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Abstract

Based on some identities for the determinant of completely positive
maps of rank two, concurrences are calculated or estimated from below.

1 Introduction

In the paper I present some identities which are useful in the study of rank
two completely positive maps, including attempts to calculate concurrences. It
complements my earlier papers [8] and [13].

Let us consider a map, Φ, from the algebra Mm of m × m–matrices into
another matrix algebra. Φ is of rank k if the rank of the matrix Φ(X) never
exceeds k. Then one can reduce Φ to a map into a matrix algebra Mk. If Φ is of
rank two, then the trace and the determinant characterize Φ(X) up to unitary
transformations. Thus, for trace preserving maps one essentially remains with
detΦ(X). As shown in the next section, there is a remarkable and, perhaps,
not completely evident way to express that quantity.

The bridge to higher ranks is provided by the use of the second symmetric
function, which seems, because of the identity

2 det Z = (tr Z)2 − trZ2, Z ∈M2 (1)

quite natural, see Rungta et al [12]. These, and several other authors restrict
themselves to trace preserving channels, resulting in trZ = 1, Z = Φ(X). A
review, pointing to the main definitions and most applications is by Wootters
[10]. Mintert et al [11] recently derived a lower bound for the concurrence. It
seems to be equivalent, though expressed quite differently, with our estimate
(44) in case of rank two.

To consider detΦ is most efficient for completely positive map of length two.
The length of a cp-map Φ is the minimal number of Kraus operators, necessary
to write down Φ as a Kraus representation. Now, if

Φ(X) =
∑

AjXA∗j (2)
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is any Kraus representation of Φ, then the linear space, generated by the Kraus
operators Aj , depends on Φ only. The linear space will be called the Kraus
space of Φ, and it is denoted by Kraus(Φ). Clearly, the dimension of the Kraus
space is the length of Φ.

We devote a section to compute explicitly det Φ for some channels of rank
two and, with one exception, of length two, and the last section to concurrences.

For instance, in tracing out the 2-dimensional part, the partial trace of a
2×m quantum system is a channel of rank m and of length 2. In the example
(see below) the partial trace is embedded in a one parameter family (7) of
channels. Later on we shall see in the 2 ⊗ 2 case, how the whole family can
be treated straightforwardly and similar to the way opened by Wootters, partly
together with Hill, in their beautiful papers [4] and [6] which has their roots
already in Bennett et al [5].

Example 1a: A prominent example of a trace-preserving cp-map of rank
m and length two is the partial trace of a 2 × m quantum system into its m-
dimensional subsystem,

tr2 : M2m = M2 ⊗Mm 7→ Mm. (3)

Writing the matrices in block format,

tr2 X ≡ tr2

(
X00 X01

X10 X11

)
= X00 + X11, (4)

a valid Kraus representation reads

tr2(X) = A1XA∗1 + A2XA∗2, A1 = (1 0 ) , A2 = (0 1 ) , (5)

with 0 and 1 the (m×m)-null and -identity matrices. The Kraus space consists
of (2×2m)-matrices ( a1 b1 ). Alternatively, the Kraus space can be generated
space by

B1 = (1m 1m ) , B2 = (1m −1m ) , (6)

and one can embed tr2 within the trace preserving cp-maps

X 7→ (1− p)B1XB∗
1 + pB2XB∗

2 = X00 + X11 + (1− 2p)(X01 + X10).(7)

With 0 < p < 1 one gets “phase-damped” partial traces. 3

2 The Determinant

What are the merits of the rank two property of a channel? As already men-
tioned, these trace-preserving cp–maps are governed by just one function on the
input system, by det Φ(X). Wootters, [6], has used this fact efficiently to cal-
culate the 2× 2 entanglement of formation. His proof is based on the so-called
concurrence constructions, see next section. While there is a richness of variants
in extending the original concept of concurrence for higher ranks, there seems
to be a quite canonical one for rank two cp-maps.
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In a 2-dimensional Hilbert space there is, up to a phase factor, an excep-
tional anti-unitary operator, the spin-flip θf . (The index “f” remembers Fermi
and “fermion”.) We choose a reference basis, |0〉, |1〉, to fix the phase factor
according to

θf (c0|0〉+ c1|1〉) = c∗1|0〉 − c∗0|1〉, (8)

or, in a self-explaining way, by

θf

(
c0

c1

)
=

(
0 1
−1 0

)

anti

(
c0

c1

)
=

(
c∗1
−c∗0

)
.

