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Abstract. Concurrence and further entanglement quantifiers can be computed explicitly for
channels of rank two if representable by just two Kraus operators. Almost all details are available
for the subclass of rank two 1-qubit channels. There is a simple geometric picture beyond,
explaining nicely the role of anti-linearity.

1. Introduction

The aim of the present paper is to study completely positive (i.e. “cp”) maps Φ of
rank two, in particular, some of its entanglement properties. These maps can be
Kraus represented by

Φ(X) =
m∑

j=1

AjXA
∗
j (1)

with linear independent operators

Aj : Hd �→ H2 (2)

from a Hilbert space Hd of dimension d into 2-dimensional Hilbert space. The
integer m will be called the length of Φ. The complex linear space generated by
the Kraus operators (2) does not depend on the choice of the Kraus operators
and will be referred to as Kraus space of Φ and it is denoted by Kraus(Φ). Its
dimension is the length of Φ. These definitions are not bound to the particular
class of cp-maps satisfying (2), to which the paper is devoted.

Φ being of rank two, the output Φ(X) for Hermitian X enjoys only two inde-
pendent unitary invariants, the trace and the determinant. In case of a quantum
channel, i.e. a trace preserving cp-map, only the determinant counts. In the next
section a remarkable and, perhaps, not completely evident way to express det Φ(X)
for pure input states is deduced.
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By the important papers of Hill and Wootters [1], and of Wootters [2], “con-
currence” has been proved an important tool in the entanglement problem (with
respect to the partial trace). Its conceptional roots go back to the seminal work
of Bennett et al, [4]. See also the review [5] of Wootters.

The concurrence, C(Φ; · ), of Φ can be defined generally as the solution of
an optimization task: It is the largest convex function on the input state space,
coinciding for every pure input state with twice the square root of the output’s
second symmetric function. The second symmetric function of an operator on H2

is its determinant. Thus, the concurrence is the largest convex function on the
input state space satisfying

C(Φ;π) = 2(det Φ(π))1/2, π pure.

The factor two does not play a decisive role and is for historical reasons only. If
it is neglected, one has just to re-scale some constants. It is sometimes useful to
extend the definition to the positive cone of the input system by requiring degree
one homogeneity, see Sect. 3.

For most cp-maps an explicit expression for the concurrence is unknown. Ex-
ceptions are the rank and length two cases, as can be seen from [2] and [6]. For-
tunately, based on [6], just for these cases one can prove “flatness” of the convex
roof C(Φ; · ): If ω is an input state, there are pure input states π1, π2, . . . such that

a) ω is a convex combination of the πk, and

b) C(Φ; · ) is constant on the convex set generated by all the πk.

A rather complete picture can be given for 1-qubit channels of length two.
The linear structure of 1-qubit channels is well studied in Ruskai et al. [7] and
in Verstraete and Verschelde [8], following Fujiwara and Algoet [3]. This line of
thinking is going back to Gorini and Sudarshan [9], who classified all affine maps
of the d-dimensional ball into itself. However, if we need more than two Kraus
operators to represent a 1-qubit cp-map, then we mostly loose the control on the
flatness of C and of other entanglement measures. Exceptions are some trivial
cases in which det Φ is constant on the set of all pure states.

Let us now see, as an illustration, what happened with the concurrence for a
non-degenerate 1-qubit channel of length two: The input Bloch space is covered by
parallel straight lines on which the concurrence is constant. For every mixed input
state ω there is exactly one such line containing ω. It crosses the Bloch sphere
at two pure input states, say π1 and π2. The determinants of Φ(πj), j = 1, 2,
coincide. They determine the value of the concurrence along the line in question.
Therefore, because of their parallelism, we have to know just one of these lines to
compute C. Fortunately, there is a distinguished line on which C is zero. To get
that line we have to find the two pure input states which are mapped onto pure
outputs by Φ. That is, one has to solve the quadratic equation det Φ(π) = 0.

An input vector ψ̃ will be called Φ-separable if there is an output vector ϕ̃ such
that

Φ(|ψ̃〉〈ψ̃|) = |ϕ̃〉〈ϕ̃| . (3)
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Let Φ be a non-degenerate 1-qubit channel of length two. Then the Bloch-space
is covered by parallel lines of constant concurrence. Their geometry is completely
determined by the positions of the Φ-separable input vectors.

