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Dedicated to Roman S. Ingarden 

Simultaneous decompositions of a pair of states into pure ones are examined. There are 
privileged decompositions Which are distinguished from all the other ones. 

Presently we witness that quantum information theory is becoming an inter- 
disciplinary, quickly growing field of research. In its history Roman S. Ingarden 
has been playing a significant role, both by his own research and by posing stim- 
ulating questions and problems [1]. It is about 40 years ago that i met Roman the 
first time, and he was already thinking about the role of information in quantum 
physics and, in particular, whether 'one can  found the concept of probability onto 
that of information [2]. 

I feel honoured by the possibility to dedicate to him the following paper. 

1. Decomposing of one density operator 

A density operator, representing a state, is a positive operator with trace one. 
However, it is convenient for the following considerations not to insist on normal- 
ization. 

We shall assume, mainly for technical simplicity, a finite-dimensional Hilbert 
space, H, the dimension of which is denoted by dim 7 / =  d. Thus, mathematically, 
we are just dealing with positive operators (and with the null operator) of a finite- 
dimensional Hilbert space. 

Let r be a positive operator on our Hilbert space. Its decreasingly ordered eigen- 
values are denoted by )~1, 9~2 . . . . .  i.e. 

spec(r) = {,~,1 ~ ~.2 ~__ - . . ] .  

By a decomposition of r I denote every set of vectors IX j) such that 

r .=  ~_, lx j ) (x i l .  (1) 

[3191 
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As I showed in [3], 
m m 

y=l j f l  

is valid for all 1 < m _< dimT~. Moreover, equality is reached i f  and only if IXj) is 
an eigenvector for Xy of r for all j = 1 . . . . .  m. 

The motivation for asking questions of that kind has been the problem whether 
the von Neumann entropy of a density operator is already fixed by its position as 
a point in the convex set of all density operators. The result just quoted gives, if 
written with normalized vectors, an aifn'mative answer. Indeed, my aim was to define 
on every (compact) convex set a function which just gives the yon Neumann entropy 
if applied to state spaces of a quantum system. Until today I do not know whether 
the construction is of  any use for other convex sets than quantum state spaces. 

In [4] M. A. Nielsen proved the reverse statement: If pj are positive numbers 
which are majorized by spec(3), then there exists a decomposition (1) such that 
Pj = (XjlXj). 

The results mentioned above wil l  be slightly extended to the case that there are 
two decompositions of one and the same 3. Thus let 

3 = I x ; > ( x ; I  (3) 

be a further decomposition of 3. Adding (1) and (3) we get a decomposition of 23 
and 

m m 

E((XjIXj)-I- (X;IXj)) > 2 EI(XjIX;)]. 
j = l  j=l 

The equality takes place iff [Xj) differs from IXj) by a phase factor only. Because 
the eigenvalues of 23 are just 2~.j we get the following result. 

PROPOSrrION 1: Let (1) and (3) be decompositions of  3 and Xl > X2 > . . .  the 
decreasingly ordered eigenvalues o f  r, and 1 < m < d. Then 

m m 

>. E I ( x j l x j ) [ .  (4) 
j=l j=l  

The equality holds if and only i f  for  1 < j < m 

31x ) =  jlxj), Ix:> = Eylx ) 

with unimodular numbers Ej. 

(5) 

2. Decomposing of two density operators 

Let us now consider a pair, p and ~, of positive operators. 
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DEFINITION: F+(p, o9) denotes the sum of the m largest eigenvalues of 

( ,4Cpo9 ~fp-) 1/2 . (6) 

The definition works well for 1 < m < d. It is sometimes convenient to extend it 
by F + = F + if m > d and to set F + = 0 for m = 0. Remark that F + is the square 
root of the transition probability [6]. The square root of  the transition probability is 
called fidelity and is denoted by F(p,  og) in the present paper. Notice, however, that 
Jozsa, who showed its use in quantum information theory [5], identified the general 
transition probability with his fidelity concept (and not with its square root). 

A further remark is the following: In [7] I considered another quantity; the 
k-fidelity Fk which is the sum of all but the first k eigenvalues of (6). These 
partial fidelities are jointly concave (and Super-additive) in its arguments for k = 0, 
1 . . . .  Obviously, 

F+(p, co) = F(p ,  o9) - Fm(p, o9). 

In contrast to the partial fidelities, the quantity (8) seems to be neither concave nor 
convex if m is smaller than dim 7/. 

Finally, let us rewrite (4) of Proposition 1 as 

m 

F,,,(r, r)  >_ ~_,I(xj lxj)I .  
j= l  

(7) 

Remember that equality in (7) can be reached by eigenvector decompositions of r 
with decreasingly ordered eigenvalues. 

THEOREM 1: Let 1 < m < d. It is 

m 

F+(p,o~) = max ~-] lOP1 koj)l, 
j= l  

(8) 

where the maximum is to perform over all possible decompositions 

p = EII~Cj)(I~Cjl, (1)= Ei~Oj)(~Oj]. (9) 

I f  the length o f  a decomposition is less than dim T-l, or i f  the length o f  the two 
decompositions (9) are different, one adds some zero vectors to get decompositions 
o f  equal and large enough length. 