We need θ∗f = θ−1
f = −θf and the well known equation

θfX∗θfX = −(det X)1. (9)

One remembers that the Hermitian adjoint ϑ∗ of an anti-linear operator ϑ in
any Hilbert space is defined by

〈ψ, ϑ∗ϕ〉 = 〈ϕ, ϑψ〉.
In particular, θf is skew Hermitian.

Applying (9) to a rank two cp-map (2) results in

(detΦ(X))1 = −
∑

jk

θfAjX
∗A∗jθfAkXA∗k

and, taking the trace,

detΦ(X) = −1
2
tr

∑

jk

(A∗kθfAj)X∗(A∗jθfAk)X (10)

Now we insert X = |ψ〉〈ϕ|. Respecting the anti-linearity rules one obtains

detΦ(|ψ〉〈ϕ|) = −
∑

j<k

〈ϕ, (A∗kθfAj)ϕ〉 · 〈(A∗jθfAk)ψ, ψ〉.

This bilinear expression we rewrite further. Consider

〈ϕ, A∗kθfAjϕ〉 = 〈Akϕ, θfAjϕ〉 = −〈Ajϕ, θfAkϕ〉,
where θ∗f = −θf has been used. The last relation tells us that only the Hermitian
part of the operator sandwiched by ϕ is important. This offers to define the
Hermitian anti-linear operators

ϑjk =
1
2
(
A∗jθfAk −A∗kθfAj

)
. (11)

Inserting in the determinant expression and adsorbing the minus sign yields

detΦ(|ψ〉〈ϕ|) =
∑

j<k

〈ϕ, ϑjkϕ〉〈ϑjkψ, ψ〉 =
∑

j<k

〈ψ, ϑjkψ〉∗ 〈ϕ, ϑjkϕ〉 (12)
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Before becoming more acquainted with ϑjk by examples, let us discuss some
of their invariance properties. Taking care with the anti-linearity, one gets

(
∑

ajAj)∗θf (
∑

bkAk)− (
∑

bkAk)∗θf (
∑

ajAj) =
∑

jk

a∗j b
∗
kϑjk (13)

First conclusion:
The linear space generated by the anti-linear operators θjk does not depend on
the chosen Kraus operators.
Let us call this space the derived Kraus space of Φ, denoted by Kraus’(Φ).
(Notice: The set of Hermitian anti-linear operators form a complex-linear space.
Kraus’(Φ) is one of its subspaces.) In particular,

A,B ∈ Kraus(Φ) =⇒ A∗θfB −B∗θfA ∈ Kraus′(Φ), (14)

and, consequently,

If Kraus(Φ1) = Kraus(Φ2), then Kraus′(Φ1) = Kraus′(Φ2) (15)

The following items are mutually equivalent for rank two cp-maps Φ.

• The vector |in〉 obeys Φ(|in〉〈in|) = |out〉〈out|.
• With a unique C ∈ Kraus(Φ) it holds A|in〉 = (tr AC∗) |out〉 for all

A ∈ Kraus(Φ).

• For all ϑ ∈ Kraus’(Φ) it holds |in〉 ⊥ ϑ |in〉.
The second item is valid for all cp-maps. It does not depend on the rank.

