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Standard purification interlaces Hermitian and Riemannian metrics on the space of
density operators with metrics and connections on the purifying Hilbert–Schmidt
space. We discuss connections and metrics which are well adopted to purification,
and present a selected set of relations between them. A connection, as well as a
metric on state space, can be obtained from a metric on the purification space. We
include a condition, with which this correspondence becomes one to one. Our
methods areborrowed from elementary * -representation and fiber space theory. We
lift , as an example, solutions of a von Neumann equation, write down holonomy
invariants for cyclic ones, and ‘‘add noise’’ to a curve of pure states. © 1999
American Institute of Physics. @S0022-2488~99!02107-6#

I. INTRODUCTION

In Ref. 1, see also Ref. 2, the monotone Hermitian and Riemannian metrics in the ~finite
dimensional! spaces of all density operators are classified. Based on the theory of operator means3

they are indexed by a real function, f, operator monotone4 on (0,̀ ). These metrics play an
important role in domains like quantum information geometry, quantum versions of statistical
estimation, and decision rules.5–7

D. Petz communicated his main results to us prior to publication, and about that time we
started to ask for the effect of a purifying lif t to these metrics. There are clear reasons for this. One
of the present authors ~A.U.! had defined 1986 in Ref. 8 an extension of the geometric phase,9,10

see also Refs. 11 and 12, to curves of density operators by the help of a ‘‘parallelity condition.’’
The condition singles out, up to a global gauge ~or a global partial isometry!, a distinguished
‘‘parallel lift’ ’ within all purifying lift s of a curve of density operators. It turns out13 that a
connection form ~a gauge potential!, here called ageo, is governing the transport of the purifying
vectors, such that the parallelity condition results from the request for horizontality. In 1992 G.
Rudolph and one of the authors ~J.D.! considered a large class of gauge potentials, including ageo,
which rests on a purification scheme and which enables variants of the geometric phase along
curves of density operators. It seems natural to ask for a link between these objects: ~a! the
connection forms just mentioned, ~b! certain Hermitian ~Riemannian! metrics on the purification
space, and, if respecting the symmetry of the scheme, ~c! metrics induced from ~b! on the space of
density operators.

Purification is essentially representation theory of observables and of the algebra in which
they are contained. Principally one may use any unital * -representation of the ‘‘algebra of observ-
ables’’ over which the states can be defined. Its Hilbert representation space should only be large
enough to allow for a representation of the states by vectors. If this condition is fulfilled, transport
mechanism, its noncommutative phases, metrics, and other geometric objects can be constructed
by relying on their form and appearance in the pure state case.

a!Electronic mail: dittmann@mathematik.uni-leipzig.de
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In our paper we remain within an elementary setting: Our density operators live on a Hilbert
space H of finite dimension n. In our convention, a density operator should not necessarily be
normalized. We speak of ‘‘density operators’’ whether their trace is one or not. The algebra of
observables is the algebra B(H) of all operators acting on H. The representation or purification
space,W, is identified with the algebra of operators and equipped with the Hilbert–Schmidt scalar
product. ~In infinite dimensionsW wil l be the space of Hilbert–Schmidt operators.! We try to
emphasize the different meaning of operators by different notations: Operators acting on H are
denoted by lower case letters, those acting onW often by capital letters. @Some authors call the
operators of B(W) ‘‘superoperators.’’# Section II is devoted to explaining our notation in more
details. In our paper purification takes place in the standard representation of B(H), i.e., in the
GNS-representation based on the trace. For that reason we called it standard purification. In Sec.
II I the formalism is extended to velocity vectors, i.e., to tangents, at density operators and at their
purifications. Purification defines vertical tangents in a canonical way. A tangent, orthogonal to the
space of vertical tangents, is called horizontal, provided the tangent spaces carry a real Hilbert
space structure, i.e., a Riemannian metric. Equivalently, within all purifying lift s of a given curve
of density operators, those with the least length are horizontal.

Section IV exemplifies our task in defining horizontality by the real part of the Hilbert–
Schmidt metric. As one knows, the Bures length of a curve of density operators and the Hilbert–
Schmidt length of an horizontal lif t are equal one to another. In deriving the parallelity condition
we meet some peculiarities with tangents of purifying vectors if they belong to density operators
with some vanishing eigenvalues. The reader wil l find a short account of the relation between the
connection form ageo ~Ref. 13! governing the geometric phase, and the Riemannian Bures metric.

Indeed, we devote some time to asking, and giving an affirmative answer to the following
question: Is the topological metric of Bures Riemannian?14–16 Essential differential geometric
properties are in Ref. 17, see also Ref. 18 for dimH53. Relations to quantum information theory
can be seen in Refs. 19 and 20. However, a parameterization in terms of the operators’ matrix
elements remains cumbersome, except for dimH52.

Concerning ageo, which extends the geometric phase to ~closed! curves of density operators,
examples are shown in Sec. VIII . There is a further issue to be mentioned: The gauge potential for
the two-dimensional density operators21 living on a four-dimensional purification space, satisfies
the Yang–Mill s equations. With a certain cosmological constant, it even is a solution of the
combined Yang–Mill s–Einstein equations.22 Meanwhile we know23 ageo satisfies the Yang–Mills
equations for every finite dimension of the supporting Hilbert space H. These findings may be
seen as extensions to mixed states of numerous examples relating the original Berry phase to Dirac
monopoles, and the Wilczek and Zee phase24 to instantons.

Section VI is devoted to the class of connections introduced in Ref. 25, which are, so to say,
‘‘relatives’’ of ageo, compatible with the purification scheme. They are characterized by a function
F, defined on (0,̀ ), and fulfillin g F̄(1/t)52F(t). Some equations become more appealing by
using the function r, the arithmetic mean of F̄ and 1. The connection forms a assign to every
tangent x at the lif t wPW of %5ww* a value in the Lie algebra of U(n). The action of the gauge
group induces the ‘‘canonical’’ connection acan. The canonical connection is gained with the
choice F50. The connection ageo is constructed with F(t)5(t21)/(t11). As we shall see, only
connections with real F can be obtained from an appropriate Hermitian metric. We believe the
complete class is a more natural object at the complexified tangents. They all decompose as u
2u* with u of type ~1,0!.

We specify the class of Hermitian metrics by another positive and real valued function, k, on
the positive half-axis. The metrical form for the tangents at a purifying vector, w, wil l be given by
the inverse of the ~‘‘super’’ !operator k(Dw), where D is the field of modular operators. There is an
antilinear operator, a modification of Tomita–Takasaki’s Sw operator, which admits just the hori-
zontal tangents as fix points. The connection adjusted to the metric is characterized by various
relations between the functions k, F, and r. Moreover, every one of the Hermitian metrics con-
sidered on the tangent space of W is a lif t of exactly one Hermitian form on the space of density
operators. The latter depends on a function f which is related to k. The Riemannian metric on the
Copyright ©2001. All Rights Reserved.           
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density operators is gained as the real part of the Hermitian one, and it corresponds to the
harmonic mean of f (t) and t f (1/t). Further we discuss an additional condition, which enables us
to assign a unique connection form to a given monotone Riemannian state space metric. These
metrics are induced from the Hilbert–Schmidt metric by some constraints on the purifying vectors
replacing the orthogonality condition of the Bures case.

