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Standad purification interlaces Hermitian and Riemannia metrics on the spae of
densiy operatos with metrics ard connectios on the purifying Hilbet—Schmidt
space We discus connectios ard metrics which are well adopte to purification,
and preseh a selectd se of relatiors betwe@& them A connection as well as a
metric on stae space can be obtainal from ametric on the purification space We
include a condition with which this corresponderec becoms one to one Our
method are borrowed from elementay * -representatioand fiber spae theory We
lift, as an example solutiors of a von Neumam equation write down holonomy
invarians for cyclic ones and “add noise’ to a curve of pure states © 1999
American Institute of Physics [S0022-24889)02107-9

I. INTRODUCTION

In Ref. 1, see aloo Ref 2, the monotore Hermitian and Riemannia metrics in the (finite
dimensional spacs of all densiy operatos are classified Basel on the theoy of operato means
they are indexal by a red function f, operato monotoné on (0,). Thee metrics play an
importart role in domairs like quantum information geometry quantum versiors of statistical
estimation and decisio rules®’

D. Pez communicatd his main resuls to us prior to publication and abou tha time we
startal to ask for the effed of a purifying lift to thes metrics There are clea reasos for this. One
of the presem authos (A.U.) had definal 1986 in Ref. 8 an extensim of the geometri phase’''°
see alwo Refs 11 and 12, to curves of densiy operatos by the help of a “parallelity condition.”
The condition singles out, up to a globd gaug (or a globd partid isometry, a distinguished
“parallel lift' * within all purifying lifts of a curve of densiy operators It turns out'® tha a
connectim form (a gauge potentia), here called a%¢ is governirg the transpot of the purifying
vectors sud tha the parallelity condition resuls from the reques for horizontality. In 199 G.
Rudolph ard one of the authos (J.D,) considerd alarge class of gauge potentials including a%°°,
which rest on a purification schene arnd which enabls varians of the geometrt pha® along
curves of densiy operators It seens naturd to ak for a link betwea the® objects (a) the
connectim forms just mentioned (b) certan Hermitian (Riemanniah metrics on the purification
spaceand if respectig the symmety of the scheme(c) metrics induced from (b) on the spae of
densiy operators.

Purification is essentialf representatio theoy of observable and of the algeba in which
they are containedPrincipally one may use ary unitd * -representatio of the “algebra of observ-
ables’ ove which the states can be defined Its Hilbert representatio spa@ shoutl only be large
enoudn to allow for a representatio of the states by vectors If this condition is fulfilled, transport
mechanismits noncommutatie phasesmetrics and othe geometrc objecs can be constructed
by relying on their form and appearanein the pure stat case.
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In our pape we reman within an elementay setting Our densiy operatos live on a Hilbert
spae H of finite dimensia n. In our convention a densiy operato shoutl not necessanl be
normalized We spe& of “density operators’ whethe their trace is one or not The algeba of
observable is the algeba B(H) of all operatos acting on H. The representatio or purification
space W, isidentified with the algeba of operatos ard equippa with the Hilbert—Schmid scalar
product (In infinite dimensiors W will be the spa@ of Hilbert—Schmid operators. We try to
emphasie the different meanirg of operatos by differernt notations Operatos acting on H are
denotel by lower ca® letters thos acting on W often by capitd letters [Sone authos cal the
operatos of B()) “superoperators.] Sectio Il is devota to explainirg our notatian in more
details In our pape purification takes place in the standad representatio of 5(%), i.e. in the
GNS-representatiobasa on the trace For tha reasam we called it standad purification In Sec.
111 the formalism is extendd to velocity vectors i.e., to tangentsat densiyy operatos and at their
purifications Purification defines verticd tangens in a canonichway. A tangentorthogonéto the
spae of verticd tangentsis called horizonta) provided the tangem spacs carly a red Hilbert
spae structure i.e., a Riemannia metric Equivalently within all purifying lift s of a given curve
of densiy operatorsthos with the leag lengh are horizontal.

Sectimn 1V exemplifies our tak in defining horizontaliyy by the red pat of the Hilbert—
Schmid metric As one knows the Bures lengh of a curve of densiy operatos and the Hilbert—
Schmid lengh of an horizonta lift are equd one to another In deriving the parallelity condition
we med sone peculiarities with tangens of purifying vectoss if they belorg to densiy operators
with sone vanishirg eigenvaluesThe reade will find a shot accoun of the relation betweea the
connectim form a%¢° (Ref 13) governirg the geometrc phase and the Riemannia Bures metric.

Indeed we devoe sone time to asking ard giving an affirmative answe to the following
question Is the topologicd metric of Bures Riemannian®~2° Essentih differentid geometric
properties are in Ref. 17, see also Ref. 18 for dim H = 3. Relatiors to quantum information theory
can be seen in Refs 19 ard 20. However a parameterizatio in ternms of the operators matrix
elemens remairs cumbersomgexcep for dimH= 2.

Concerniig a%°, which extend the geometrt pha® to (closed curves of densiy operators,
exampls are shown in Sec VIII . Therisafurther isste to be mentioned The gauge potentia for
the two-dimensionkdensiy operatoré! living on a four-dimensionhpurification space satisfies
the Yang—Mill s equations With a certan cosmologich constant it even is a solution of the
combinel Yang—Mill s—Einsteh equation$? Meanwhik we know?® a%%° satisfies the Yang—Mills
equatiors for evewy finite dimensia of the supporting Hilbert spa@ . The® findings may be
sea as extensios to mixed states of numerows example relating the origind Berry pha to Dirac
monopolesand the Wilczek and Zee phasé* to instantons.

Sectio VI is devota to the class of connectios introducel in Ref. 25, which are so to say,
“relatives” of a%°, compatibé with the purification schemeThey are characterize by afunction
F, defined on (0,), ard fulfillin g F(1/t)=—F(t). Some equatiors becone more appealig by
using the function r, the arithmetc mean of F and 1. The connectim forms a assig to every
tangen x at the lift we W of o =ww* avaluein the Lie algeba of U(n). The action of the gauge
growp induces the “canonical” connectim a“®" The canonic& connectim is gainal with the
choice F=0. The connectim a%°is constructd with F(t)=(t—1)/(t+1). Aswe shal seg only
connectios with red F can be obtainal from an appropria¢ Hermitian metric We beliewe the
complet class is a more naturd objed at the complexified tangents They all decompos as 6
— 6* with @ of type (1,0).

We specify the class of Hermitian metrics by anothe positive ard red valued function k, on
the positive half-axis The metricd form for the tangens at a purifying vector, w, will be given by
theinverse of the (“super”)operato k(A,,), where A isthe field of modula operatorsTherisan
antilinea operatoy a modificatin of Tomita—Takasakis S,, operatoy which admits just the hori-
zontd tangens as fix points The connectim adjustel to the metric is characterizeé by various
relatiors betwea the functiors k, F, and r. Moreover evel one of the Hermitian metrics con-
sideral on the tangen spae of W is alift of exactlyy one Hermitian form on the spae of density
operatorsThe latter depend on a function f which is relatal to k. The Riemannia metric on the
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densiy operatos is gainal as the red pat of the Hermitian one ard it correspond to the
harmonc mean of f(t) ard tf(1/t). Furthe we discus an additiona condition which enable us
to assign a unique connectim form to a given monotore Riemannia stae spa@ metric. These
metrics are inducal from the Hilbert—Schmid metric by sone constrains on the purifying vectors
replacirg the orthogonaliy condition of the Bures case.