Let us return to the line of constant concurrence containing a given ω. If
we draw a plane through ω perpendicular to that line, we may ask for the locus
of points with equal concurrence. The answer is an ellipse. Thus, every plane
perpendicular to a line of constant concurrence is covered by ellipses of constant
concurrence: C = constant defines an ellipse-based cylinder in Bloch-space.

In the degenerate case, in which det Φ(π) = 0 has a double root, C becomes
linear and constant along planes.

If the concurrence is flat, one can use almost literally Wootters reasoning in
treating the (2 × 2)-entanglement of formation. By the Stinespring dilatation
theorem, every channel is unitarily equivalent to a partial trace, provided the
latter is restricted to density operators with a suitably selected support space.
From this perspective it becomes clear, how one has to define the functional, which
reproduce entanglement of formation [4], according to the Stinespring equivalence.
This entanglement functional will be denoted by E(Φ; · ). It is the largest convex
function on the input states satisfying

E(Φ;π) = S(Φ(π)) , π pure,

where S denotes the von Neumann entropy. Taking into account what has been
said above, one can write down analytic expressions for E(Φ; · ) as a function of
C(Φ; · ) for all quantum channels of rank and length two. Though the numerical
values of C and E are quite different in nature, their geometry is isomorphic: They
are constant along the same straight lines of the input Bloch space.

2. The Determinant

Let Φ be a map given by (1) and (2). We want to determine det Φ(X), rank(X) =
1. There are several ways to do it without going to the rank two case, aiming at
concurrences in general, see Rungta et al [10], Albeverio and Fei [11], and Mintert
et al [12]. Here we follow [13] and [14] in using anti-linear operators tailored just
to the rank two case.

Hilbert spaces of dimension two come with an exceptional anti-unitary opera-
tor, the spin-flip θf . (The index “f” remembers Fermi and “fermion”.) We choose
a reference basis, |0〉, |1〉, and fix the phase according to

θf (c0|0〉 + c1|1〉) = c∗1|0〉 − c∗0|1〉 , (4)

or, in a self-explainatory way, by

θf

(
c0
c1

)
=

(
0 1
−1 0

)
anti

(
c0
c1

)
=

(
c∗1
−c∗0

)
.

We need the well known equation

θfY
∗θfY = −(detY ) 1 . (5)
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The anti-operator A∗
jθfAk is well defined for Kraus operators (2). It acts on

Hd, and its Hermitian part, ϑjk, reads

ϑjk =
1

2
(A∗

jθfAk −A∗
kθfAj) . (6)

THEOREM 1 Let A1, . . . , Am denote the Kraus operators (2) of a cp-map Φ of
rank 2, and ϑjk defined according to (6). Then

det Φ(|ψ2〉〈ψ1|) =
∑
j<k

〈ψ1, ϑjkψ1〉 〈ψ2, ϑjkψ2〉∗, ψi ∈ Hd . (7)

The complex-linear span of the operators ϑjk is uniquely associated to Φ.

I use the ad hoc notation “(first) derived Kraus-space”, abbreviated Kraus′(Φ), for
the linear space generated by the operators (6). It is a linear space over the complex
numbers because (cϑ)∗ equals ϑc∗ = cϑ for Hermitian anti-linear operators.

To prove (7), we apply (5) to the Y = Φ(X) and take the trace:

det Φ(X) = −1

2
tr
∑
jk

(A∗
kθfAj)X

∗(A∗
jθfAk)X . (8)

We insert X = |ψ1〉〈ψ2| to obtain

det Φ(|ψ1〉〈ψ2|) = −
∑
j<k

〈ψ2, (A
∗
kθfAj)ψ2〉 · 〈(A∗

jθfAk)ψ1, ψ1〉

by respecting the antilinearity rules. We observe

〈ψ2, A
∗
kθfAjψ2〉 = 〈Akψ2, θfAjψ2〉 = −〈Ajψ2, θfAkψ2〉 .