The starting point has been a set of connections, compatible with the purification procedure, to
define reasonable parallel transports along curves of density operators. We return to this issue in
purifying horizontally solutions of von Neumann equations. Cyclic solutions give rise to some
holonomy invariants. There are constraints on F for extending the parallelity conditions to the
boundary, in particular to pure states. If they are fulfilled, the holonomy invariants reduce to the
well-known geometric phase of Berry for pure states. At the end we ask what happened if ‘‘noise’’
is added to a closed path of pure states.

II. STANDARD PURIFICATION

We start by reviewing some basic ideas of the purification procedure. Let H be a complex
Hilbert space of finite dimension n with scalar product ^.,.& antilinear in its left argument. B(H)
denotes the * -algebra of linear operators acting on H. A state is apositive linear form over the
algebra which takes the value 1at the identity of B(H). Generally, a linear form l over our algebra
is uniquely represented by

l ~b!5Tr bv, ;bPB~H!.

The linear form is positive if and only if v is a positive element ofB(H). We then callv a density
operator in accordance with its usage in physics. A density operator represents a state if f its trace
is one.

A purification of a positive linear form over B(H) is a lif t to a pure linear form of a larger
algebra. A way to do so is as follows: With another auxiliary Hilbert spaceH aux, with at least the
same dimension, we consider

H^H aux, n5dimH<H aux

and the inclusion ~which, indeed, is a * -representation!

B~H!�B~H! ^ 1aux,B~H^H aux! ~1!

into the operator algebra of the extended Hilbert space. Let % be the density operator of a positive
linear form l over B(H). A vectorc of H^H aux is said to purify l, and hence %, iff

l ~b![Tr b%5^c,b^ 1auxc& ;bPB~H!. ~2!

A distinguished way to choose the auxiliary Hilbert space is to require

H aux5H* , WªH^H* , ~3!

which results in the standard purification, based on the standard representation of B(H). In what
follows this choice is assumed, and we have to fix some notations and conventions at the begin-
ning.

Let fPH. The elementf* PH* , is defined byf* (f8)5^f,f8&. In Dirac’s notation:

f↔uf&, f*↔^fu.

Being in finite dimensions, every operator is Hilbert–Schmidt, andW is canonically isomorphic to
B(H). This can be made explicit with two arbitrarily chosen orthonormal basesf1 ,f2 , . . . and
f18 ,f28 , . . . of H in writing
Copyright ©2001. All Rights Reserved.           
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w5( uf j&^f j ,wfk8&^fk8u, wPW. ~4!

The Hilbert–Schmidt scalar product onW is

~w2 ,w1!ªTr w2* w15( ^w2fk8 ,f j&^f j ,w1fk8&. ~5!

The star operation in B(H) is equivalent with a conjugation inW,

w°w*  or ~f ^ f̃* !* 5f̃ ^ f* .

We need some operators acting onW. The standard representation of B(H) is the inclusion ~1!,
specified by ~3!, and acting as follows:

b°Lb , Lbwªbw, bPB~H!.

We also need the right multiplication Rb , i.e., Rbw5wb. The right multiplication can be used to
implement the standard representation of B(H* ). Notice the different meaning of the * -operations
onW5B(H) and on B(W) seen in

~Lb!* 5Lb* , ~Lbw!* 5~Rb!* w*

and in similar relations after exchanging Lb and Rb . Now, let l̂ be a linear form on B(W) and l
its restriction or reduction onto B(H). The relation

l̂ ° l , l ~b!ª l̂ ~Lb!, bPB~H! ~6!

encodes the partial trace over H* onW. Focusing our attention on the purification procedure, we
shall apply this well-known mapping mainly to linear functionals of rank one. In that case the
essence of the reduction mapping to the factors of W is contained in

~w2 ,LbRcw1!5Tr w2* bw1c. ~7!

Its left-hand-side defines alinear form B°(w2 ,Bw1) over B(W), and, varying w1 and w2 within
W, one can get every linear functional of rank one. Presently we need to consider ~7! with w1

5w25w and with either c or b the identity operator. Then, for BPB(W) and b,cPB(H), the
left- and the right-hand sides of ~7! may be rewritten

l̂ ~B!5~w,Bw!, l ~b!5Tr ww* b, l 8~c!5Tr w* wc.

%5% lªww* is called the density or the density operator of l, while w is said to purify l. In the
same spirit, a positive linear functional l̂ of rank one, which reduces to l, is apurification of l.

From now on, instead of switching forth and back between linear forms and their densities, we
remain mainly with the latter. Accordingly we define the mappings

Pw5ww* , P8w5w* w.

The mapping P ~and similarly the mapping P8), is slightly more subtle than the reduction
mapping ~6!. Its domain of definition isW. Thus P is composed of a Hopf bifurcation from w to
the rank one density operator uw)(wu, representing the linear form B→(w,Bw), followed by the
reduction ~6!:

w°uw)~wu°ww* .
Copyright ©2001. All Rights Reserved.           
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Here we used Dirac’s notation relative to the scalar product ~5! inW. P is a bundle projection,
where the bundle space isW and the base space is the cone of ~not necessarily normalized! density
operators ~i.e., positive trace class operators!. Being in finite dimension, the base space is the
positive cone of B(H). The bundle fibers are manifolds. However, the dimension of the fibers
vary with the rank nw of wPW. Therefore certain discontinuities occur if the rank is changing.

Al l this can be seen by the ‘‘diagonal’’ form of ~4!, which is the Gram–Schmidt decompo-
sition of w. Let l1 ,l2 , . . . be the nw nonzero eigenvalues of ww* and f1 ,f2 , . . . their
orthonormal eigenvectors,

ww* 5( l j uf j&^f j u, lk.0.

There exists exactly one other orthonormal basis of vectors,f18 ,f28 , . . . of the same length nw ,
fulfilling

w5( Alkufk&^fk8u, w* w5( l j uf j8&^f j8u ~8!

and the positive numbers l j sum up to (w,w). From ~8! one can read off the polar decompositions

w5Aww* v5vAw* w, v5( ufk&^fk8u. ~9!

The index k runs from 1 to nw . One may call v the phase of w relative to %5ww* . The
projection operators v* v and vv* , attached to the partial isometry v, map H onto the support
spaces of w* w and ww* , respectively. Later on we need the operator J5Jw ,

Jwx5vx* v5( uf j&^f j8 ,x* fk&^fk8u, ~10!

which, for completely entangled w, is the well-known modular conjugation. One easily establishes

~Jw!2x5~vv* !x~v* v !, ~Jx,y!5~Jy,x!. ~11!

If %>0 is a density operator, the set P21% consists of all w satisfying %5ww* . Along this fiber
the orthoframef18 ,f28 . . . in ~8! and ~9! varies arbitrarily. Thus the fiber at % is isomorphic,
though not canonically, to a complex Stiefel manifold.26 These isomorphisms are parametrized by
the different possibilities to choose an orthoframe for the nonzero eigenvalues of %. The structure
or gauge group of P21% consists of all unitary uPB(H) acting by Ru .

If f % is already pure, %5uf&^fu, its purifications readsw5uf&^f8u. That is, the purifying
vectors are necessarily product vectors ~‘‘unentangled’’ vectors!.