The startirg point has been a set of connectionscompatibé with the purification procedureto
define reasonald paralld transpors along curves of densiy operatorsWe retun to this isswe in
purifying horizontally solutiors of von Neumam equations Cyclic solutiors give rise to some
holonony invariants There are constraing on F for extendiry the parallelity conditiors to the
boundary in particula to pure states|f they are fulfilled, the holonony invarians redue to the
well-known geometre pha® of Berry for pure statesAt the end we ak what happend if “noise”
is addal to a closal pah of pure states.

IIl. STANDARD PURIFICATION

We stat by reviewing sone bast ideas of the purification procedureLet H be a complex
Hilbert spae of finite dimensim n with scala produd (.,.) antilinea in its left argument B(H)
denota the * -algeba of linear operatos acting on H. A stak is apositive linear form over the
algebawhich takes the value 1at the identity of B(#). Generally alinear form | over our algebra
is uniquel represents by

[(b)=Trbw, VbeB(H).

The linear form is positive if ard only if  is a positive element d8(H). We then calk adensity
operato in accordane with its usage in physics A densiy operato represerga stae iff its trace
is one.

A purification of a positive linear form over B('H) is alift to a pure linear form of a larger
algebra A way to do so is as follows: With anothe auxiliary Hilbert spa@ H 2 with at leag the
sane dimension we consider

HRHX  n=dimH=H ¥
and the inclusion (which, indeed is a * -representation
B(H)— B(H)®13*C B(H® H ) (1)

into the operato algebn of the extendé Hilbert spacelLet ¢ be the densiy operateo of a positive
linear form | over B(H). A vector ¢ of H® H*¥is sad to purify |, and hene o, iff

[(b)=Trbo=(y,b®1y) Vbe B(H). 2
A distinguishe way to choog the auxiliary Hilbert spa@ is to require
HA=H*, W:=HH*, ()

which resuls in the standad purification, basel on the standad representatio of 3(7). In what
follows this choice is assumedand we hawe to fix sone notatiors and conventiors at the begin-
ning.

Let ¢ € H. The elemenip* e H*, is defined byd* (¢')=(¢,¢’). In Dirac’s notation:

d=ld),  d* (gl
Being in finite dimensionsevely operato is Hilbert—Schmidf and W is canonicaly isomorpht to
B('H). This can be mace explicit with two arbitrarily chos@& orthonormébasesp,,d,, ... ard

1, by, ... of H inwriting
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w=2 |d)(d W) (dil, weW. @

The Hilbert—Schmid scala produd on W is

(W2=W1)‘:TrW§W1:2 <W2¢|’<v¢j><¢j Wi y). ©)
The sta operatian in B(H) is equivalem with a conjugatia in W,
WW* of (R P*)*=do d*.
We neal sone operatos acting on V. The standad representatio of B(#) is the inclusian (1),
specifi@ by (3), and acting as follows:
b—L,, Lpw:=bw, beB(H).

We also neal the right multiplication Ry, i.e., Ryw=wb. The right multiplication can be used to
implemert the standad representatioof B(7*). Notice the differert meaniry of the * -operations
on W= B(H) and on B(W) seea in

(Lp)* =Lpx, (Lpw)* =(Rp)*w*

ard in similar relatiors after exchangig L, and R,. Now, let [ be alinear form on B(W) and |
its restriction or reduction onto B(). The relation

T—=1, 1(b):=I(Ly,), beB(H) (6)

encods the partid trace over H* on W. Focusimg our attentian on the purification procedurewe
shal apply this well-known mappirg mainly to linear functionak of rark one In that ca% the
essene of the reductian mappirg to the factors of W is containg in

(Wy,LpRew,) =Trwj; bw;c. (7)

Its left-hand-sie defines alinear form B—(w,,Bw;) over B(W), and varying w,; and w, within
W, one can get evey linear functiond of rark one Presentl we neal to conside (7) with w,
=w,=w and with eithe c or b the identity operator Then for Be B(W) and b,ce B(H), the
left- and the right-hard sides of (7) may be rewritten

[(B)=(w,Bw), I(b)=Trww*b, I’(c)=Trw*wec.

o=p0,:=ww* is called the densiy or the densiy operata of |, while w is sad to purify I. In the

sarre spirit, a positive linear functiona | of rark one which reducs to |, is apurification of I.
From now on, insteal of switching forth and badk betwea linear forms ard their densitieswe
reman mainly with the latter. Accordingly we define the mappings

MMw=ww*, II'w=w*w.
The mappirg IT (and similarly the mappirg I1'), is slightly more subtke than the reduction
mappirg (6). Its domah of definition is W. Thus Il is composd of a Hopf bifurcation from w to
the rark one densiy operato |w)(w|, representig the linear form B— (w,Bw), followed by the
reduction (6):

W | W) (W[—>ww*
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Here we usal Dirac’s notatian relative to the scala produd (5) in W. 11 is a bundk projection,
whete the bundk spa@is W and the bas spae is the core of (not necessanl normalized density
operatos (i.e., positive trace clas operators Being in finite dimension the ba® spae is the
positive core of B(H). The bundk fibers are manifolds However the dimensio of the fibers
vary with the rark n,, of we W. Therefoe certan discontinuities occu if the rark is changing.

All this can be see by the “diagonal” form of (4), which is the Gran—Schmid decompo-
sition of w. Let Ny,\5, ... be the n, nonzeo eigenvalus of ww* and ¢,,¢,, ... their
orthonormé eigenvectors,

wwt =20 N[ )il M0,

There exist exactly one othe orthonormé bask of vectors,¢;,¢5, ... of the sanelengh n,,,
fulfilling
w=2 Wddd(eil, wrw=2 Nl (] ®

and the positive numbes A ; sum up to (w,w). From (8) one can read off the polar decompositions

w=\Vwwr o= \Wrw,  v=2 [l 9)

The index k runs from 1 to n,. One may cal v the phag of w relative to p=ww*. The
projectian operatos v*v ard vv*, attache to the partid isomety v, map H onto the support
spaces of w*w and ww*, respectively Later on we neal the operato J=1J,,,

JuX=vx*v="2 [ )] X* d )il (10

which, for completey entanglé w, is the well-known modula conjugation One easil establishes
(Juw)x=(0o*)x(v*v), (I%Yy)=(Jy,X). 11

If =0 isadensiy operatorthe se I1 ¢ consiss of all w satisfyirg ¢ =ww* . Along this fiber
the orthoframe¢;,¢; ... in (8) ard (9) varies arbitrarily. Thus the fiber at ¢ is isomorphic,
thouch nat canonically to a complex Stiefd manifold?® These isomorphisns are parametrizd by
the different possibilities to choo® an orthoframe for the nonzeo eigenvalus of ¢. The structure
or gauge group of I1- 1o consiss of all unitaly ue B(H) acting by R,,.