From a Kraus representation of Φ with operators Aj one gets the numbers λj

from Aj |in〉 = λj |out〉. These relations define a linear form over Kraus(Φ) which
can be uniquely written as indicated in the second item. Because item one can
take place if and only if the determinant of Φ(|in〉〈in|) vanishes, the third item
is a simple consequence of (12). ¦

Let us now consider the case of two different sets, {Aj} and {Ãj}, of Kraus
operators belonging both to Φ. This aim is reached by

Ãk =
∑

j

ujkAj

if and only if the ujk are the entries of a unitary matrix. The induced transfor-
mation of the operators (11) reads

ϑ̃mn =
∑

jk

ujmuknϑjk

We now see, by anti-linearity of the ϑ operators,
∑

ϑ̃mnXϑ̃mn =
∑

ujmuknu∗rmu∗snϑjkXϑrs.
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By the unitarity condition it becomes evident that
∑

ϑ̃mnXϑ̃mn =
∑

ϑjkXϑjk

holds. Thus, the anti-linear, completely positive map

Φ′(X) :=
∑

j<k

ϑjkXϑjk (16)

is uniquely associated to Φ. Let us call Φ′ the (first) derivative of Φ. If one
needs linearity, Φ′(X∗) is offered, a completely co-positive map. As one can see
from (12),

detΦ(|ψ〉〈ϕ|) = 〈ϕ,Φ′(|ϕ〉〈ψ|)ψ〉 (17)

Another way to express the same is by Gram matrices Gϕ with matrix entries
〈ϕ, ϑjkϕ〉,

detΦ(|ψ〉〈ϕ|) = −1
2

tr GϕG∗ψ (18)

There may be further useful quantities by replacing the trace by other algebraic
invariant operations.

3 Examples

At first we continue with example 1a to show the automatic appearance of
Wootters’ conjugation, and to see what happens with the phase-damped partial
trace of a 2×2–system. Next we look at a Kraus space of dimension three. The
channels belonging to it describe certain “inverse EPR” tasks: Alice and Bob
input pure states |0x〉, and a device tests “a la Lüders” whether the system is
in a certain maximally entangled state or not. Then Alice is asking whether her
state is |0〉 or |1〉. In the third collection of examples we treat 1-qubit cp-maps
of length two. As in the first example there is, essentially, only one ϑ12, denoted
simply by ϑ.

Example 1b: Here we call attention to Example 1a, restricted, however, to
m = 2. Then tr2 is of rank and of length two. Applying the recipe (11) and
using the operators Bj of (6), we start calculating

ϑ =

√
p(1− p)

2
(B∗

1θfB2 −B∗
2θfB1).

At first, we see



1 0
0 1
1 0
0 1




(
0 −1
1 0

)

anti

(
1 0 −1 0
0 1 0 −1

)
=




0 1 0 −1
−1 0 1 0
0 1 0 −1
−1 0 1 0




anti
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We have to take the Hermitian part. An anti-linear operator is Hermitian if
every matrix representations is a symmetric matrix. We obtain, up a factor,
Wootters’ conjugation

ϑ =
√

p(1− p)




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




anti

= −
√

p(1− p)θf ⊗ θf (19)

We infer from the last equation: The derived Kraus space of the phase-damped
partial traces in 2× 2-systems is generated by Wootters conjugation. 3

Example 2: Consider the 1-qubit-channels

Φq

(( x00 x01

x10 x11

))
=

(
(1− q)x00 0

0 x11 + qx00

)
. (20)

with 0 < q < 1. We easily see

detΦ(X) = (1− q)x00(x11 + qx00).

The channels are entanglement breaking and of length three. The operators

A1 =
(

0 0
0 1

)
, A2 =

√
1− q

(
1 0
0 0

)
, A3 =

√
q

(
0 0
1 0

)
(21)

can be used to Kraus represent the channels:

Φq(X) = A1XA1 + A2XA2 + A3XA∗3,

where the dependence on q of the Aj has not been made explicit. (A1 and A2 are
Hermitian.) |1〉〈1| is a fix-point of (20) All Φq belong to the same Kraus space
which consists of all operators A satisfying 〈1|A|1〉 = 0. See also Verstraede and
Verschelde, [3], (theorem5).