In case the rank of % is larger than one, w is called entangled in the domain of quantum
information theory. Accordingly, complete entanglement of w is reached if the density operator %
is of maximal rank nw5dimH. In this case, in traditional * -representation theory, % is called
faithful and w separating. %5ww* is faithful if f w is invertible.

The set of all faithful % is the base space of a principal fiber bundle with free action of the
unitaries Ru . The fiber space consists of all invertible w, the projection is P.

III. PURIFICATION AND TANGENTS

A smooth, oriented curve inW, passing through w, defines at w a tangent or velocity vector
x. Hence the tangent space, Tw at w, may be identified withW if considered as areal linear space.

Assume that w and the unitaries u depend smoothly on a parameter, and let us use a dot to
show parameter differentiation. The gauge transformation w°w8ªwu induces the relation
Copyright ©2001. All Rights Reserved.           
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x°x85xu1wu̇, x5ẇ, x85ẇ8. ~12!

Let us now consider P, and assume Pw5%. P induces a mapping P* from the tangent space of
W into the density operator’s tangents.

Being a first-order problem, it is sufficient for the following to assume acurve as simple as
possible, say w(l)5w1lx. The curve is projected by P to a curve of density operators %l

5w(l)w* (l) of B(H). Differentiating at l50 results in a tangent P* x5j at %,

j5%̇, j5~ww* !•5xw* 1wx* . ~13!

A tangent vector x at w is called vertical if f P* x50. The real vector space of the vertical tangents
at w is denoted by Tw

ver. It is a straightforward and well-known exercise to show: The gauge
transformation x°x8 of ~12! maps vertical tangents at w to vertical tangents at w8.

We look at vertical tangents as labels for the physical phase. The phase of a single state or of
its density operator is not an observable. Which purifying vector w we choose is physically
irrelevant. What can be observed are relative phases, for example in interference experiments. The
relative phases should depend on the way a density operator is changed to become another one.
There should be aprotocol according to which the tangents, and hence the phases, are transported
along a curve within the space of density operators. This can be achieved by the help of a parallel
transport.

The standard procedure is to split the tangent space at every w into a direct sum of the vertical
and of an horizontal part. Respecting the complex linear structures, we restrict ourselves to de-
compositions defined by the real part of an Hermitian metric: We assume at every w a distin-
guished positive Hermitian sesquilinear form

w°~x2 ,x1!w , x1 ,x2PTw . ~14!

For completely entangled w it should be positive definite. Now Re(.,.)w , the real part of ~14!,
converts the tangent space at w into a real Hilbert space. The velocity with which a curve goes
through w is the square root of (x,x)w with x the tangent at that point. In this setting, parallel
transport is asking for a minimal velocity lif t of a given tangent at the base space. This, in turn,
induces a metrical structure at the base space: One calls the velocity of a base space tangent the
minimum of the velocities of all possible lifts.

Thus, the horizontal part, xhor, of a tangent x at w is the unique element of the set x1Tw
ver with

the smallest velocity. This is in accordance with the definition of Tw
hor as the orthogonal comple-

ment of Tw
ver in the real Hilbert space Tw , the latter equipped with the scalar product Re(.,.)w .

There is adistinguished real subspace, Tw
Ver,Tw

ver, containing all tangents

x5wa, a52a* PW,

which are obviously vertical. If w is invertible ~completely entangled!, every vertical tangent can
be uniquely expressed in that way. But generally, Tw

Ver is a proper subspace of Tw
ver. We call a

vertical tangent neutral if f it is orthogonal to Tw
Ver with respect to Re(.,.)w . Hence, every tangent

x allows for an orthogonal decomposition

x5xhor1xver, xver5xneutral1xVer. ~15!

IV. PHASE TRANSPORT AND BURES METRIC

The most natural and simple choice for the Hermitian metric (x2 ,x1)w of ~14! is certainly the
Hilbert–Schmidt scalar product ~5!. This choice is particularly interesting for several reasons.

At first it gives astraightforward generalization of the geometric phase by the parallel trans-
port evolving from this choice. Indeed, one obtains a natural extension of the Fock,27, Berry,9

Simon,10 Wilczek and Zee24 parallel transport to density operators.
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Transport of state vectors along closed curves generates a holonomy problem. In the period
between V. Fock and M. Berry this has become clear. B. Simons explained how to calculate the
holonomy by the second Chern class of the Hilbert space if considered as aline bundle. There is
an extensive literature on the transport of phases along curves and loops of pure states, see Ref. 28
for a selection of important results, applications, and references. Particular examples in using and
calculating the geometric phase can already be found in papers of decades past.

Second, one gets aRiemannian metric14 on the ~not necessarily normalized! density operators
of B(H). Its distance function is the distance introduced by Bures29 in following a similar con-
struction of Kakutani30 in probability spaces. Being the infinitesimal version of Bures’ distance,
we call this Riemannian metric Bures’ metric.

And, finally, already the choice

~x2 ,x1!w5~x2 ,x1!, ;w,

shows essential problems in deviating from a genuine fiber bundle.
We start by enumerating the tangents y orthogonal to Tw

Ver

~y,wa!1~wa,y!50, ;a1a* 50.

That condition straightforwardly comes down to

y* w5w* y ~16!

and y is orthogonal to all Ver-tangents if f w* y is Hermitian. ~16! is the parallelity condition,8

which extends the transport condition for the geometric phase from pure to mixed states.
To decompose y in its neutral and horizontal part, we start by completing the two orthonormal

systems of the Schmidt decomposition ~8! arbitrarily and set l j50 if j .nw . By sandwiching ~16!
between the orthobase $f i8% we get

Alk^f j8 ,y* fk&5Al j^f j ,yfk8&.

There evolve two conditions on the matrix elements:

j <nw , k.nw⇒^f j8 ,yfk&50.

k, j <nw⇒ ^f j8 ,y* fk&

Al j

5
^f j ,yfk8&

Alk

.

No restriction occurs for j .nw , k<nw . There is an Hermitian g such that

^f j ,gfk&5
^f j ,yfk8&

Alk

, k<nw .

One may choose the matrix elements of g with indices both larger than nw arbitrarily but consis-
tent with g5g* .

The tangent y15gw is horizontal31,32 because it is orthogonal to all ver-tangents x. Indeed,
xw* 1wx* 50 implies (gw,x)1(x,gw)5(g,xw* 1wx* )50. What remains to check is the case
of a tangent y0 , real orthogonal to all gw, g5g* , and to all Ver-tangents. From the first condition
it follows wy0* 1y0w* 50, hence verticality, and from the second we obtain w* y05y0* w. This is
equivalent with

^f j ,y0fk8&50, ; j ,k<nw

or
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y neutral ⇔w* y5yw* 50. ~17!

We conclude that every tangent x allows for a unique decomposition

x5gw1x01wa ~18!

in a horizontal, a neutral, and a vertical part where g is Hermitian, a anti-Hermitian, and x0

satisfies ~17!. With the extra conditions

^f j ,gfk8&5^f j ,afk8&50, k, j >nw ,

both g and a are unique. The last conditions are equivalent to the choice of maximal null-spaces,
i.e., minimal supports for g and a. They allow one to define g and a uniquely.