Iff o is already purg 0 =|¢){¢|, its purifications readsv=|¢)(4'|. That is, the purifying
vectoss are necessanl produd vectos (“unentangled’ vectors.

In ca® the rark of ¢ is large than one w is called entanglel in the doman of quantum
information theory. Accordingly, complee entanglemenof w is reachd if the densiy operato o
is of maximd rark n,=dim™. In this case in traditiond * -representatio theory, ¢ is called
faithfu and w separating o =ww* is faithful iff w is invertible.

The s¢ of all faithful ¢ is the bag spae of a principd fiber bundk with free action of the
unitaries R, . The fiber spa@ consiss of all invertible w, the projectian is II.

lll. PURIFICATION AND TANGENTS

A smooth orienta curve in W, passig throudh w, defines at w a tangernt or velocity vector
X. Hence the tangen space 7,, a w, may be identified with W if considerd as ared linear space.

Assune tha w ard the unitaries u depem smoothy on a parameterard let us use a dot to
shav parametedifferentiation The gauge transformatio w—w':=wu induces the relation
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!

x—x' =xu+wu, x=w, X =w’. (12
Let us now conside IT, and assune ITw=p. II induces amappirg I1, from the tangen spae of
W into the densiy operators tangents.

Being a first-order problem it is sufficiert for the following to assune acurve as simple as
possible say w(A\)=w-+AX. The curwve is projectel by II to a curve of densiy operatos o,
=w(N)w*(N) of B(H). Differentiating at A=0 resulsin atangen II,x=¢ at o,

E=0, &=(WW*) =xXW* +wx*. (13

A tangen vecta x at wis called verticd iff I, x=0. Thered vecta spae of the verticd tangents
at w is denotel by 7\;". It is a straightforwad ard well-known exerci to show The gauge
transformatio x—x' of (12) mays verticd tangens at w to verticd tangens at w’.

We look at verticd tangens as labek for the physica phase The pha® of a single stae or of
its densiy operato is not an observable Which purifying vecta w we choo® is physically
irrelevant Wha can be observe are relative phasesfor exampe in interferene experimentsThe
relative phases shoutl depemnl on the way a densiy operato is changé to becong anothe one.
There shoutl be aprotocd accordimg to which the tangentsand hene the phasesare transported
along a curve within the spae of densiy operatorsThis can be achievel by the help of a parallel
transport.

The standad procedue is to split the tangem spae at everly w into adired sum of the vertical
ard of an horizontd part Respectig the comple linear structureswe restrid ourselve to de-
compositiors defined by the red pat of an Hermitian metric We assune at evely w a distin-
guishal positive Hermitian sesquilineaform

W (X2, X1)w,  X1,X2€ Ty . (14

For completey entanglé w it shoul be positive definite Now Re(.,.),,, the red pait of (14),
convers the tangei spae at w into a real Hilbert space The velocity with which a curve goes
throuch w is the squae roat of (x,x),, with x the tangen at tha point In this setting parallel
transpot is askirg for a minimd velocity lift of a given tangen at the bas space This, in turn,
induces a metricd structue at the bas space One calls the velocity of a bas spae tangen the
minimum of the velocities of all possibe lifts.

Thus the horizontd part, X", of a tanget x at w is the unique elemen of the set x+ 7, with
the smalles velocity. This is in accordane with the definition of Tf,‘j” as the orthogon& comple-
mert of 7\;" in the red Hilbert spae 7,,, the latter equippel with the scala produd Re(.,.),

Ther is adistinguishe red subspace7,'C 7,;', containirg all tangents

Xx=wa, a=-—a*eW,

which are obviousy vertical If w is invertible (completey entangled, evel verticd tangem can
be uniquel expresseé in tha way. But generally 7. is a prope subspae of 7,*". We cal a
verticd tangen neutrd iff it is orthogon&to Tvvver with respetto Re(.,.),,. Hence ever tangent
x allows for an orthogon& decomposition

X= Xhor+ Xver, xVer— Xneutral_i_ xver (15)

IV. PHASE TRANSPORT AND BURES METRIC

The mog naturd and simple choice for the Hermitian metric (x5,X;),, of (14) is certainy the
Hilbert—Schmid scala produd (5). This choice is particularly interestiry for severareasons.

At first it gives astraightforwad generalizatia of the geometre pha® by the paralld trans-
port evolving from this choice Indeed one obtairs a natura extensim of the Fock?’, Berry?
Simon® Wilczek and Ze€** paralld transpor to densiy operators.
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Transpot of stat vectors along closel curves generate a holonony problem In the period
betwea V. Fok and M. Berty this has becone clear B. Simors explaina how to calculae the
holonony by the secoml Chemn class of the Hilbert spae if considerd as aline bundle Ther is
an extensie literature on the transpot of phase alorg curves and loops of pure statessee Ref. 28
for a selectiom of importart results applications ard referencesParticula example in using and
calculatirg the geometre pha® can alread be found in papes of decads past.

Secondone ges aRiemannia metric* on the (nat necessanl normalized densiy operators
of B(H). Its distan@ function is the distane introducel by Bure€® in following a similar con-
structian of Kakutant® in probability spacesBeing the infinitesimd versia of Bures distance
we cal this Riemannia metric Bures metric

And, finally, alread the choice

(XZIXl)W:(X21X1)v VW1

shows essentibproblens in deviatirg from a genuire fiber bundle.
We stat by enumeratig the tangens y orthogonato 7./

(y,wa)+(wa,y)=0, Va+a*=0.
That condition straightforwardy comes down to
y*w=w*y (16)
and y is orthogona to all Ver-tangers iff w*y is Hermitian (16) is the parallelity condition®
which extend the transpot condition for the geometre pha® from pure to mixed states.
To decomposy in its neutrd and horizontd part we stat by completirg the two orthonormal

systens of the Schmid decompositia (8) arbitrarily and set \;=0 if j>n,,. By sandwichirg (16)
betwea the orthobas { ¢/} we get

There evolve two conditiors on the matrix elements:
i<n,, k> nW:><q§j’ Y i) =0.

<¢J’ vy* ¢k> _ <¢] vyd)l»
= = .

k,j<n
N v
No restrictin occus for j>n,,, k<n,,. Ther is an Hermitian g suc that

(;,Ybi)
Lgdy =22 k<n,,.
<¢J g¢k> \/)\—k

One may choog the matrix elemens of g with indices both large than n,, arbitrarily but consis-
ternt with g=g*.