This tells us that only the Hermitian parts of the operators A∗
jθfAk count, and we

can replace them by the operators (6). Thus, (8) is proved. Two elements of the
Kraus space relate to (6) as(∑

ajAj

)∗
θf

(∑
bkAk

)
−
(∑

bkAk

)∗
θf

(∑
ajAj

)
=
∑
jk

a∗jb
∗
kϑjk , (9)

which proves the second assertion of the theorem.
In changing to another set of Kraus operators for Ψ, say Ã1, Ã2, . . ., the trans-

formation coefficients form a unitary matrix. Together with (9) one obtains

Ãk =
∑

j

ujkAj , ϑ̃mn =
∑
jk

ujmuknϑjk , (10)

with the indexed ϑ̃ defined as in (6). By the help of (10) one gets∑
ϑ̃mnXϑ̃mn =

∑
ujmuknu

∗
rmu

∗
snϑjkXϑrs =

∑
ϑjkXϑjk .

These calculations show:
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LEMMA 1 The completely co-positive super-operator

Φ′(X) :=
∑
j<k

ϑjkX
∗ϑjk (11)

is uniquely associated to Φ and is called “(first) derivative” of Φ.

From (7) and (11) one concludes

det Φ(|ψ2〉〈ψ1|) = 〈ψ1,Φ
′(|ψ1〉〈ψ2|)ψ2〉 . (12)

2.1. Length two

Now let (1) be of length two and let us denote the two Kraus operators in (2) by A
and B. From them the anti-linear operator ϑ is constructed according to (6). After
choosing reference bases in the two Hilbert spaces, we get matrix representations

A =

(
a00 a01 a02 . . .
a10 a11 a12 . . .

)
, B =

(
b00 b01 b12 . . .
b10 b11 b12 . . .

)
. (13)

A∗ϑB acts anti-linearly on Hd with matrix entries

{A∗ϑB}mn = (a0mb1n − a1mb0n)∗

in the chosen basis. The matrix of an Hermitian antilinear operator is symmetric
in every basis. Hence, we get for the matrix entries of ϑ

{ϑ}mn =
1

2
(a0mb1n + a0nb1m − a1mb0n − a1nb0m)∗. (14)

1-qubit channels of length two can be given by

A =

(
a00 0
0 a11

)
, B =

(
0 b01

b10 0

)
, (15)

up to unitary equivalence, [7]. To get trace preserving, one needs restrictions. But
we do not need them. Just by inserting into (14), ϑ appears to be

ϑ =

(
z2
0 0
0 −z2

1

)
anti

, z2
0 = (b10a00)∗ , z2

1 = (b01a11)∗ (16)

and (7) results in

det Φ(

(
a0a

∗
0 a0a

∗
1

a1a
∗
0 a1a

∗
1

)
) = |(z0a∗0 + z1a

∗
1) (z0a

∗
0 − z1a

∗
1)|2. (17)

The map Φ is called nondegenerate if z0z1 �= 0. Then there are two linear inde-
pendent Φ-separable input vectors.

If Φ is degenerate, there are several cases: Either one of the numbers z0, z1 is
zero, but the other one not, or both vanish.1

1a11 = b10 = 0 but a00b01 �= 0.
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If z0 = 0, but z1 �= 0, then the square root of (17) equals |z1|2〈1|π|1〉 for all
pure input states. But this can be obviously extended to a linear function on the
input state space. It is easy to see that there cannot be a larger convex function
than a linear one, if the pre-described values at the pure states allow its existence.
Just that happened with the degenerate 1-qubit channels. Therefore,

C(Φ;ω) = 2|z1|2〈1|ω|1〉 if b10a00 = 0 (18)

and the Kraus operators are assumed as in (15). Similar,

C(Φ;ω) = 2|z0|2〈0|ω|0〉 if b01a11 = 0 . (19)

Clearly, the concurrence is identical zero if both, z0 and z1, vanish.
Some dim 4 → dim 2 channels can be treated which are modifications of the

partial trace. In these cases, ϑ is proportional to Wootters conjugation. Generally,
the partial trace

tr2X ≡ tr2

(
X00 X01

X10 X11

)
= X00 +X11 , (20)

is of length two and of rank d. The construction (6) requires d = 2.
The partial trace can be embedded in a family of “phase-damping” channels,

tr2,qX = X00 +X11 + (1 − 2q)(X01 +X10) , (21)

with 0 < q < 1 and with Kraus operators

A =
√

1 − q ( 1 1 ) , B =
√
q ( 1 −1 ) . (22)

To calculate ϑ for the channel (21), we start with

ϑ =
√
q(1 − q) (A∗

1θfA2 −A∗
2θfA1) .