The transformation property ~12! implies

w°w85wu ⇒ a°a85u* au1u* u̇ , ~19!

so that x°a is a connection form ~gauge potential! a for the gauge group u°Ru . However,
support properties may not change continuously. For parameter values at which the rank of w is
changing, one has to understand g or a as equivalence class with respect to the kernel of g°gw
or a°wa, respectively. Then ~19! remains meaningful even in those cases.

In our next step we look at g and a. g, which describes the horizontal part of a tangent vector
x, can be expressed by jªP* x and %ªww* 5Pw. We need the pair x and %̃ªw* w to gain a.
We get

%g1g%5j, %̃a1a%̃5w* x2x* w. ~20!

The first equation32,31is obtained from ~13!. To see the second one,13 insert ~18! into its right-hand
side.

Apart from an obvious restriction on j, ~20! can be solved to getg or a, and several ways to
do so are well known. A review is in Ref. 33. The restriction in question reads ^f,jf&50
wheneverf is in the null space of% for the first equation, and̂f8,jf8&50 wheneverf8 is in
the null space of %̃. Below we assume they are satisfied.

With the solvability conditions in mind we rewrite ~20! as equations between operators in
B(W). In order not to overload notations we abbreviate

L[L% , R[R% , L̃[L %̃ , R̃[R%̃ .

These are families of operators indexed by % or %̃.
Let us start now from ~20!. The equations can be solved by

g5~L1R!21j, a5~ L̃1R̃!21~w* x2x* w!. ~21!

The operationally defined inverse exists by the solvability condition above. With two tangentsj j

at % and their horizontal lift s xj
hor we get the Riemannian metric16,14 belonging to the Bures

distance

~j2 ,j1!Bures
ªRe~x1

hor,x2
hor!5 1

2Tr %~g1g21g2g1! ~22a!

or, equivalently,

~j2 ,j1!Bures5 1
2Tr j2g15 1

2Tr j2~L1R!21j1 . ~22b!
Copyright ©2001. All Rights Reserved.           
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There is a similar procedure with the second equation of ~21! resulting in the connection ageo with
ageo(x)ªwa. The superscript ‘‘geo,’ ’ if used, is a reminder for the physical important geometric
phase. From ~21! we get

ageo5
L̃

L̃1R̃
~w21dw!2

R̃

L̃1R̃
~w21dw!* , ~23a!

where w21 dw is the left canonical 1-form with values in the Lie algebra of GL(H). ageo takes
values in the Lie algebra of the gauge group U(H) acting from the right via u°Ru .

Formula ~23a! represents ageoas the difference of two Hermitian conjugated parts of type ~1,0!
and ~0,1!, respectively:

ageo5a1,02a0,1, a0,15a1,0* .

Another interesting equation expresses ageo as sum of the canonical 1-form acan of the bundle
GL(H)/U(H) and a horizontal Ad-1-form25

ageo5
w21 dw2~w21 dw!*

2
1

L̃2R̃

L̃1R̃

w21dw1~w21dw!*

2
. ~23b!

Since the second form is horizontal, it can be rewritten in terms of d% and we get

ageo5acan1w21S L2R

2~L1R!
d% D ~w21!*  ~23b8!

5w21dw2w21S R

L1R
d% D ~w21!* . ~23c!

It becomes immediately clear that ageo(x)5acan(x) if f Lj5Rj, wherejªwx* 1xw* , i.e., iff %

commutes with %̇.
This observation motivates the decomposition

T%5T %
i 1T %

' ~24!

of the tangent space T% into a direct sum, where jPT %
i iff j commutes with%5ww* or,

equivalently, if f ^f j ,jfk&50 for any two eigenvectorsf j , fk , of % with different eigenvalues.
On the other hand,jPT %

' if f it can be written as acommutator i @b,%# with a suitable Hermitian
b. ~24! is a well-known matrix decomposition: Assume % represented as block diagonal matrix,
every block belongs to just one eigenvalue. This induces ablock representation of any matrix j.
One getsj i by setting zero every off-diagonal block of j. If the entries in the diagonal blocks ar
set to zero, one obtainsj'. In our present field of interest Hübner18 obtained a decomposition ~24!
of the Bures Riemannian metric. For larger classes of metrics this has been done by Hasegawa and
Petz ~Refs. 34 and 35!.

This brings us back to the metric ~22!. There is a solution g1 commuting with % iff j1 does
so: The support % cannot be smaller than the support of j. Hence 2g15%21j15j1%

21 is opera-
tional well defined. Inserting in ~22b! results in

~j2 ,j1!Bures5 1
4Tr j2j1%

21, j1PT %
i . ~25!

Comparing this with the Riemannian metric

~j2 ,j1!can
ª

1
8Tr ~j2j11j1j2!%215Tr j2~L211R21!j1,

the inequality 4/(L1R)<(1/L)1(1/R) gives36
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~j,j!Bures<~j,j!can

and equality holds if and only if jPT %
i , or, what is the same, if j commutes with%.

Let f1 , . . . be acomplete orthonormal eigenvector basis of %5ww* andj with eigenval-
ues l j and l̇ j , respectively. Then we get from ~25! the following quadratic form:

1

4 ( dl j
2l j

215( dm j
2 , m jªAl j .

This is an Euclidean metric. However, restricted to the state space, where l1 , . . . becomes a
probability vector, we get Fisher’s metric ~‘‘Fisher–Rao metric’’!.37

If the Bures metric is restricted to a submanifold of mutual commuting states, the Fisher
metric is obtained. Moreover, on any submanifold of commuting density operators, whether nor-
malized or not, the phase transport is holonomically trivial.

Indeed, we can form the lif t %→w5A%. The assumed commutativity provides us with
Hermitian and commutative w and x5ẇ, and with %5ww* 5w* w5%̃. Hence ~21! comes down
to a(x)50, and the lif t is horizontal. There is no room for a nontrivial phase.

We see anontrivial geometric phase is definitely an effect of noncommutativity. We need for
them curves with mutually not commuting density operators.

V. AUXILIAR Y TOOLS

In order to extend our previous considerations to a larger class of connections25 we need some
auxiliary tools.

Looking at Eqs. ~23! one can identify functions of L/R and L̃/R̃. These operators are relatives
of L/R̃5Dw , the Tomita–Takesaki modular operator of the representation b°Lb with GNS-
vector w. The operators are defined if w21 exists, that is for completely entangled w. But, as ~23!
shows, certain functions of these operators can be defined for every w.

Let t° f (t) be a function defined for 0,t,`. We assume the existence of

f ~0!ª lim
t→0

f ~ t !, f ~`!ª lim
t→`

f ~ t !. ~26!

The assumption is necessary if we like to extend the formalism to density operators which are not
invertible. Without it, we have to restrict ourselves to completely entangled w, i.e., to faithful
density operators.

To treat an example with the assumption ~26!, we define f (L/R̃)5: f (D). The positive opera-
tors L and R̃ commute. Let l j be the eigenvalue of ww* and of w* w with the eigenvectorsf j and
f j8 . The eigenvectors, suitably chosen, collect in a complete orthonormal basis satisfying the
Gram–Schmidt decomposition ~8!. l j is zero if j .nw and positive otherwise. Now

Lv jk5l jv jk , R̃v jk5lkv jk , v jkªuf j&^fk8u.

The elements v jk constitute a complete orthonormal basis of the Hilbert–Schmidt spaceW. We
like f (D) to be diagonalizable with eigenvectors v jk . Remembering D5L/R̃ we start with

f ~D!v jk5 f ~l j /lk!v jk , if lk.0.