The tanger y,=gw is horizontaf*? becaus it is orthogon& to all ver-tangerg x. Indeed,
Xw* +wx* =0 implies (gw,x) + (x,gw) = (g,Xxw* +wx*) = 0. What remairs to ched is the case
of atangenyg, red orthogonato all gw, g=g*, and to all Ver-tangentsFrom the first condition
it follows wyg +yow* =0, hene verticality, and from the secoml we obtain w* y,=ygw. Thisis
equivalen with

() Yobi)=0, Vijk=n,

or
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y neutral ew*y=yw*=0. a7
We concluck tha evely tanget x allows for a unique decomposition
X=gWw+Xg+wa (18

in a horizonta)] a neutra] and a verticd part where g is Hermitian a anti-Hermitian and xg
satisfies (17). With the extra conditions

(¢;,9%k)=(d;,ad)=0, k,j=n,,

both g and a are unique The lag conditiors are equivalei to the choice of maximd null-spaces,
i.e., minimd suppors for g and a. They allow one to define g ard a uniquely.
The transformatio propery (12) implies

w—w’ =wu = a—a’ =u*au+u*u, (19

so tha x—a is a connectim form (gaug potentia) a for the gauge growp u—R,,. However,
suppot properties may not change continuously For paramete values at which the rark of w is
changing one has to understad g or a as equivalene class with respetto the kernd of g—gw
or a—wa, respectively Then (19) remairs meaningfli even in thos cases.

In our next step we look at g ard a. g, which describs the horizonta patt of a tangei vector
X, can be expressé by &:=II, x and ¢ :=ww* =IIw. We neeal the pair X ard ¢ :=w*w to gain a.
We get

og+ge=£& patag=w*x—x*w. (20)

The first equatiori?>*is obtainel from (13). To see the secom one’® inset (18) into its right-hand
side.

Apart from an obvious restriction on £, (20) can be solved to geg or a, and several ways to
do so are well known A review is in Ref. 33. The restriction in question reads ($,é¢)=0
wheneverg is in the null space op for the first equation, and¢’,é¢’)=0 wheneverg' is in
the null spae of . Below we assune they are satisfied.

With the solvability conditiors in mind we rewrite (20) as equatiors betwee operatos in
B(W). In orde not to overloal notatiors we abbreviate

L=L R=R

‘. ‘.

Thes are families of operatos indexel by ¢ or 0.
Let us stat now from (20). The equatiors can be solved by

g=(L+R) 7, a=(L+R) Y(w*x—x*w). (21)
The operationaly definel inverse exist by the solvability condition above With two tangentst;

a ¢ and their horizonta lifts x! we get the Riemannia metric‘®** belongirg to the Bures
distance

(&5,£1)BUS=Re(x]*,X5*) = §Tr 0(9102+ 9291) (229

or, equivalently,

(€5,£1)BU=3Tr £,0,= 5Tré&(L+R) 14y (22b)

Copyright ©2001. All Rights Reserved.



3254 J. Math. Phys., Vol. 40, No. 7, July 1999 J. Dittmann and A. Uhlmann

Theris asimilar procedue with the secom equatia of (21) resultirg in the connectim a%°° with
a%qx):=wa. The superscrip‘‘geo,” if used is areminde for the physicad importart geometric
phase From (21) we get

aue0— [Lﬁ (w~Ldw) — % (w™ldw)*, (233
+ +

where w™ ! dw is the left canonich 1-form with values in the Lie algeba of GL(H). a%® takes
values in the Lie algeba of the gauge groyp U(H) acting from the right viau—R,,.

Formuk (233 represerta%€°as the difference of two Hermitian conjugate parts of type (1,0)
ard (0,1), respectively:

eo_ A%
a¥®=a, ;- a9y, a91=ajo.

Anothe interesting equation expresss a%®° as sum of the canonich 1-form a®@" of the bundle
GL(H)/U(H) and ahorizonta Ad-1-forn?

w ldw—(w tdw)* LC—Rw *dw+(w tdw)*
a%eo= —= (23b
2 L+R 2
Since the secom form is horizonta) it can be rewritten in terms of do and we get
aseo= o1 =X | (w1 (230)
2(L+R)
=w ldw—w?! idg (w™H* (230
L+R '

It becoms immediatey clea tha a%®qx)=a’®(x) iff Lé=RE, where&:=wx* +xw*, i.e., iff o
commute with o.
This observatio motivates the decomposition

T,=T ) +T5 (29

of the tangen spae 7, into a dired sum where geTU_, iff £ commutes witho=ww* or,
equivalently iff (¢; ,&¢,) =0 for ary two eigenvectorsp;, ¢, of ¢ with differert eigenvalues.
On the othea hand,¢é e Tg iff it can be written as acommutato i[ b, o] with a suitabk Hermitian
b. (24) is a well-known matrix decompositionAssurre ¢ representa as block diagon matrix,
evel block belongs to just one eigenvalue This induces ablock representatio of any matrix .
One getsf” by settirg zemw evew off-diagona block of &. If the entries in the diagonal blocks are
se to zerq one obtains&". In our presenfield of interes Hibner® obtainel a decompositia (24)
of the Bures Riemannia metric. For large classes of metrics this has been dore by Hasegawa and
Pet (Refs 34 ard 35).

This brings us bad to the metric (22). Ther is a solution g; commutirg with ¢ iff ¢, does
sa The suppot ¢ canna be smalle than the suppot of £&. Hence 3y,=0 1¢,=¢,0 ! isopera-
tiond well defined Insertirg in (22b) resuls in

(é2,6)P = FTr 6607, &eT),. (25)

Comparimg this with the Riemannia metric

(€0,&) N =5Tr (&6 + E16)0 1=Tré&(L MR g,

the inequaliy 4/(L+R)<(1/L)+ (1/R) gives®
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(£,6)PUre=(&, )"
ard equaliy holds if ard only if geT” , or, wha is the same if ¢ commutes witho.
Let ¢1, ... be acomplet orthonormé eigenvecto bass of o =ww* and ¢ with eigenval-

ues \j ad Xj , respectively Then we get from (25) the following quadratt form:

1
2 2 ONT=2 dufs =g

This is an Euclidean metric However restrictal to the stak space where \;, ... becoms a
probability vector, we get Fishers metric (“Fisher—Rao metric”).3’

If the Bures metric is restricted to a submanifall of mutud commutilg states the Fisher
metric is obtained Moreover on any submanifadl of commutilg densiy operators whethe nor-
malized or not, the phase transpot is holonomicaly trivial.

Indeed we can form the lift o—w=/g. The assumd commutativiy provides us with

Hermitian and commutative w and x=w, and with ¢ =ww* =w*w= 0. Hene (21) comes down
to a(x) =0, ard the lift is horizontal There is no room for a nontrivid phase.

We see anontrivid geometrt pha® is definitely an effed of noncommutativity We neal for
them curves with mutually not commutirg densiy operators.

V. AUXILIARY TOOLS

In orde to exterd our previots considerationto alarge class of connection® we nead some
auxiliary tools.
Looking at Eqs (23) one can identify functiors of L/R and L/R. The= operatos are relatives

of L/IR=A,,, the Tomita—Takesak modula operato of the representatio b—L, with GNS-
vecta w. The operatos are definal if w™! exists that is for completey entangle w. But, as (23)
shows certan functiors of thes operatos can be defined for evey w.

Let t—f(t) be a function defined for 0<t<<ec. We assune the existene of

f(0):=lim f(t), f(o):=lim f(t). (26)

t—0 t—oo

The assumptia is necessarif we like to exterd the formalism to densiyy operatos which are not
invertible Without it, we hawe to restrid ourselves to completey entangld w, i.e., to faithful
densiy operators.