We need the Hermitian part of 1 0
0 1
1 0
0 1

( 0 −1
1 0

)
anti

(
1 0 −1 0
0 1 0 −1

)
=

 0 1 0 −1
−1 0 1 0
0 1 0 −1
−1 0 1 0


anti

An antilinear operator is Hermitian if every of its matrix representations is a
symmetric matrix. Hence we obtain, up to a factor, Wootters conjugation:

ϑ =
√
q(1 − q)

 0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


anti

= −
√
q(1 − q) θf ⊗ θf . (23)

Of course, the same expressions can be deduced by inserting the matrix entries of
(22) in (14).
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Typically one does not know closed expressions for the concurrence of a channel,
but there are estimates, see [12] for example. An estimation from below can be
obtained for cp-maps of rank two as follows. Consider the auxiliary maps

Φjk(X) = AjXA
∗
j +AkXA

∗
k ,

built with the Kraus operators of Φ. The following estimate is true:

C(Φ;X)2 ≥
∑
j<k

C(Φjk;X)2 . (24)

Proof. For X ≥ 0 of rank one, (24) becomes an equality, see (7). The square root
of the right hand side is subadditive and homogeneous. By the very definition,
the concurrence is the largest function with these two properties. Hence (24) must
hold. Similar inequalities, without the restriction to the rank two case, have been
obtained by Minter et al. [12].

If Φ is a cp-map between qubits, then (24) sharpens to

C(Φ;X)2 ≥ 4 tr(XΦ′(X)) − 8 (detX)
∑
j<k

√
detϑ2

jk . (25)

This can be seen from (17), proved later on. �

3. Concurrence

The aim of the section is to calculate concurrences, a task, which can be done with
satisfaction for length two 1-qubit channels. In 4 → 2 a more explicit discussions
seems possible.

The notion of “concurrence” has been explained already in the introduction. A
version, extended to the positive cone by homogeneity, will be used. The concept
has been developed originally with respect to partial traces [5]. However, by the
Stinespring dilatation theorem any trace-preserving cp-map is equivalent to a sub-
channel of a partial trace.

DEFINITION 1 Let Φ be a positive map of rank two. C(Φ;X), the “Φ-concur-
rence”, is defined for all positive operators X of the input space by the following
properties:
(i) C(Φ;X) is homogeneous of degree one,

C(Φ;λX) = λC(Φ;X) , λ ≥ 0 .

(ii) C(Φ;X) is subadditive,

C(Φ;X + Y ) ≤ C(Φ;X) + C(Φ;Y ) .

(iii) C(Φ;X) is the largest function with properties (i) and (ii) above, satisfying
for all vectors ψ of the input space

C(Φ; |ψ〉〈ψ|) = 2
√

det Φ(|ψ〉〈ψ|) . (26)
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There are other, equivalent possibilities to define C. One knows

C(Φ;X) = 2 inf
{∑√

det Φ(|ψj〉〈ψj |) ,
∑

|ψj〉〈ψj | = X
}
. (27)

Next, just because the square root of the determinant is concave in dimension two,
the convex hull construction applies,

C(Φ;X) = 2 inf
{∑√

det Φ(Xj) ,
∑

Xj = X
}
, (28)

so that the Xj ≥ 0 can be arbitrarily chosen up to the constraint of summing up
to X. Notice, that a similar trick with the determinant (or the second symmetric
function) in the definition of concurrence would fail because the determinant is
neither concave nor homogeneous on the cone of positive operators.

For cp-maps of rank and length two much can be said about the variational
problem involved in the definitions above. This is due to the fact that the derived
Kraus space is 1-dimensional, and there is only one ϑ as explained in the previous
section. The appropriate extension of the procedure invented by Wootters is in [6]
and it goes this way:

Step 1. For two positive operators, X1 and X2, of the input space we need

{λ1 ≥ λ2 ≥ . . . } = eigenvalues of (X
1/2
1 X2X

1/2
1 )1/2 (29)

to define
C(X1, X2) := max

{
0, λ1 −

∑
j>1

λj

}
. (30)

Step 2. We set X = X1 and replace X2 by ϑXϑ,

C(Φ;X) = 2C(X,ϑXϑ) , (31)

and we are done. The proof is in [6].
It follows from its definition that the restriction of C(Φ; .) onto the intersection

of the cone of positive X with an affine hyperplane, tr(X0X) = 1, with a given
invertible X0, is a convex roof. It is the largest convex function attaining values
given on the rank one operators contained in the intersection.