The remaining possibility is done ‘‘b y hand’’ in requiring

f ~D!v jk5 f ~`!v jk , if l j.0, lk50,

f ~D!v jk5 f ~1!v jk , if l j5lk50.
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With this convention v j j is an eigenvector of f (D) with eigenvalue f (1) for all j.
The same game is to play with f (L/R) and f (L̃/R̃). While the spectra of f (L/R) and f (L̃/R̃)

coincide with that of f (D), their eigenvectors are, respectively,

uf j&^fku5v j i v ik* , uf j8&^fk8u5v j i* v ik .

VI. A CLASS OF CONNECTIONS

Our aim is to describe a class of connections, essentially that of Dittmann and Rudolph25.
These objects, as wil l be seen, are particularly well adapted to the purification of theH-system by
that of W5H^H* . We assume w to be completely entangled, so that %5Pw is faithful ~invert-
ible!. Whether it is possible to skip this assumption, either by calculating modulo neutral tangents
or by continuity arguments, depends on the asymptotic behavior of certain functions to be intro-
duced below.

Let @0,̀ #{s°r (s)PC be a smooth function and r (1)51/2. Then

~r ~ L̃/R̃!y!* 5 r̄ ~R̃/L̃!y* .

Mimicking Eq. ~23a! we define the form

aª r̄ ~ L̃/R̃!~w21 dw!2r ~R̃/L̃!~w21 dw!* . ~27a!

It transforms like a connection and takes anti-Hermitian values. To be aconnection it must take
the correct values at vertical vectors, i.e., a(wa)5a, for all anti-Hermitian a. Thus we need to
have

r̄ ~ t !1r ~1/t !51, F~ t !ª r̄ ~ t !2r ~1/t !52F̄~1/t !, ~28!

to get a genuine connection with respect to the gauge group U(H) acting by u°Ru . Furthermore,
as a consequence of r (1)51/2, one observes rescaling invariance of this connection form. Indeed,
a is invariant under w°l(w)w, where l:W→R:

aw~x!5alw~dl~x!w1lx!,

so that there is no need to normalize w in calculating a. The second equation in ~28! introduces the
function F used in Ref. 25 to label their gauge potentials, and we are allowed now to rewrite ~27a!
in a manner known already from ~23!:

a5acan1F~ L̃/R̃!
~w21 dw!1~w21 dw!*

2
~27b8!

5acan1w21~F~L/R! d% !~w21!*  ~27b!

5w21 dw2w21~r ~R/L! d% !~w21!* . ~27c!

One returns to the Bures case by

a5ageo⇔r ~ t !5
t

11t
⇔F~ t !5~ t21!/~ t11!.

Before deriving expressions for the vertical and horizontal part of a given tangent x, we draw
an important conclusion:

The value of a connection at the lif t of a i-tangent is independent of F, respectively, r. Indeed,
F(1)50 and Lx5Rx for these tangents, and we get from ~27b’! immediately
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P* ~x!PT i⇒a~x!5acan~x!, ;F

allowing to extend a conclusion of Sec. IV:
On submanifolds with mutually commuting density operators the holonomy of every loop is

trivial for the whole class of connections considered here.
Indeed, the lif t %→A% is horizontal along every curve of commuting densities.
To obtain the vertical and horizontal part of a tangent x let us apply Eq. ~27c! to x multiplied

by w from the left. We assumed w to be separating so that there are no nonvanishing neutral
tangents. Therefore

xver5xVer5wa~x!5x2~r ~R/L!j!~w* !21 ~29a!

5x2r ~D21!~x1wx* w* 21! ~29b!

5x2r ~D21!@x1D1/2Jx#, ~29c!

reminding wx* (w* )215D1/2Jx5JD21/2x. ~29! reflects the decomposition of a general tangent
into a vertical and a horizontal part, see ~15!. We conclude

xhor5~r ~R/L!j!~w* !215r ~D21!@x1D1/2Jx#. ~30!

A connection form a regulates the change of the phase v along a horizontal lift , wt

5A% tv t , of a curve % t . We express a by

a~ẇ!5a~A% v̇1~A% !•v !5a~A%vv* v̇1~A% !•v !

5v* v̇1v* a~A%•!v

5v* v̇1v* aS 1

AL1AR
%̇ D v

5v* v̇1v*
1

2

1

ALR
S F~L/R!1

AR2AL

AR1AL
D ~ %̇ !v.

and see that the horizontality of wt is equivalent with

05 v̇v* 1
1

2

1

ALR
S F~L/R!1

AR2AL

AR1AL
D ~ %̇ !. ~31!

One observes, that there is one and only one connection in our setting with a global horizontal
section, %°A%. That connection is given by

F~ t !52
12At

11At
, r ~ t !5

At

11At
.

VII. CONNECTION AND METRIC

In this section we specify a class of Hermitian metrics ~14! onW, which respects the purifi-
cation scheme. Our first task is to ask for Hermitian metrics on the complex manifoldW, the real
part of which is compatible with a given connection form of Sec. VI . We demand: At every
completely entangled wPW, the vertical tangents are real orthogonal to the horizontal ones. In
the case where there exists a Hermitian metric doing this task, the functions F and r characterizing
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the connection have to be real. In the next step we describe the Hermitian and Riemannian metric
one obtains by reduction from the purification space to that of ~unnormalized! density operators.

Starting with a connection ~27a!, ~28!, there is some freedom in the choice of the Hermitian
metric. It is an interesting question in its own right, whether, by a reasonable condition, the
Hermitian metric becomes unique. We explain in the last part of this section how this can be done.
If we start from a Riemannian metric on the density operators, the uniqueness problem is more
involved. Nevertheless, our additional condition solves it also, at least for the monotone Riemann-
ian metrics.

To start our littl e program we construct Hermitian metrics ~14! by modifying the Hilbert
Schmidt scalar product on W by a function k(D) of the modular operator. Like R and L the
modular operator D depends on w. Our ansatz for the Hermitian product in TwW reads

~x2 ,x1!wª~x2 ,k~Dw!21x1!, ~32!

where k is a real positive smooth function defined either only on 0,t,` or on the closed interval
0<t<`. We use the rules explained in Sec. V. There are two main merits with such a choice of
the modified Hermitian metric: The symmetry group of the metric contains the unitary group
U(H)3U(H* ). The second is the rescaling invariance of D under w°l(w)w, where l(w)
denotes ~a sufficiently smooth! real function onW. Rescaling invariance is a further reason not to
insist on normalized density operators.

In determining the connection form compatible with ~32!, we follow the recipe of Sec. III . We
need the real-orthogonal complement of the vertical directions. They are to gain by the metrical
independence of verticality. Namely, if a tangent x is real orthogonal to all vertical ones, k(D)21x
is horizontal with respect to the Hilbert–Schmidt metric. Therefore, as shown in Sec. IV, we are
allowed to write x5gw with a Hermitian g. Conclusion:

A tangent x is horizontal with respect to (32), if it can be represented as

x5k~D!~gw!5k~L/R!~g!w, g5g* . ~33!

The real space of horizontal tangents is the fix point set of an antilinear operator, Sw
k , acting

onW. Our notation is borrowed from that of the Tomita–Takesaki operator Sw5JAD, which will
be returned if k[1. Our definition is

Sw
k
ªJk~D21!k~D!21AD5k~D!k~D21!21Sw . ~34a!