To trea an exampé with the assumptia (26), we defire f(L/R) =:f(A). The positive opera-

tors L and R commute Let \; bethe eigenvale of ww* ard of w*w with the eigenvectorsp; and
qu’ . The eigenvectorssuitably chosen colled in a complee orthonormé bass satisfyirg the
Gram-Schmid decompositia (8). \; is zemw if j>n,, and positive otherwise Now

Lujk=Njvjk, ﬁvjk:)\kvjk- vik:=] ) {bil.

The elemens v, constitue a complee orthonormé bass of the Hilbert—Schmid spae V. We
like f(A) to be diagonalizak# with eigenvectos v, . Rememberig A = L/R we stat with

f(A)UJk:f()\J/)\k)UJk, if )\k>0
The remainirg possibility is dore “by hand’ in requiring
f(A)Ujk:f(oo)Ujk, if )\J>0, )\k=0,

f(A)Uisz(l)vjk, if )\j=)\k=0.
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With this conventio v;; is an eigenvecto of f(A) with eigenvale f(1) for all j.

The same gane is to play with f(L/R) and f(L/R). While the specta of f(L/R) and f(L/R)
coincide with that of f(A), their eigenvectas are respectively,

|¢j><¢k|zvjivﬁ<’ |¢j’><¢|;|zvﬁvik-
VI. A CLASS OF CONNECTIONS

Our aim is to descrite a clas of connectionsessentiajf tha of Dittmam and Rudolpt®.
Thes objects as will be seen are particulary well adapte to the purification of the H-systen by
tha of W=H®H*. We assune w to be completey entangledso tha ¢ =IIw is faithful (invert-
ible). Whethe it is possibe to skip this assumptioneithe by calculatig modub neutrd tangents
or by continuity argumentsdepend on the asymptott behaviao of certan functions to be intro-
ducel below.

Let [000] 3 s—r(s) e C be asmooh function and r(1)=1/2. Then

(r(L/R)Y)* =r(RIL)y*.
Mimicking Eq. (238 we defire the form
a:=r(L/R)(w™Ldw) —r(RIL)(w™ L dw)*. (2739

It transforns like a connectio and takes anti-Hermitian values To be aconnectim it mug take
the corred values at verticd vectors i.e, a(wa)=a, for all anti-Hermitian a. Thus we neal to
have

T()+r(1t)=1, E(t):=r(t)—r(1lht)=—F(1h), (28)

to get agenuire connectim with respetto the gauge group U(H) actirg by u—R,,. Furthermore,
asaconsequereof r(1)=1/2, one observesrescalig invariane of this connectia form. Indeed,
a is invariart unde w—A(w)w, where N W—R:

ay(X) =ayu(dN (X)W +AX),

so that there is no neal to normaliz w in calculatirg a. The secom equatian in (28) introduces the
function F usal in Ref. 25 to labd their gauge potentials and we are allowed now to rewrite (273
in a manne known alread from (23):

(w™tdw)+(wtdw)*

a=a""+F(L/R) 5 (270)
=a®"+w Y(F(L/R)do)(w 1)* (27b
=w tdw—w (r(R/L)dg)(w 1)*. (270

One returrs to the Bures cas by

a=a¥*%r(t)= %@F(t)=(t— )/(t+1).

Before deriving expressioa for the verticd and horizonta pat of a given tangen x, we draw
an importart conclusion:

The value of a connectim at the lift of a H—tangem isindependenof F, respectivelyr. Indeed,
F(1)=0 ard Lx=Rx for thes tangentsand we get from (27b’) immediately
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I1, (x) e Tl=a(x)=a"x), VF

allowing to exterd a conclusia of Sec IV:

On submanifold with mutualy commutiry densiy operatoss the holonony of every loop is
trivial for the whole class of connectios considere here

Indeed the liftt ¢— /o is horizonta along ever curve of commutirg densities.

To obtan the verticd and horizontd patt of a tangei x let us apply Eq. (270 to x multiplied
by w from the left. We assumd w to be separatig so tha there are no nonvanishig neutral
tangents Therefore

xV&'=xVer=wa(x)=x—(r(R/L)&)(w*) ! (29a
=x—r(A™ ) (x+wx* w* 1) (29b)
=x—r(A"H[x+AY2x], (290

remindirg wx* (w*) “1=AY2Jx=JA "%, (29) reflecs the decompositia of a genera tangent
into a verticd and a horizontd part, see (15). We conclude

X"'= (r (RIL)&)(W*) ~*=r (A~ )[x+AY2x]. (30

A connectim form a regulats the chang of the phag v along a horizontd lift, w;
=\Jow;, of acure g,. We expres a by

a(w)=a(\ov+ (o) v)=a(\evv*v+ () v)
=U*i)+v*a(\/5')v

1 .

NN

11

2\LR

ard see tha the horizontaliyy of w, is equivalem with

=p*v+v*a

Jﬁ—ﬁ) .
—\/F—H\/E (@)v.

=p*p+o* (F(L/R)Jr

S, 11 JR—ALY .
O=vv +§\/ﬁ \/F_2+\/[>(Q) (3D

Onre observesthat there is one and only one connectim in our settirg with a globd horizontal
section p—+/o. Tha connectim is given by

1-t NG
F(t)__1+—\/f' r(t)=

(F(L/R)Jr

VIl. CONNECTION AND METRIC

In this section we specify a class of Hermitian metrics (14) on W, which respecs the purifi-
cation schemeOur first tak is to ak for Hermitian metrics on the complex manifold W, the real
pat of which is compatibé with a given connectim form of Sec VI. We demand At every
completey entangld we W, the verticd tangens are red orthogoné to the horizontad ones In
the cag where there exists a Hermitian metric doing this task the functiors F ard r characterizing
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the connectim hawe to be real In the nex stg we descrile the Hermitian and Riemannia metric
one obtairs by reductian from the purification spa@ to tha of (unnormalized densiy operators.

Startirg with aconnectim (273, (28), ther is sone freedan in the choiee of the Hermitian
metric. It is an interestig questia in its own right, whether by a reasonald condition the
Hermitian metric becoms unique We explain in the lag patt of this section how this can be done.
If we stat from a Riemannia metric on the densiy operatorsthe uniquenes problen is more
involved Neverthelessour additiond condition solvesit alsq at leag for the monotore Riemann-
ian metrics.

To stat our little progran we construt Hermitian metrics (14) by modifying the Hilbert
Schmid scala produg¢ on W by a function k(A) of the modula operator Like R ard L the
modula operato A depend on w. Our ansat for the Hermitian produd in T,V reads

(Xz X)w= (X2, K(Ay) " Xq), (32

wherk isared positive smooh function defined eithe only on 0<t<« or on the closed interval
0<t=<o. We use the rules explaina in Sec V. There are two main merits with suc a choice of
the modified Hermitian metric The symmety group of the metric contairs the unitaly group
U(H) X U(H*). The secom is the rescalimy invarian@ of A unde w—A(w)w, where \(w)
denota (a sufficienty smooth red function on W. Rescalilg invarian@ is a further reasm nat to
insig on normalizel densiy operators.