EXAMPLE 1 In treating the modified partial trace tr2,q of (21), we had computed

in (23) ϑ = −
√
q(1 − q)θw. Here θw = −θf ⊗ θf is Wootters conjugation. We

conclude by homogeneity

C(tr2,q;X) = 4
√
q(1 − q)C(tr2;X)

and the right hand side is Wootters concurrence in [2]. Therefore, the optimal
decompositions of the modified partial traces (21) do not depend on q, 0 < q < 1.

Remark 1 Fei et al. [15] have pointed out a class of states allowing for calculating
concurrence by arriving at an analogue of (30). Their “computable” density op-
erators come with two different eigenvalues of equal degeneracy. The authors use
(detY )1/d, which is concave, and which becomes a quadratic form for their states.
Y stands for the partial trace of the input.
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4. 1-Qubit Channels of Length Two

Due to the presence of only two eigenvalues, λ1, λ2, in (29) one can get a more
detailed picture. The right hand side of (30) becomes λ1 − λ2. Combining

(λ1 − λ2)2 = (tr ξ)2 − 4 det ξ , ξ = (X
1/2
1 X2X

1/2
1 )1/2

with the characteristic equation

(tr ξ)2 = tr ξ2 + 2 det ξ ,

yields
(λ1 − λ2)2 = tr ξ2 − 2 det ξ .

Finally, removing the auxiliary operator ξ, we obtain

C(X1, X2)2 = tr (X1X2) − 2
√

det(X1X2) . (32)

Let Φ be the cp-map with the Kraus operators A,B of (15). We have to
substitute X = X1 and X2 = ϑXϑ into (32), remembering (31):

1

4
C(Φ;X)2 = tr (XϑXϑ) − 2(detX) (detϑ2)1/2. (33)

ϑ is taken from (16). It is diagonal in the reference basis with entries z2
0 and −z2

1 .
We arrive at

tr XϑXϑ = (z∗0x00z0)2 − (z∗0x01z1)2 − (z0x10z
∗
1)2 + (z∗1x11z1)2 ,

(detX) (detϑ2)1/2 = (z0z
∗
0z1z

∗
1)(x00x11 − x01x10) .

Combining these two expressions as dictated by (33) results in

C(Φ;X)2 = 4(z0z
∗
0x00 − z1z

∗
1x11)2 − 4(z0z

∗
1x10 − z1z

∗
0x01)2 . (34)

The number within the second delimiter is purely imaginary and, therefore, C2 is
the sum of two positive quadratic terms. This observation remains true if we allow
for any Hermitian operator in (34).

LEMMA 2 The squared concurrence (34) is a positive semi-definite quadratic form
on the real-linear space of Hermitian Operators. The concurrence is a Hilbert semi-
norm.

There is a further remarkable observation: The concurrence (34) is equal to the
absolute value of the complex number

c(X) := 2(z0z
∗
0x00 − z1z

∗
1x11 + z0z

∗
1x10 − z1z

∗
0x01) . (35)

The imaginary part vanishes if and only if Φ becomes degenerate. Let now us
rewrite (35) for Hermitian X as follows

C2(Φ;X)2 = l21(X) + l22(X) (36)
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by the help of the real linear forms

l1(X) = 2(z0z
∗
0x00 − z1z

∗
1x11) , l2(X) = 2i(z0z

∗
1x10 − z1z

∗
0x01) . (37)

l2 remains constant along

x′01 = z0z
∗
1t+ x01 , x′10 = z∗0z1t+ x10 (38)

and only the off-diagonal entries of the input operator vary. The values of C and of
l1 determine l2 and, hence, the diagonal elements of the input operator. Therefore,
we may rewrite (38) to

X ′ = X + t

(
0 z0z

∗
1

z∗0z1 0

)
.

We can relax from the condition that the traces of X and X ′ are equal. Indeed,
the concurrence remain constant on the planes

X ′ = X + t

(
0 z0z

∗
1

z∗0z1 0

)
+ t̂

(
z1z

∗
1 0

0 z0z
∗
0

)
,

or, equivalently,

X ′ = X + t1

(
z1z

∗
1 z0z

∗
1

z1z
∗
0 z0z

∗
0

)
+ t2

(
z1z

∗
1 −z0z∗1

−z1z∗0 z0z
∗
0

)
.