If this operator acts on x5k(D)(gw) the result is k(D)(g* w). Comparison with ~33! establishes:
x is a fix point of Sw

k if and only if x is horizontal.
The square of the operator ~34a! is J2; compare ~11!. J2 is the identity of W if f w is invertible.

Further, the adjoint of Sw
k with respect to ~32! is ADJ and, as it should be, independent of k.

~Tomita–Takesaki theory calls it ‘‘ Fw .’’ ! Finally we polar decompose ~34a! to get the appropriate
modifications of the modular operator, D5Dw , and of the modular conjugation, J5Jw ,

Sw
k 5Jw

k uSw
k u, Dw

k
ªuSw

k u2, ~34b!

Dw
k 5k~D21!k~D!21D, Jw

k 5JAk~D21!k~D!21. ~34c!

We now ask for the connection coming with the metric. The connection form belonging to
~32! annihilates all the horizontal vectors ~33!. This reasoning, applied to ~27a! or ~27b!, deter-
mines the function r or F. The calculation shows, in accordance with ~28!,

r ~ t !5
tk~1/t !

k~ t !1tk~1/t !
, respectively, F~ t !5

tk~1/t !2k~ t !

tk~1/t !1k~ t !
. ~35!
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Obviously, the functions r and F are real valued if the connection is gained from a Hermitian
metric ~32!. A cross check of ~35! is in setting k[1. We get r (t)5t/(11t) and F(t)5(t
21)/(t11) as it should be for the Bures case.

On the other hand, given r or F, there is some freedom for k since the induced connection
depends on k(t)/k(1/t) only.

k~ t !

k~1/t !
51⇔r ~ t !5

t

11t
, F~ t !5

~ t21!

~ t11!
, a5ageo,

k~ t !

k~1/t !
5t⇔r ~ t !5

1

2
, F~ t !50, a5acan.

In particular, there is no modification of the Tomita–Takesaki operators by ~34! if the connection
is ageo. More generally, from ~35! we get

k~ t !

k~1/t !
5t

r ~1/t !

r ~ t !
5t

12F~ t !

11F~ t !
~36!

and find, remarkably enough, the modified Tomita–Takesaki operators ~34! depending on F only.
Further, by ~36!, the positivity of k enforces the inequality

21,F~ t !,1 ~37!

for F to be obtained from a k. In order to invert ~36!, the inequality is also sufficient. According
to ~28! one needs only to check F,1 for real F. Then, given F, the general solution of the
problem is

k~ t !ªAt~12F~ t !!q~ t !,

q being an arbitrary positive function fulfillin g q(t)5q(1/t).
We started from a Hermitian metric on W, derived conditions for horizontality, and deter-

mined the connection. Now we go back to H and to its density operators: We ask for the
Hermitian and Riemannian metric induced on the space of density operators. That is, with two
tangentsj andh at Pw5%, we are concerned with

~h,j!%ª~yhor,xhor!w , Re~h,j!%5
~h,j!%1~j,h!%

2
.

xhor and yhor are the horizontal lift s of j andh. In the present paper theC-valuedR-linear form
j,h°(h,j)% is defined on the real tangents. Nevertheless, for obvious reasons, we call it ‘‘Her-
mitian.’’ Relying on ~30! we conclude

~yhor,xhor!w5Tr r ~L/R!~h!
r ~R/L!

Rk~L/R!
~j!5Tr h

r ~R/L!2

Rk~L/R!
j,

so that

~h,j!%5Tr h
Rk~L/R!

@Rk~L/R!1Lk~R/L!#2
j, ~38a!

where r has been substituted by k by the aid of ~35!. The real part is a Riemannian metric. By
standard rules we get
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Re~h,j!%5
1

2
Tr h

1

Rk~L/R!1Lk~R/L!
j. ~38b!

Petz36,1,2was able to classify all monotone Hermitian metrics on the state space, i.e., those for
which (•,•)% does not increase under the action of completely positive and unital mappings. At
the heart of his result is the characterization of a monotone metric by an operator monotone
function, f, defined on 0,t,`, such that

~h,j!%5
1

4
Tr h

R21

f ~L/R!
j. ~39!

~The factor 1/4 is anormalization convention.! Note that this Hermitian metric becomes symmet-
ric, and hence a Riemannian one, if and only if the function f satisfies f (t)5t f (1/t). A function
with this algebraic property we call self-transposed, following the terminology for operator means
introduced in Ref. 3. Presently, however, the monotonicity of the metric ~39! or of its real part is
not assumed. Weneed amoregeneral frame. Having this in mind, wecompare ~39! with ~38a! and
obtain

f ~ t !5
~k~ t !1tk~1/t !!2

4k~ t !
. ~40!

This equation has aunique solution for k depending on f, therefore, every Hermitian metric ~39!
can be reached by exactly one Hermitian metric ~32! on the purification space. Indeed, the har-
monic mean of f (t) and its transpose, t f (1/t), yields

1

f ~ t !
1

1

t f ~1/t !
5

4

k~ t !1tk~1/t !

so that one can insert this into the right-hand side of ~40! to express k by f:

k~ t !5 f ~ t !
4t2f ~1/t !2

@ f ~ t !1t f ~1/t !#2 . ~41!

Moreover, using ~35! we get

r ~ t !5
f ~ t !

f ~ t !1t f ~1/t !
, F~ t !5

f ~ t !2t~1/t !

f ~ t !1t f ~1/t !
. ~42!

These equations describe the relation between the connection on W and the Hermitian metric
living on the density operators. It is Riemannian if f f is self-transposed. ~41! yields f 5k in this
case, and ~42! degenerates to r[1/2. Hence, if the induced Hermitian form is Riemannian, the
induced connection is necessarily the canonical one. This way we do not get an interesting
mapping from the class of Riemannian metrics to the class of connections. Especially, the function
f (t)5(11t)/2 belonging to the Bures metric cannot be gained from ageo as one might expect.

Moreover, if we like to gain the connection form ageo, r (t)5t/(t11), belonging to the
geometric phase, we need, according to ~42!, t2f (1/t)5 f (t) or, equivalently, k(t)5k(1/t). If f is
operator monotone, so is t f (1/t). Therefore, t2f (1/t) is convex ~lemma 5.2 of Ref. 3!. Thus, f is
convex and, as an operator monotone function, concave. Being convex and concave, f has to be
affine. An affine function on the positive real axis, fulfillin g t2f (1/t)5 f (t), is a multiple of t.

If a5ageo and f is operator monotone with f (1)51, then f (t)5t.
However, for k(t)51 @respectively, k(t)52t/(t11)] we get a5ageo ~respectively, a5acan)

and obtain from ~38b! for the real part
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Re~h,j!%5
1

4
Tr h

R21

f s~L/R!
j ~43!

with f s(t)5(11t)/2 ~respectively, f s(t)52t/(t11)). These f s are distinguished ~self-
transposed! operator monotone functions. Moreover, in these cases ~38b! restricted to the horizon-
tal vectors coincides with the real part of the Hilbert–Schmidt metric. This is the motivation to
deal in the following with the real part of the Hermitian metric induced on the state space.