A straightforward calculation yields

ϑ12 = −1
2

√
1− q

(
0 1
1 0

)

anti

, ϑ23 =
√

q(1− q)
(

1 0
0 0

)

anti

. (22)

and ϑ13 = 0. Therefore, the first derivative of Φq becomes

Φ′q(X
∗) =

1− q

4

(
x11 + 4qx00 x01

x10 x00

)
, (23)

and, after some elementary calculations, we get

tr XΦ′(X∗) = det Φq(X)− 1− q

2
detX. (24)

This also makes sense for q = 0, getting the identity map, and for q = 1, resulting
in a degenerate length two channel. The deviation from being of length two is
indcated by the commutator

ϑ12ϑ23 − ϑ23ϑ12 =
1− q

2
√

q

(
0 1
−1 0

)
. (25)
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One may wonder whether it is useful to examine more generally the space of
linear operators generated by the commutators of the operators ϑjk. However,
I do not know the meaning of it. Is it an indication of a co-homology like
sequence?3

Example 3: Let us now turn to completely positive 1-qubit–maps of length
two. The reader may consult [8] and [13] for other proofs and aspects.

In the case at hand, we get a Kraus space generated by two operators, say
A and B. For our next purpose we rewrite (11),

ϑ =
1
2
(
A∗θfB −B∗θfA

)
=

(
α00 α01

α10 α11

)

anti

, (26)

and obtain the following matrix entries:

α∗00 = a00b10 − a10b00, α∗11 = a01b11 − a11b01,

α∗01 = α∗10 =
1
2
(a00b11 + a01b10 − a10b01 − a11b00). (27)

There are a lot of possibilities in choosing A and B in order to obtain a pre-
described ϑ. For instance, setting B = 1 in (27), one arrives at

B = 1 ⇒ ϑ =
( −a∗10

1
2 (a00 − a11)∗

1
2 (a00 − a11)∗ a∗01

)

anti

.

Therefore, every anti-linear and Hermitian ϑ can be gained via (26) with a
suitable A and with B = 1.

More general cases can be seen better after a unitary change of Φ. Φ̃ is
unitarily equivalent to Φ, if for all X

Φ̃(X) = U1Φ(U2XU∗
2 )U∗

1 , ϑ̃ = U∗
2 ϑU2

with a special unitary U1 and a unitary U2. (The the unitaries with detU = 1
commute with θf .) As is known, see Ruskai et al [1] and the early paper of Gorini
and Sudarshan [2], every 1-qubit–channel of length two is unitarily equivalent
to a “normal form” with Kraus operators

A =
(

a00 0
0 a11

)
, B =

(
0 b01

b10 0

)
, (28)

and these Kraus operators imply

ϑ =
(

z2
0 0
0 −z2

1

)

anti

, z2
0 = (b10a00)∗, z2

1 = (b01a11)∗ (29)

The map Φ is called non-degenerate if det ϑ2 6= 0. Then z0z1 6= 0. There are
two cases if Φ is degenerate. Either one of the numbers z1, z2 is zero, but the
other one not. Or, both are zero. (An example is a11 = b10 = 0 but a00b01 6= 0.)
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4 Concurrence

Concurrence, originally introduced with respect to partial traces, can be con-
sistently defined for all channels, and even for all positive maps. For trace-
preserving cp-map this fact can be understood by the Stinespring dilatation
theorem. If Φ is not of rank two, one replaces in the definitions below det Φ
according to

detΦ(X) =⇒ 1
2
(
(tr X)2 − trX2

)
, (30)

which does not change anything if Φ(X) is 2× 2. In some cases one can replace
the condition of being rank two by demanding Φ(X) to possess not more than
two different, but degenerated, eigenvalues. See [15].

After repeating, for convenience, the definition and some general knowledge,
a more detailed treatment for rank two (and length two) cp-maps will be given,
though not exhaustive.

Let Φ be a positive map of rank two. C(Φ;X), the Φ-concurrence, is defined
for all positive operators X of the input space by the following properties:
(i) C(Φ;X) is homogeneous of degree one,

C(Φ; λX) = λC(Φ; X), λ ≥ 0.

