ∞ case is in [14]. Other aspects,
including the problem of experimental verifications are in [2] and in [21], where
further references can be found.

6 Conclusion

The paper describes a small but nevertheless rich part of what may be called
the “non-dynamical basis” or the “grammar” of quantum physics. By the rising
of quantum information theory its importance has become much more evident
then before, though it has been clearly seen already in the so-called algebraic ap-
proach to quantum field theory and statistical physics. Of course, experimental
progress can be made only in combination with dynamics, concrete Hamilto-
nians and so on. On the other hand, the rules, we have had addressed in the
paper, are of such a generality that one can scarcely believe they can be derived
or proved from specially chosen dynamics. To the belief of the author the things
are just opposite: These general rules are setting conditions for possible forms
of dynamics, including space and time.

Acknowledgement. I thank B. Crell and P. M. Alberti for support and help.

4If the rank changes, the problem becomes sophisticated.
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