First of all, this Riemannian metric is of the form ~43! with a certain self-transposed function
f s depending on k. From ~38b! we get

f s~ t !5
k~ t !1tk~1/t !

2
. ~44!

f s(t) is the harmonic mean of f (t) and t f (1/t), with f given by ~40!.
Clearly, in starting with a self-transposed f s there is some arbitrariness in choosing k respect-

ing ~44!. Moreover, given a self-transposed f s , the only restriction for F is 2F(1/t)5F(t),1.
Indeed, Eqs. ~35! and ~44! then have the unique solution

k~ t !5 f s~ t !~12F~ t !!. ~45!

In order to remove the arbitrariness in going from f s to F and vice versa or from f s to k, we
impose an additional requirement on the class ~32! of Hermitian metrics (x,y)w . The aim is to
ensure that, given f s , there is only one k and one F fulfillin g ~35! and ~44!. We shall prove that
we meet our goal for operator monotone f s by the following natural demand:

Condition HS: For x and y belonging to the horizontal spaces defined by the Hermitian metric
(32), the real part, Re (x,y)w , of (x,y)w coincides with the real part, Re(x,y), of the Hilbert–
Schmidt product of x and y.

At first, by the aid of ~33!, the condition HS becomes

Re~k~D!~gw!,g8w!5Re~k~D!~gw!,k~D!~g8w!!

with arbitrary Hermitian g and g8. It yields the constraint

k~ t !1tk~1/t !5k~ t !21tk~1/t !2. ~46!

Next, we have the following crucial observation, which one verifies straightforwardly:
There is a one-to-one correspondence between positive functions k fulfilling the constraint

(46) and functions F with 2F(1/t)5F(t),1. The correspondence is given by (35) and

k~ t !5
2t~12F~ t !

~11F~ t !!21t~12F~ t !!2
. ~47!

By ~44! or, equally well, by ~45! we get the relation between F and f s ,

f s~ t !5
2t

~11F~ t !!21t~12F~ t !!2
. ~48!

Hence, under condition HS, a function f s can be gained from a k if f f s has arepresentation ~48!
with a suitable F, F(t),1. To explain which functions f s can be reached, we rewrite relation ~48!
into the equivalent form

11t

2
2 f s~ t !5

f s~1/t !~11t !2

4 S t21

t11
2F~ t ! D 2

.
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Therefore, necessary conditions for f s are f s(1)51, f s<(11t)/2 and, moreover, t°(11t)/2
2 f s(t) must be the square of a smooth function.

Now suppose we have such a pair f s ,F. We define an auxiliary smooth function

d~ t !ª
Af s~1/t !~11t !

2 S t21

t11
2F~ t ! D .

It fulfills

d~ t !25
11t

2
2 f s~ t !, Atd~1/t !1d~ t !50. ~49!

The second equation is aconsequence of F(1/t)52F(t) and f s(t)5t f s(1/t). F can be expressed
in terms of d and f s by

F~ t !5
t21

t11
2

2

~11t !Af s~1/t !
d~ t !. ~50!

Conversely, for a given self-transposed f s , f s(1)51, the possibilities in choosingd with the
properties ~49! enumerate via ~50! the solutions F of ~48! and 2F(1/t)5F(t). But such an F may
not fulfil l F(t),1 if we did not choose appropriately the signs for d in ~49!. The desired choice
may be neither unique nor possible. But if so, the function k defined by

k~ t !ª
2

t11
~ f s~ t !1At f s~ t !d~ t !! ~51!

satisfies ~44! and ~35!.
The question, which functions f s , f (1)51, bounded by 0, f (t)<(11t)/2, can arise from F

or, equivalently, from a Hermitian metric ~32!, depends also on regularity requirements on F and
k. We do not discuss this in detail. Instead we have the following uniqueness result:

Lemma: For every self-transposed operator monotone function f s :(0,`)→R with f~1!51
there exists exactly one positive real analytic function k:(0,`)→R fulfilling (44) and (46). k and
its corresponding function F are given by

k~ t !5
2 f s~ t !

t11 S 11
t21

ut21u
AtA 11t

2 f s~ t !
21D , ~52!

F~ t !5
t21

t11 S 12
2At

ut21uA
11t

2 f s~ t !
21D ~53!

for tÞ1 and k~1!51, F~1!50.
We prove this assertion in the Appendix. ~It should be emphasized that k and F are real

analytic although the last formulas involve 1/ut21u, see the Appendix.! From this lemma we get:
For every monotone Riemannian metric (43), f s(1)51, on the manifold of completely en-

tangled states there exists exactly one Hermitian metric (32) satisfying the condition HSsuch that
the real part of the induced Hermitian metric is just the given monotone metric. For a given f s the
Hermitian metric and the corresponding connection form are obtained from (52) and (53).

The obtained connection we call the connection associated to the monotone Riemannian
metric. For the Bures metric we return to the Hilbert–Schmidt metric and the connection above
called ageo.

Since we used only certain properties of operator monotone functions this assertion would be
true for a larger class of metrics, but we wil l not deal with this problem.
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Although the condition HS seems to be natural, perhaps a short comment would be worth-
while. The induced Riemannian metrics are obtained, essentially, by taking the real part of the
Hermitian metric of horizontally lifted vectors. But, because of HS, this is the same as the real part
of the Hilbert–Schmidt metric. Forgetting for a moment about the underlying Hermitian metric,
which forced horizontality, we can take the following point of view: The monotone metrics are
obtained from the originally given Hilbert–Schmidt metric similarly to the Bures metric ~Sec. IV !
whereas the deviation from the Bures metric is caused by some constraints on the purifying lifts.

VIII. EXAMPLES

At first we look at curves of density operators satisfying a von Neumann equation

i %̇5@h,%#, h5h* , ḣ50 ~54!

and their lifts. We may think of hPB(H) as of a given Hamiltonian and of the curve parameter,
t, as time. This interpretation is not obligatory: h may be the generator of any one-parameter
group. ~The parameter t should not be confused with the use of the same letter as a dummy
variable in several functions like f, k, r, F.! To fix a solution of ~54!, we start at an initial time, t in ,
with an initial density operator % in . The solution may be written

% t5ut* % inut , utªexpi ~ t2t in!h. ~55!

Now a general lif t wt is polar decomposed, wt5A% tv t , according to ~9!.
Our aim is to prove the following: Given a connection form and an initial % in at t in there is

a t-independent Hermitian h̃ such that

utv t5expi ~ t2t in!h̃ ~56!

implies horizontality of wt . At first we see from ~55! and ~56! the validity of a Schrödinger
equation inW,

iẇ5Hw, Hwªhw2wh̃. ~57!

By the help of our menagerie of equations it is not particularly difficult to prove the statement
above and to obtain an expression for h̃. At first let us multiply ~57! by w* from the right. By ~30!

the condition for horizontality is in equating iẇw* with r (R/L) i %̇. Now ~54! yields

r ~R/L!~h%2%h!5h%2wh̃w* .

This equation is sufficient to guarantee horizontality. Now wh̃w* can be computed by ~56! to
ut* A% inh̃A% inut . Therefore, our horizontality condition is the Ad-transform with ut* of the equa-
tion

r ~Rin /Lin!~h% in2% inh!5h% in2A% inh̃A% in,

where R and L at t5t in is indexed by in. In other words, if we choose h̃ t-independent and v
according to ~56!, we can satisfy the horizontality condition.