The proof of the theorem starts by stating the invariance of the eigenvalues of 
(6) with respect m a transformation 

{p, ~o} ~ {p, a~} x := {XpX*, (X-1)*~X -1} (10) 

for any invertible operator X, see [7]. (In the present paper the Hermitian adjoint of 

an operator A is denoted by A* and not by At.)  Hence the  sum of the m largest 
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eigenvalues of (6) cannot be changed by such a transformation. On the other hand, 
if we simultaneously transform decompositions (9) according to 

I~j) --~ XI~j),  koj) ~ (X-1)*l~), (11) 

then the right-hand side of (8) remains unchanged. Therefore, if the assertion of 
the theorem is true for a pair of density operators {p, to}, it is true for every pair 
{p, to}x. 

Let now p and to be invertible (i.e. faithful). If we then can choose X such 
that 

{p, to}x := {r, r} (12) 

with a certain ~ yet to be determined, we have achieved our goal: For the pair 
{~', ~} the theorem is eXlulValent to Proposition 1. But 

XtoX* = ( X - I ) *  p X  - l  "= "L" (13) 

is valid if X*X is the geometric mean [8] of p and to-l, i.e. 

X* X = to'l/2 (tol/2 ptol/2) l/2to -1/2. (14) 

Hence, the theorem is true for invertible p and to. 
Indeed, the proof covers the case of any pair p, w, with equal supports: To see 

it we only have to replace 7~ by the supporting Hilbert subspace because neither 
to F + nor to the decompositions there is a non-zero contribution from the null 
spaces (i.e. the kernels) of p and w. 

We now prove that the right-hand side of (8) never exceeds F +.  Denote by P0, 
Q0 the projection operators onto the null spaces of p and w. We choose decompo- 
sitions of P0 and Q0 with vectors [~') and ko~), respectively. We complement the 
arbitrarily chosen decompositions (9) to those of p ' =  p+czPo and w' = w + c 2 Q o  
with cy > 0. For p '  this is done by 

p ' =  p + c l e o  "- ~ [1//j)(1//j[ + c  1 ~ [l~j) (~;[, 

and similarly we proceed with to'. Because p' and to' are invertible, we already can 
apply Theorem 1 to them. Because F+m(p ', to') is approaching Fm+(p, to) if cj --> 0, 
the proof is finished. 

What remains to be shown is the following: There are decompositions (9) such 
that )"~-[(~i,9i)1 is equal to Fm +, whatsoever the support properties of p and to 
may be. To get this we first assert: 

Let Q be the projection operator onto the supporting space of w. For all de- 
compositions (9) we get 

because every vector of a decomposition of to must be an eigenvector of Q. That 
is, every one o f  the sums in question for p, to gives one for QpQ, to yielding the 
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same value. On the other hand, if we start with decompositions of Qp Q, 09, we can 
add terms orthogonal to to to the decomposition of p to get a decompositions of 
p, to without changing the value of the sum. Below we shall show the equality of 
F+(p, 09) with F+(QpQ, 09), and, all together, we obtain: If and only if Theorem 1 
is true for the pair QpQ, 09, it is true for the pair p, 09. Now we can proceed as 
follows. If the supports of QpQ and 09 are equal, it has been completed. If not, 
we consider the projection operator Pl onto the support of QpQ, yielding the same 
statement for the pairs p, 09, QpQ, 09, and QpQ, P109PI. Either the last pair is of 
equal support, and we have finished, or continue the same game with the projection 
operator Q1 onto the support of PI09P1. This procedure must terminate after a 
finite number of steps yielding a pair with equal supports. The obvious reason: In 
every necessary step, the rank of one member of the pair under consideration is 
diminished, and we are in finite dimensions. 

The proof of Theorem 1 is done after showing the equality of F+(p, 09) with 
F+(QpQ, 09) if Q is the support projection of 09. This assertion is a particular 
case with X = Q of the equation 

F+m (p, X* 09X) = F+ (XpX *, 09). (15) 

For invertible X the transformation (10) does not change the eigenvalues of (6). 
By the replacement w ---> X*09X we thus get (15) for invertible X. But F + is 
continuous in its arguments, and (15) is valid for all X. 

Let us underline the main point in constructing decompositions (9) satisfying 

m 

tm+(P, 09)= ~<~jl~j>, 
jffil 

m = 1, 2 . . . .  (16) 

We have to solve (13) so that X and r are at our disposal. From the spectral 
decomposition of r,  

• : = ~ Ix j ) (x j l ,  (XjIXk) = ZjSjk, (17) 

we get an optimal decomposition satisfying (16) by 

I~:) = x-~Ix:), koj> = x*Ix:). (18) 

Such a choice fulfills the bi-orthogonal relations 

(~kkoj) = (~jl~ok) = ~jSjk. (19) 
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