(ii) C(Φ; X) is sub-additive,

C(Φ; X + Y ) ≤ C(Φ;X) + C(Φ; Y )

(iii) C(Φ;X) is the largest function with properties (i) and (ii) above, satisfying
for all vectors ψ of the input space

C(Φ; |ψ〉〈ψ|) =
√

detΦ(|ψ〉〈ψ|) (31)

Let us draw a conclusion. Let be Z1 an operator on the input and Z2 one on
the output space. Then

Φ̃(X) = Z2Φ(Z1XZ∗1 )Z∗2 ⇒ C(Φ̃; X) = | detZ2|2C(Φ;Z1XZ∗1 ). (32)

Indeed, the concurrence of Φ̃ as given by (32) fulfils (i) and (ii), and both
functions coincide for positive operators of rank one. 3

There are other, equivalent possibilities to define C. It is not difficult to
show that

C(Φ; X) = inf{
∑ √

detΦ(|ψj〉〈ψj |),
∑

|ψj〉〈ψj | = X}. (33)

holds. Next, just because the square root of the determinant is a concave
function in dimension two, a further valid representation is given by

C(Φ; X) = inf{
∑ √

detΦ(Xj),
∑

Xj = X}, (34)

so that the Xj ≥ 0 can be arbitrarily chosen up to the constraint of summing up
to X. Notice, that a similar trick with the determinant (or the second symmetric
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function) in the definition of concurrence would fail because the determinant is
not concave on the cone of positive operators.

For cp-maps of rank and length two more can be said about the variational
problem involved in the definitions above. This is due to the fact that the
derived Kraus space is 1-dimensional, as explained in the preceding section.
The appropriate extension of Wootters procedure goes this way:
Step 1. For two positive operators, X and Y , of the input space we need

{λ1 ≥ λ2 ≥ . . .} = eigenvalues of (X1/2Y X1/2)1/2 (35)

to define

C(X, Y ) := max{0, λ1 −
∑

j>1

λj}. (36)

Step 2. We replace Y by ϑXϑ,

C(Φ; X) = C(X, ϑXϑ), (37)

and we are done, [9].

To see a first use, let us return to the 2⊗ 2 case, Φ being a partial trace. It
was shown, see example 1b, that Wootters’ ϑ = −θf ⊗ θf must be replaced by√

p(1− p)ϑ for the phase-damped partial traces of example 1a. The relevant
eigenvalues (35), which give (37) vie (36), have to be multiplied accordingly.
Therefore, the concurrence of the phase-damped partial trace is Wootters’ con-
currence multiplied by the factor

√
p(1− p).

A similar reasoning applies for all length two, rank two channels: All cp-
maps with the same Kraus space induce, up to a numerical factor, the same
concurrence. Many details can be seen for length two 1-qubit cp-maps by further
discussing example 3 of the preceding section.

Example 3a: In dimension two there are only two eigenvalues, λ1, λ2, to
be respected in (35). Therefore, the right hand side of (36) is equal to λ1 − λ2.
However, combining

(λ1 − λ2)2 = (tr ξ)2 − 4 det ξ, ξ = (X1/2Y X1/2)1/2

with the identity

(tr ξ)2 = tr ξ2 + 2 det ξ,

yields

(λ1 − λ2)2 = tr ξ2 − 2 det ξ.

Finally, removing the auxiliary operator ξ, we obtain

C(X, Y )2 = tr (XY )− 2
√

det(XY ). (38)
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With the Kraus operators A,B of Φ, and with ϑ given by (26), the relation (38)
provides us with

C(Φ; X)2 = tr (XϑXϑ)− 2(det X) (det ϑ2)1/2. (39)

Let Φ be in the normal form (29) so that ϑ is diagonal with entries z2
0 and −z2

1

as in (29). Then we arrive at

tr XϑXϑ = (z∗0x00z0)2 − (z∗0x01z1)2 − (z0x10z
∗
1)2 + (z∗1x11z1)2,

(det X) (det ϑ2)1/2 = (z0z
∗
0z1z

∗
1)(x00x11 − x01x10).