To get a unique h̃, we require the support of h̃ to be smaller than that of % in . Finally, with the
help of ~28!, we get the expression

h̃5~AR/Lr ~L/R!1AL/Rr ~R/L!!h, t5t in . ~58!

Let us consider a solution ~55! of ~54! from t in to tout. Then woutwin* is a gauge invariant. Its
trace in H,
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~win ,wout!5~win ,@exp i ~ tout2t in!H#win!5Tr A% inA%outexp~ i ~ t in2tout!h!exp~ i ~ tout2t in!h̃!,
~59!

may be called a relative geometric phase. For pure states that object has been introduced in Ref.
38. These authors called it the ‘‘non-cyclic geometric phase.’’ One may think of shortcutting the
in- and the out-state to a closed curve by a Fubini Study geodesic arc. Whether one has asimilar
interpretation in our much more general case remains an open question.

For a cyclic solution of ~54!, i.e., % in5%out, tcycle5tout2t in , the expression woutwin* is a
~pointed! holonomy invariant, i.e., it depends on the choice of % in . To change the in-state of our
cyclic curve one has to perform a ut-transformation. Consequently, all eigenvalues of woutwin* are
(absolute) holonomy invariants. of our cyclic curve. They are encoded in the traces

Tr ~woutwin* !m5Tr @% in exp~2 i t cycleh! exp~ i t cycleh̃!#m, ~60!

where exp(2itcycleh) commutes with % in .
There are a few examples where one can become more explicit. One of them is in adding

noise to a curve of pure states pt . In this important example one can study the influence of
‘‘noise’’ on the geometric phase, and the behavior of gauge and holonomy invariants in coming
from the interior to the extreme boundary of the cone of unnormalized density operators. For this
purpose we fix two positive real numbers,a andb, and consider the curve of density operators%,

%5ap1b1, p5uc&^cu, ^c,c&51. ~61!

a1b is a simple andb, if n denotes the dimension ofH, a (n21)-fold eigenvalue of%. c, p and
% depend on a parameter t, but we wil l not suppose avon Neumann equation.

Remark: The line element of this curve with respect to the metric induced from ~32! is

ds25
2a~12t!

tk~1/t!1k~t!
dsBures

2 , tª
b

a1b
,

where dsBures
2 denotes the Bures line element of the curve of pure states pt . h

Al l t-derivations wil l be indicated by a dot, in particular

%̇5a ṗ, ṗ5 ṗp1pṗ, pṗp50.

%̇ belongs to T'. As an application one calculates

R%ṗ5 ṗ~ap1b1!5~a1b! ṗp1bpṗ.

In this manner one gets

R%~pṗ!5bpṗ, R%~ ṗp!5~a1b! ṗp,

L%~pṗ!5~a1b!pṗ, L%~ ṗp!5b ṗp

and, finally, skipping the index of L% and R% ,

~L/R!~pṗ!5S a1b

b D pṗ, ~L/R!~ ṗp!5S b

a1b D ṗp.

For instance, ṗp and ṗp are eigenvectors of LR with the eigenvalue (a1b)b. At this stage we
do not suppose avon Neumann equation ~54! but rely on ~31!. From the last equation and F(t)
52F(1/t), we get
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F~L/R! ṗ5FS b

a1b D ~ ṗp2pṗ!.

Hence, in solving ~31! with ~61! we are faced with an equation

v̇v* 5
1

2

a

A~a1b!b
FFS b

a1b D1
Aa1b2Ab

Aa1b1Ab
G ~pṗ2 ṗp!, ~62!

which may be rewritten as

v̇* 5v* ~12m!~pṗ2 ṗp!, m5
1

2

a

A~a1b!b
FFS b

a1b D1
a12b

a G . ~63!

Can we go by b→0 to the pure states? A necessary condition is

F~0!521

or, equivalently, r (0)50. To be sufficient we additionally need the existence of

kª lim
b→0

m5 lim
l→0

11F~l!

2Al
5 lim

l→0
l21/2r ~l!. ~64!

Then the limit b→0 can be performed in~62!:

~vv̇* !pure5~12k!~pṗ2 ṗp!. ~65!

With ageo, or, more generally, with s.1/2 in r (l)5ls/(11ls), we get k50. With k50 we
obtain the Berry phase for pure states.

Indeed, imposing ^c,ċ&50 a la Berry9 and Fock27, we find v̇* c1v* ċ50 from ~63!. Hence,
with k50, the vectorv* c is t-independent. This yieldsw5uc&^wu, ẇ50. It then follows

Tr ~woutwin* !m5^c in ,cout&
m.

This is the mth power of the Berry phase, because we had supposed the validity of Berry’s
transport condition. Remark that this goes not through if kÞ0 or if, as foracan, ~64! does not exist.

Something more can be said if ~61! satisfies a von Neumann equation ~54!. Computing h̃ with
this assumption by the help of ~58! ends up with

h̃5h1m@~12pin!hpin1pinh~12pin!#. ~66!

Looking at h̃ as a block matrix with respect to pin and 12pin , the deviation from h is in
multiplying the off-diagonal blocks by m. If ~64! exists andk50 then the off-diagonal blocks
become zero at the pure state limit.
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APPENDIX: PROOF OF THE LEMMA OF SECTION VII

Every self-transposed operator monotone function f s with f s(1)51 has a unique integral
representation

f s~ t !5m~$0%!
11t

2
1E

(0,1]

11x

2 S t

t1x
1

t

tx11D dm~x!

5
11t

2
1E

(0,1]
H 2

11t

2
1

11x

2 S t

t1x
1

t

tx11D J dm~x!

5
11t

2
2~12t !2E

(0,1]

x~ t11!

2~ t1x!~ tx11!
dm~x!, ~A1!

where m is a normalized positive Radon measure on @0,1#, see Ref. 3. If the measure is not
concentrated at 0, the last integral is strictly positive for all tPR1 . Its positive root, for the time
being denoted by t, is a real analytic function. Hence, every such functionf s can be represented
as

f s~ t !5
11t

2
2~ t21!2t~ t !2 ~A2!

with a certaint, positive or trivial. Therefore, (11t)/22 f s(t) has exactly two real analytic roots,

d1~ t !5~ t21!t~ t !, d2~ t !52~ t21!t~ t !,

or is vanishing. The self-transposeness of f s implies t(1/t)5Att(t) and both roots fulfill the
condition ~49!. As explained in Sec. VII , asolution for k of our problem corresponds to such aroot
d, which leads via ~50! to F(t),1. We infer: If selecting the root d1 , the condition F(t),1, t
.0, is equivalent to f s(t).1/2 for all t.1. Because f s is monotone increasing and f s(1)51 the
latter inequality is true. On the other hand, F cannot fulfil l F(t),1 for all t.1 if the root d2 is
chosen, except d250. Otherwise we could conclude f s(t).t/2 for all t.1. But the self-
transposeness effects f s8(1)51/2 and f s must be concave. Therefore,dªd1 is the only real
analytic root leading to an appropriate F. Inserting

d~ t !5~ t21!t~ t !5
t21

ut21uA
11t

2
2 f s~ t !, d~1!50, ~A3!

into formulas ~50!, ~51! yields ~53! and ~52!.
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