In determiniry the connectim form compatibé with (32), we follow the recipe of Sec lll. We
neel the real-orthogonbcomplemen of the verticd directions They are to gain by the metrical
independeneof verticality. Namely, if a tangen x is red orthogonéato all verticd ones k(A) ~*x
is horizontad with respet to the Hilbert—Schmid metric Therefore as shown in Sec IV, we are
allowed to write x=gw with a Hermitian g. Conclusion;

A tangent x is horizontd with respet to (32), if it can be representd as

x=k(A)(gw)=k(L/R)(g)w, g=g*. (33

The red spae of horizontd tangens is the fix point set of an antilinea operatorS';v, acting
on W. Our notatian is borrowed from tha of the Tomita—Takesakoperato S,,=J\/A, which will
be returna if k=1. Our definition is

Sl=dk(ATHK(A) THA=K(A)K(ATH TS, (343

If this operato acts on x=Kk(A)(gw) the resut isk(A)(g*w). Comparisa with (33) establishes:
x is afix point of S'fv if and only if x is horizontal.

The squae of the operato (343 is J%; compae (11). J? isthe identity of Wiff wisinvertible.
Further the adjoirt of S'fv with respet to (32) is VAJ and as it shoutl be, independenof k.
(Tomita—-Takesaktheow callsit“ F,,.” ) Finally we polar decompos (343 to get the appropriate
modificatiors of the modula operatoy A=A,,, ard of the modula conjugation J=J,,,

Sh=duIsil AL=ISi, (34b)
AK=Kk(A"Hk(A) A, IK=3Vk(A"DHk(A) L (340

We now ask for the connectim coming with the metric. The connectim form belongirg to
(32 annihilates all the horizonta vectoss (33). This reasoningapplied to (273 or (27b), deter-
mines the function r or F. The calculation shows in accordane with (28),

tk(1k) tk( 1) —k(t)

r(t)= m, respectively, F(t)= m (35
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Obviously the functiors r and F are rea valud if the connectia is gained from a Hermitian
metric (32). A cross chedk of (35) is in settig k=1. We gé& r(t)=t/(1+t) and F(t)=(t
—1)/(t+1) asit shout be for the Bures case.

On the othe hand given r or F, ther is sone freedan for k since the induced connection
depend on k(t)/k(1/t) only.

k() ot C(t-1)
- e 0= FO= g

— 50e0
1+t a=a,
K(t)

1
—_— = — = = can
k(1h) ter(t) 5 F(t)=0, a=a""

In particular there is no modification of the Tomita—Takesak operatos by (34) if the connection
is a%°. More generally from (35) we get

KO r)  1-F()
K10 L rn CITFQ

(36)

ard find, remarkaby enough the modified Tomita—Takesak operatos (34) dependig on F only.
Further by (36), the positivity of k enforces the inequality

—1<F(t)<1 (37

for F to be obtainal from a k. In orde to invert (36), the inequaliy is alo sufficient According
to (28) one need only to chek F<1 for red F. Then given F, the gener& solution of the
problem is

k(t):=\t(1—F(1)q(t),

g being an arbitray positive function fulfillin g q(t) =q(/t).

We startel from a Hermitian metric on W, derived conditiors for horizontality, and deter-
mined the connection Now we go badk to H ard to its densiy operators We ask for the
Hermitian and Riemannia metric induceal on the spae of densiy operators That is, with two
tangentst and » at [Iw=p, we are concerned with

&)t (6,
(7,6)g:=(y" X"y, Re(ﬂ.g)e:w.

x"°" and y"°" are the horizonta lifts of £ and 5. In the present paper thévaluedR-linear form
& m1—(n,€), is defined on the red tangentsNeverthelessfor obvious reasonswe cal it “Her-
mitian.” Relying on (30) we conclude

hor yhory _ / r(R/L) = r(R/L)Z
(VXN =Trr (LR ey (6= Tr g &
so that
- RK(L/R) (383
=Tr
(7 =TT R+ LKRIDTE

where r has been substitutel by k by the aid of (35). The red pait is aRiemannia metric. By
standad rules we get
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1
Re(7.€) =5 T 1 RIR) F LR(RIL) & (38b)

PetZ%1?was able to classify all monotore Hermitian metrics on the stae spacei.e., those for
which (-,-), does nat increag unde the action of completey positive and unitd mappings At
the heat of his resut is the characterizatin of a monotore metric by an operate monotone
function f, definel on 0<t<o, sud that

1 -1
(7775)922'” ﬁmé (39

(The factar 1/4 is anormalization convention). Note tha this Hermitian metric become symmet-
ric, and hen@ a Riemannia oneg if ard only if the function f satisfies f(t) =tf(1/t). A function

with this algebrat propert we cal self-transposedollowing the terminology for operato means
introducel in Ref. 3. Presently however the monotoniciy of the metric (39) or of its red patt is

not assumedWe neal amore generaframe Having thisin mind, we compae (39) with (383 and
obtain

~(k(t)+tk(Lh))?

This equatim has aunique solution for k dependig on f, therefore evey Hermitian metric (39)
can be reachd by exacty one Hermitian metric (32) on the purification space Indeed the har-
monic mean of f(t) ard its transposetf(1/t), yields

1 1 4
T T T k(O tk(h)

so that one can inset this into the right-hard side of (40) to expres k by f:

B 4t2F(1h)?
Moreover using (35) we get
()= f(t) _ f(t)—t(1h) 42

fortan’ T O oraan

Thes equatios descrile the relation betwea the connectim on W and the Hermitian metric
living on the densiy operatorslt is Riemannia iff f is self-transposed4l) yields f=k in this
case ard (42) degenerateto r=1/2. Hence if the inducal Hermitian form is Riemannianthe
inducal connectim is necessari the canonicd one This way we do not get an interesting
mappirg from the class of Riemannia metrics to the class of connectionsEspecially the function
f(t)=(1+1)/2 belongiry to the Bures metric canna be gaineal from a%¢° as one might expect.

Moreover if we like to gain the connectim form a%¢, r(t)=t/(t+1), belongirg to the
geometri phasewe need accordimy to (42), t?f(1/t)=f(t) or, equivalently k(t)=k(1/t). If fis
operato monotone so is tf(1/t). Therefore t?f(1/t) is convex (lemma 5.2 of Ref. 3). Thus f is
conve and as an operate monotore function, concave Being convex ard concavef has to be
affine. An affine function on the positive red axis, fulfillin g t>f (1/t)=f(t), is a multiple of t.

If a=a%¢Cand f is operatad monotor with f(1)=1, then f(t)=t.

However for k(t)=1 [respectively k(t)=2t/(t+1)] we ge& a=a%? (respectively a=a®®")
ard obtan from (38b) for the red part

Copyright ©2001. All Rights Reserved.



J. Math. Phys., Vol. 40, No. 7, July 1999 Connections and metrics respecting standard . . . 3261

1 R™!
Re(ﬂ,f)QZZTfﬁfs(L—/R)f (43)

with fg(t)=(1+1t)/2 (respectively f(t)=2t/(t+1)). Thee f; are distinguishd (self-
transposedoperato monotore functions Moreover in thes case (38b) restrictal to the horizon-
tal vectos coincides with the red part of the Hilbent—Schmid metric This is the motivation to
ded in the following with the red pat of the Hermitian metric induced on the stat space.