The two vectors

ψ1 = z∗1 |0〉 + z∗0 |1〉 , ψ2 = z∗1 |0〉 − z∗0 |1〉 , (39)

are solutions of 〈ψ, ϑψ〉 = 0, and represent two linear independent Φ-separable
vectors.

LEMMA 3 The concurrence of a 1-quibt cp-map Φ with Φ-separable vectors ψ1

and ψ2 is constant on every plane

X ′ = X + t1|ψ1〉〈ψ1| + t2|ψ2〉〈ψ2| (40)

with X Hermitian and t1, t2 real.

We have seen that every mixed state is on a straight line of constant concurrence,
and that line is unique in the nondegenerate case. It then hits the Bloch sphere at
exactly two pure states. Let us look at this family of parallel lines in Bloch space.
It is geometrically evident that their must be a reflection on a plane perpendicular
to these lines which reflects the Bloch ball onto itself. Such a reflection cannot be
unitary, because it changes the orientation of the Bloch ball. That is, we ask for
a conjugation implementing the said reflection.

For the computation we assume Φ non-degenerate. Given an Hermitian X, we
look for a change leaving the number c(X), see (35), invariant. This is achieved
by

x01 → −z0z
∗
1

z∗0z1
x10 , x10 → −z0z

∗
1

z∗0z1
x01
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and by letting the diagonal of X unchanged. Trace and Determinant of X are
invariant and the Bloch sphere is mapped onto itself. This correctly suggests that

θ(c0|0〉 + c1|1〉) = c∗0
z0
z∗0

|0〉 − c∗1
z1
z∗1

|0〉 (41)

is the conjugation we are looking for. Indeed, starting with any matrix X, one
arrives after a straightforward calculation at

θX∗θ =

(
x00 εx10

ε∗x01 x11

)
, ε = −(z0z

∗
1)(z∗0z1)−1. (42)

Therefore, (41) is the desired conjugation which transforms the Bloch space onto
itself and does not change c(X). This proves the main part of

THEOREM 2 Let Φ be a nondegenerate 1-qubit map of length two. Define θ by
the polar decomposition

ϑ = θ |ϑ| = |ϑ| θ , |ϑ| = (ϑ2)1/2. (43)

θ is a conjugation satisfying

c(θX∗θ) = c(X) . (44)

The transformation X → θX∗θ maps every line of constant concurrence into itself.

It remains to establish (43). Because the operators are diagonal in the reference
basis, the assertion reduces to

z2
0 =

z0
z∗0

|z2
0 | , z2

0 = −z1
z∗1

|z2
1 | ,

which is obviously true.
Next we construct a further conjugation, θ′, operating on the out-operators. It

would be appropriate, to call the previous constructed one θin and the one yet to
be defined θout. However, we use simply θ and θ′, not to overload our equations.
The geometric meaning of θ′ is similar to that of θ. Φ maps the parallel lines
of constant concurrence onto a family of parallel lines of the output states. θ′
reflects each of these lines. As it must interchange the outputs of the Φ-separable
states, the line through these two pure states determines the output family of lines
completely. Hence, θ′ is fixed up to a phase factor.

To begin with, we remember (15) and introduce three unimodular numbers,

ε0 = − b01a
∗
11

|b01a11|
, ε1 =

b10a
∗
00

|b10a00|
, ε′ = ε∗0ε

∗
1. (45)

We are in the position to introduce θ′,

θ′(c0|0〉 + c1|1〉) = ε0c
∗
0|0〉 + ε1c

∗
1|1〉 (46)

A rather straightforward calculation yields
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LEMMA 4 Let A, B, be the Kraus operators (15) of Φ. Then

θ′Aθ = ε′A , θ′Bθ = B , (47)

and, therefore
θ′ Φ(θXθ) θ′ = Φ(X) . (48)

5. Entanglement with Respect to Φ

Again, the essence of what is following goes back to [4] and [2], see also [16],
appendix, [17], and [14] for a short introduction to roofs.

The definition of E(Φ; · ), mentioned in the introduction, can be extended to
the positive cone. At first we extend the entropy of output states by scaling. The
“scaled von Neumann entropy” reads

Ssc(Y ) = [S(tr Y )]S(Y/[S(tr Y )]) = η(Y ) − η(tr Y ) (49)

with η(y) = −y log y. On the state space, Ssc is the usual von Neumann entropy.
(49) provides superadditivity and homogeneity for positive Y ,

Ssc(Y1 + Y2) ≥ Ssc(Y1) + Ssc(Y2) , λSsc(Y ) = Ssc(λY ) . (50)

Now we can proceed similar as in Definition 1.