Combining these two expressions as dictated by (39) results in

C(Φ; X)2 = (z0z
∗
0x00 − z1z

∗
1x11)2 − (z0z

∗
1x10 − z1z

∗
0x01)2. (40)

The number within the second delimiter is purely imaginary and, therefore, C
is the sum of two positive quadratic terms. This observation remains true if we
allow for any Hermitian operator in (40).
The square of the concurrence (39) is a positive semi-definite quadratic form of
maximal rank two on the real-linear space of Hermitian Operators. The concur-
rence is a Hilbert semi-norm.
There is a further curious observation: The concurrence of our 1-qubit cp-map
in normal form is equal to the absolute value of the complex number

c(X) := z0z
∗
0x00 − z1z

∗
1x11 + z0z

∗
1x10 − z1z

∗
0x01

Following Kossakowski [14], it is tempting to ask, whether c(X) is to replaced
by a Quaternion for positive, but not completely positive maps of rank two.

Given X = X∗, its squared concurrence is

C2(Φ;X)2 = l21(X) + l22(X) (41)

with real

l1(X) = z0z
∗
0x00 − z1z

∗
1x11, l2(X) = i(z0z

∗
1x10 − z1z

∗
0x01) (42)

The value of l1, together with the trace of X, determine x00 and x11 uniquely.
(We exclude the trivial case z1 = z2 = 0.) The value of l2 now determines
a line of constant squared concurrence crossing X. Along this line only the
off-diagonal entries of X vary. Explicitly, along

y01 = z0z
∗
1t + x01, y10 = z∗0z1t + x10 (43)

we get l2(Y ) = l2(X), yjk denote the matrix entries of Y . For positive X we
know C ≥ 0, and there is no ambiguity in taking the square root in (41). It is a
particular property of every rank two, length two cp-map that its concurrence
remains constant along a certain bundle of parallel lines.

In the degenerate case, z1z2 = 0, it holds l2 = 0 always: After fixing x00 and
x11 we get planes of constant C2. 3
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If Φ is not of length two, there are lines, crossing a given positive X, along
which the concurrence is a linear function, but not necessarily a constant one.
By this reason, and by the possibility of bifurcations, [7] general expressions
similar to (37) seem to be unknown. However, an estimation from below is
available. To this end let us look at

(∑
C(X, ϑjkXϑjk)2

)1/2

The terms within the sum can be seen as squared concurrences of length two
channels. Therefore, every term is the square of a Hilbert semi-norm, and the
whole expression fulfils again the requirements (i) and (ii) in the definition of
Φ-concurrence at the beginning of the present section. Because of (12), and by
its very construction, the expression coincides for positive rank one operators
with C(Φ;X). But the latter is the largest function with these properties. This
proves the inequality

C(Φ; X)2 ≥
∑

j>k

C(X, ϑjkXϑjk)2, X ≥ 0 (44)

Sometimes one can say more, as the further treatment of example 2 shall show.
Example 2a: Remembering (20)

Φq

(( x00 x01

x10 x11

))
=

(
(1− q)x00 0

0 x11 + qx00

)

and (22)

ϑ12 = −1
4

√
1− q

(
0 1
1 0

)

anti

, ϑ23 =
1
2

√
q(1− q)

(
1 0
0 0

)

anti

,

we need to know

C(X, ϑ12Xϑ12), C(X, ϑ23Xϑ23). (45)

The first one belongs to the phase-damping 1-qubit channels. As it is not in
normal form, we compute it directly:

tr Xϑ12Xϑ12 =
1− q

8
(|x01|2 + x00x11),

√
ϑ2

12 =
1− q

16
,

yielding

C(X, ϑ12Xϑ12)2 = (1− q)|x01|2/4. (46)

For the other C we simply specify (40) and get

C(X, ϑ23Xϑ23)2 = q(1− q)x2
00/4. (47)

As a particular case of (44), we arrive at the inequality

C(Φq;X) ≥ 1
2

√
(1− q)

√
(qx2

00 + |x01|2) (48)

for positive X. If x01 = 0, the right hand side of (48) becomes linear. Therefore,
by convexity of C, equality must hold, i.e.

C(Φq;
(

x00 0
0 x11

)
) =

1
2

√
q(1− q) x00.
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