First of all, this Riemannia metric is of the form (43) with a certan self-transposg function
fs dependig on k. From (38hb) we get

k(t)+tk(1/k
RG] a

f4(t) isthe harmonc mean of f(t) ard tf(L/t), with f given by (40).

Clearly, in startirg with a self-transpos# f there is sorre arbitrarines in choosimg k respect-
ing (44). Moreover given a self-transpose f, the only restrictian for F is —F(1/t)=F(t)<1.
Indeed Eqgs (35) ard (44) then hawe the unigue solution

k(t)=f()(1-F(1)). (49)

In orde to remo\we the arbitrarines in going from fg to F and vice versa or from fg to k, we
impos an additiond requiremehon the class (32) of Hermitian metrics (X,y),,. The aim is to
ensue that given fg, ther is only one k ard one F fulfillin g (35) ard (44). We shal prove that
we med our god for operate monotore f¢ by the following naturd demand:

Condition HS For x and y belongirg to the horizontd space definal by the Hermitian metric
(32), the red part, Re (x,y)w, of (X,¥),, coincides with the real part, Re(x,y), of the Hilbert—
Schmid produd of x and .

At first, by the aid of (33), the condition HS becomes

Re(k(A)(gw),g'w)=Re(k(A)(gw),k(A)(g'w))
with arbitrayy Hermitian g and g'. It yields the constraint
K(t)+tk(1/)=k(t)?+tk(1/)>. (46)

Next, we hawe the following crucid observationwhich one verifies straightforwardly:
There is a one-to-o® correspondene betwe@ positive functiors k fulfilling the constraint
(46) and functiors F with —F(1/t) =F(t)<1. The correspondenreis given by (35) and

2t(1—F(t)

k(t)= : 4
® (1+F(1)2+t(1—F(1))? “0

By (44) or, equally well, by (45) we get the relation betwee F ard f,

2t
(1+F(1)2+t(1—F(1))?

fs(t)= (48)

Hence unde condition HS, a function f can be gainal from a k iff f4 has arepresentatio (48)
with a suitabke F, F(t) <1. To explan which functiors f can be reachedwe rewrite relation (48)
into the equivalen form
1+t fo(1h)(1+1)2/t—1
g = D
2 4

2
—F(t)) .
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Therefore necessar conditiors for fg are f¢(1)=1, fs<(1+t)/2 and moreover t—(1+t)/2
—f4(t) mug be the squae of a smooh function.
Now suppos we hawe sud apai fg,F. We define an auxiliary smooh function

JE(L)(1+1) (t—1
S(t) = ( 2)( )t+1—F(t).
It fulfills
5(t)2=¥—fs(t), Jts(1h) + 8(t)=0. (49)

The secom equatia is aconsequereof F(1/t)=—F(t) and f(t)=tf4(1/t). F can be expressed
in terms of & andfg by

2
t+1  (1+0)F(1h) o).

Conversely for a given self-transpos# f5, f4(1)=1, the possibilities in choosingé with the
properties (49) enumerat via (50) the solutiors F of (48) ard — F(1/t) = F(t). But such an F may
nat fulfill F(t)<1 if we did not choo® appropriate} the sigrs for & in (49). The desired choice
may be neithe unique nor possible But if so, the function k defined by

F()= (50

2
k(1) =77 (Ts(D + V(D) 6(1)) (59

satisfies (44) ard (35).

The question which functiors fg, f(1)=1, bounde by 0<f(t)<(1+1)/2, can arise from F
or, equivalently from a Hermitian metric (32), depend also on regulariy requiremerg on F and
k. We do nat discus this in detail Insteal we hawe the following uniquenes result:

Lemma For ever self-transposeé operato monotor function fg:(0,0)—R with f(1)=1
there exisk exactly one positive real analytic function k:(0,0)— R fulfilling (44) and (46). k and
its correspondig function F are given by

200, t-1 Ttt
k0= 7| 1 =t Vo _1)' (52)
— 2t [ 1+t
FO=t71 Y =1 Vi _1) (53

for t#1 and k(1)=1, F(1)=0.

We prove this assertia in the Appendix (It shoutl be emphasizé tha k ard F are real
analytc althoudh the lag formulas involve 1/|t— 1|, see the Appendix) From this lemma we get:

For evely monotor Riemannia metric (43), fs(1)=1, on the manifold of completey en-
tangld states there exist exactly one Hermitian metric (32) satisfyirg the condition HS such that
the rea part of the induced Hermitian metric is just the given monotom metric For a given f¢ the
Hermitian metric and the correspondiig connectim form are obtainal from (52) and (53).

The obtaina connectim we cal the connectimm associatd to the monotore Riemannian
metric. For the Bures metric we retumn to the Hilbert—Schmid metric ard the connectim above
called a%°,

Sincee we usal only certah properties of operato monotore functiors this assertia would be
true for a large class of metrics but we will not ded with this problem.
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Although the condition HS seens to be natural perhajg ashot commen would be worth-
while. The inducel Riemannia metrics are obtained essentially by taking the red pat of the
Hermitian metric of horizontaly lifted vectors But, becaus of HS, thisisthe sane asthe red part
of the Hilbert—Schmid metric Forgettirg for a momen abou the underlyirg Hermitian metric,
which forced horizontality we can take the following point of view: The monotore metrics are
obtaineal from the originally given Hilbert—Schmid metric similarly to the Bures metric (Sec IV)
wherea the deviatin from the Bures metric is causeé by some constraing on the purifying lifts.

VIIl. EXAMPLES

At first we look at curves of densiy operatos satisfyirg a von Neumam equation
ie=[h,e], h=h*, h=0 (54)

ard their lifts. We may think of he B('H) as of a given Hamiltonian ard of the curve parameter,
t, as time. This interpretatio is not obligatory. h may be the generato of arny one-parameter
group (The parametet shoull nat be confus@ with the use of the sane letter as a dummy
variabk in severafunctiors likef, k, r, F.) To fix asolution of (54), we stat at an initial time, t;,,
with an initial densiy operato g;,. The solution may be written

Ot=U{ Qinly, Up=exp(t—tiph. (55)

Now a gener4lift w, is polar decomposedw,=+/o.v,, accordimy to (9).
Our aim is to prove the following: Given a connectim form and an initial g, at t;, thereis
a t-independenHermitian h sud that

uw=exd (t—t;,)h (56)

implies horizontality of w,. At first we see from (55) and (56) the validity of a Schralinger
equatio in W,

iw=Hw, Hw:=hw—wh. (57)

By the help of our menagee of equatiors it is not particulary difficult to prove the statement
abowe and to obtai an expressia for h. At first let us multiply (57) by w* from the right. By (30)
the condition for horizontaliy is in equatiy iww* with r(R/L)ig. Now (54) yields

r(R/L)(he—oh)=ho—whw*.