DEFINITION 2 Let Φ be a positive map of rank two. “Φ-entanglement” E(Φ;X)
is the largest function on the positive cone of the input system fulfilling

E(Φ;X1 +X2) ≤ E(Φ;X1) + E(Φ;X2) ,

λE(Φ;X) = E(Φ;λX) , λ ≥ 0 ,

rank(X) = 1 → E(Φ;X) = Ssc(Φ(X)) . (51)

The definition reduces to the one addressed in the introduction for channels. Al-
ternatively one may use all decompositions of X with positive summands,

E(Φ;X) = inf
∑

Ssc(Xj) , X =
∑

Xj . (52)

Let us now return to our particular case of a cp-map of rank two and of length
two. Then

tr Y = 1 → Ssc(Y ) = η
(

[1 +
√

1 − 4 detY ]/2
)

+ η
(

[1 −
√

1 − 4 detY ]/2
)
.

With Y = trΦ(X) and rank(X) = 1 this coincides with

η
(

[1 +
√

1 − C(Φ;X)2]/2
)

+ η
(

[1 −
√

1 − C(Φ;X)2]/2
)
. (53)

One knows already from [4, 2, 6], this a convex function. Assuming

tr Φ(X) = tr X0X , detX0 �= 0 ,
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the restriction of C(Φ;X) to trΦ(X) = 1 becomes a convex roof. Being flat, every
optimal decomposition of C remains optimal for (53). Therefore, it coincides with
E(Φ;X) if restricted to trΦ(X) = 1. However, by homogeneity, it must be true
for all X ≥ 0. That is the content of

THEOREM 3 Let Φ be completely positive with trace and rank equal to two with
Kraus operators A and B. Assume A∗A+B∗B invertible. Then

E(Φ;X) = η(y+) + η(y−) − η(y+ + y−)

2y± = tr Φ(X) ±
√

[trΦ(X)]2 − C(Φ;X)2 . (54)

The theorem allows for a fairly explicit expression for maximized Holevo quantities.
For a channel Φ and an ensemble of states of the input space, Holevo’s quantity is

χ = S(Φ(ω)) −
∑

pjS(Φ(ωj))

with ω the average of the ωj with weights pj . Being states, nothing changes in
replacing S by the scaled von Neumann entropy. But because of the homogeneity,
we can write

χ = Ssc(Φ(ω)) −
∑

Ssc(Φ(pjωj)) .

Given ω, the “maximized Holevo quantity” is the supreme χ∗ of χ if one runs
through all ensembles with average ω. By homogeneity we need not respect nor-
malization. Thus

χ∗(Φ;X) = Ssc(Φ(X)) − E(Φ;X) , X ≥ 0 . (55)

is a concave function on the positive input operators, identical with the usual χ∗
for density operators and Φ trace preserving.

We now return to the 1-qubit channel. We already have computed E, so that
we have (55) as a of X, built from logarithms and simple algebraic terms. We can
do even better. For non-degenerate Φ we can rely on lemma 4 to see that both
terms in (55) are θ-invariant, and not only E. For Hermitian X we obtain

χ∗(Φ;X) = χ∗(Φ; θXθ) . (56)

To get the Holevo capacity, we have to maximize (56) over all density operators.
θ is a symmetry of this set. The concavity of (56) guaranties that there must be
a θ-invariant state at which the maximum is attained. Therefore, it suffices to
search in the set of all ω = θωθ. Eq. (42) provides the conditions for θ-invariance.

LEMMA 5 The maximum

χ ∗ (Φ) = max
ω

χ(Φ;ω) , ω density operator (57)

is attained on the unique θ-invariant plane. Assuming (15), denoting by ωjk the
matrix entries of ω, ω belongs to that plane if

z∗0ω01z1 + z∗1ω10z0 = 0 ,

i.e. if z∗0ω01z1 is purely imaginary.
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In the degenerate case, the search for the maximum (57), i.e. for the Holevo capac-
ity, can even be done on a line in Bloch space, see [13]. The concurrence (18) or
(19) becomes constant on planes, and there is a line, perpendicular to the planes,
on which the maximum is to search.
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