This equatia is sufficiert to guarante horizontality Now whw* can be computel by (56) to

ufvJeinh Joiu; . Therefore our horizontalily condition is the Ad-transfom with uy of the equa-
tion

r(Rin/Lin) (h@in—01nh) =hoin— Voihven,

where Rand L at t=t,, is indexal by in. In othe words if we choo® h t-independenard v
accordim to (56), we can satisfy the horizontality condition.

To get auniqueh, we require the suppot of h to be smalle than that of o,,. Finally, with the
help of (28), we get the expression

h=(JRILr(L/R)+ JL/Rr(RIL))h, t=t;,. (58)

Let us conside a solution (55) of (54) from t;, to ty,. Then wo Wi, is agauge invariant Its
trace in H,
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(Win aWout) = (Win ’[eXp [ (tout_tin) H ]Win) =Tr \/Q_m QouteXp(i (tin_ tout)h)eXp(i (tout_ tin)ﬁ)i
(59

may be called a relative geometre phase For pure states tha objed has beean introducel in Ref.
38. Thes authos called it the “non-cyclic geometre phase.” One may think of shortcuttirg the
in- ard the out-staé to aclosal curve by a Fubin Study geodesi arc. Whethe one has asimilar
interpretatio in our much more generd cas remairs an open question.

For a cyclic solution of (54), i.e., @in=_Cout: teycle=tour—tin, the expressia wy,wi, is a
(pointed holonony invariant i.e., it depend on the choice of g;,. To chang the in-stak of our
cyclic curve one has to perfom a u;-transformationConsequentlyall eigenvalus of wg,w;, are
(absoluté holonony invariants of our cyclic curve They are encodd in the traces

Tr (WoutWi’;)m: Trleinexp(— itcycleh) eXp(itcycIeF')]mv (60)

where exp(—ite,qd) commutes with g, .

Ther are a few examplas where one can becone more explicit. One of them is in adding
noise to a curve of pure states p,;. In this importart exampk one can study the influene of
“noise” on the geometrc phase and the behavio of gaug and holonony invarians in coming
from the interior to the extreme bounday of the core of unnormalize densiy operatorsFor this
purpo® we fix two positive red numbersa andB, and consider the curve of density operators

e=ap+pl p=l(yl. (=1 (61)

a+ B is a simple ang3, if n denotes the dimension @i, a (n—1)-fold eigenvalue op. «, pand
¢ depem on a parametet, but we will not suppog avon Neumam equation.
Remark The line elemen of this curve with respet to the metric induced from (32) is

2a(1—171) B
0 KT TR UBwes T
where ds3,,.cdenote the Bures line elemer of the curve of pure states p, . O

All t-derivatiors will be indicatel by a dot, in particular
e=ap, p=pp+pp, ppp=0.
o belong to 7*. As an application one calculates
Rop=Pp(ap+BL)=(a+B)Pp+BPP.
In this manne one gets
Ro(PP)=BPP, Ry(PP)=(a+B)pp,

Lo(pP)=(a+B)pp, L,(pp)=pBpp

and finally, skipping the index of L, and R, ,

. atpB\ . . .
(L/R)(pp)=(—)pp, (L/R)(pp)= Pp-

B atp

For instance pp ard pp are eigenvectos of LR with the eigenvale («+ 8) 8. At this stage we

do nat suppos avon Neumam equatia (54) but rely on (31). From the lag equatio and F(t)
=—F(1t), we get

Copyright ©2001. All Rights Reserved.



J. Math. Phys., Vol. 40, No. 7, July 1999 Connections and metrics respecting standard . . . 3265

F(L/R)p=F

B\ . .
m)(pp—pp)-

Hence in solving (31) with (61) we are faced with an equation

S P +‘“+B_@<p'p—bp), (62
2J(a+p)p| \@+tB) Ja+p+p

which may be rewritten as

P =0t (L= w)(PP-PP),  u= 5 F( £ )+“+23. (63
2J(atp)pl \atB @
Can we go by 8—0 to the pure states? A necessary condition is
F(0)=-1
or, equivalently r (0)=0. To be sufficiert we additionaly neal the existene of
k= lim M=|im1+Fm=nm AV (\). (64)
-0 a—0 2YN -0
Then the limit B—0 can be performed i(62):
(v0*)P*= (1= x)(PP—PP). (65

With a%¢ or, more generally with s>1/2 in r(\)=\%(1+\%), we get k=0. With k=0 we
obtain the Berry phas for pure states.

Indeed imposirg (¢, ) =0 alaBerry’ ard Fock’, we find v* ¢+ v* =0 from (63). Hence,
with k=0, the vectow* i is t-independent. This yields'=|¢){(¢|, ¢=0. It then follows

Tr (Woutwiﬁ)m: ( in s ‘ﬁout)m'

This is the mth powe of the Berry phase becaus we had supposd the validity of Berry’'s
transpot condition Remak tha this goes nat throuch if k=0 or if, as fora®", (64) does nat exist.

Somethilg more can be sai if (61) satisfies a von Neumam equatia (54). Computirg h with
this assumptia by the help of (58) ends up with

h=h+ u[ (1= pi)hpin+ Pih(1=pin) ] (66)

Looking at h as a block matrix with respet to p;, and 1—p;,, the deviatio from h is in
multiplying the off-diagona blocks by w. If (64) exists andk=0 then the off-diagonal blocks
becone zemw at the pure stak limit.
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APPENDIX: PROOF OF THE LEMMA OF SECTION VI

Evely self-transpos# operate monotore function fg with f((1)=1 has a unique integral
representation

f o L f 1+x[ t o,
{(O=moh ==+ ] o |x era) 9m
_1+t+f et 1ex( t ot ]
=2 "oyl T2 T2 i Tk )| 9M
=—-(1 tZJ _ X+l d Al
= 1=y (0.2(t+X)(Ix+1) m(x), (A1)

where m is a normalizel positive Radon measue on [0,1], see Ref 3. If the measue is not
concentrate at 0, the lag integrd is strictly positive for all te R, . Its positive root, for the time
being denotel by 7, is a real analytic function. Hence, every such functigrtan be represented
as

1+t
fo(t)= —— = (t=1)%n(1)? (A2)

with a certainr, positive or trivial. Therefore, (1 t)/2— f4(t) has exactly two red analytc roots,
o()=(t=-1)7(t), o_(H)=—(t=1)7(1),

or is vanishing The self-transposensof f¢ implies 7(1/)=\t(t) and both roots fulfill the
condition (49). As explainal in Sec VII, asolution for k of our problan correspondto such aroot

8, which leads via (50) to F(t)<1. We infer: If selectig the root 6. , the condition F(t)<<1, t

>0, is equivalen to f(t)>1/2 for all t>1. Becaus f is monotore increasiig and f4(1)=1 the

latter inequalily is true On the othe hand F cannd fulfill F(t)<1 for all t>1 if theroot §_ is

chosen except 6_=0. Otherwie we could concluce f¢(t)>t/2 for all t>1. But the self-

transposenesseffecs f (1)=1/2 and f mug be concave Therefore, §:=6, is the only real

analytic root leadirg to an appropria¢ F. Inserting

t—1 1+t
SO=(t-Dr= =g\~ &1)=0, (A3)

into formulas (50), (51) yields (53) ard (52).
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