
LEIPZIG UNIVERSITY

FACULTY OF PHYSICS AND EARTH SCIENCES

INSTITUTE OF THEORETICAL PHYSICS

COMPUTATIONAL QUANTUM FIELD THEORY

MASTER THESIS

Two Perspectives on the
Condensation-Evaporation Transition of the

Lennard-Jones Gas in 2D

submitted by:
Franz Paul Spitzner

Supervisors:
Prof. Dr. Wolfhard Janke
Dr. Johannes Zierenberg

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science (M. Sc.)
in Physics (IPSP)

June 4, 2017

http://www.zv.uni-leipzig.de/
http://www.uni-leipzig.de/~physik/
http://www.physik.uni-leipzig.de/
http://www.physik.uni-leipzig.de/index.php?id=22




iii

Declaration of Authorship
I, Franz Paul Spitzner, declare that this thesis titled, “Two Perspectives on the Condensation-
Evaporation Transition of the Lennard-Jones Gas in 2D” and the work presented in it
are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:





v

Contents

1 Introduction 1

2 Model and Methods 3
2.1 The Lennard-Jones Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Domain Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Canonical Ensemble and Neglecting Momenta . . . . . . . . . . . . 8
2.2.3 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Grand Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Update Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Advanced Simulation Techniques . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 The Multicanonical Method . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Parallel Muca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Muca in the Grand Canonical Ensemble . . . . . . . . . . . . . . . 18
2.3.4 Reweighting between Ensembles . . . . . . . . . . . . . . . . . . . . 21

2.4 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Cluster-Size Identification . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Theory 27
3.1 Finite-Size Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 The Condensation-Evaporation Transition . . . . . . . . . . . . . . . . . . 27

3.2.1 Crossing at Fixed Temperature . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Crossing at Fixed Density . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Transition Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Isothermal Compressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Results 43
4.1 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Fixed Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Infinite-Size Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Transition in Reduced Parameters . . . . . . . . . . . . . . . . . . . 50
4.2.3 Finite-Size Behaviour at Fixed Temperature . . . . . . . . . . . . . 52

4.3 Fixed Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Finite-Size Behaviour at Fixed Density . . . . . . . . . . . . . . . . 56

5 Conclusion 61
5.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 63





vii

List of Figures

1.1 Snapshots of Typical Configurations . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Full Lennard-Jones Potential . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Illustration of a Domain Decomposition . . . . . . . . . . . . . . . . . . . . 4
2.3 Lennard-Jones Potential with Cutoff and Shift . . . . . . . . . . . . . . . . 5
2.4 Beating the Barrier using Flat Histograms . . . . . . . . . . . . . . . . . . . 13
2.5 Illustration of Parallel Muca . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Jackknife Errors for Different Bin Sizes . . . . . . . . . . . . . . . . . . . . 25

3.1 Pressure-Temperature Phase Diagram . . . . . . . . . . . . . . . . . . . . . 28
3.2 Finite-Size Scaling Directions at Fixed Temperature . . . . . . . . . . . . . 29
3.3 Snapshots and Probabilities for Different Densities . . . . . . . . . . . . . 29
3.4 Reduced Free-Energy Function . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Finite-Size Scaling Directions at Fixed Density . . . . . . . . . . . . . . . . 33
3.6 Isothermal Compressibility as a Measure of Peak Width . . . . . . . . . . 41

4.1 Histogram of the Suggested Index for Particle Deletions . . . . . . . . . . 45
4.2 Probability Distributions of Density for Different Temperatures . . . . . . 45
4.3 Influence of the Chemical Potential . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Probability Distributions of Density for Different System Sizes . . . . . . 47
4.5 Infinite-Size Quantities at Fixed Temperature . . . . . . . . . . . . . . . . . 49
4.6 Finite-Size Scaling of the Planar Surface Tension at Fixed Temperature . . 49
4.7 Transition in Reduced Parameters . . . . . . . . . . . . . . . . . . . . . . . 51
4.8 Probability Distribution of Energy . . . . . . . . . . . . . . . . . . . . . . . 54
4.9 Droplet fraction and its Thermal Derivative at Fixed Density . . . . . . . 55
4.10 Energy and Specific Heat at Fixed Density . . . . . . . . . . . . . . . . . . 55
4.11 Finite-Size Scaling of the Transition Rounding at Fixed Density . . . . . . 57
4.12 Finite-Size Scaling of the Transition Temperature at Fixed Density . . . . 57
4.13 Matrix Plots of the Transition Rounding in 2D . . . . . . . . . . . . . . . . 59
4.14 Matrix Plots of the Transition Rounding in 3D . . . . . . . . . . . . . . . . 59





1

1 Introduction

In both, science and industry, phase transitions play an important role; especially the
condensation-evaporation transition, also studied in this thesis, has shown to be of long-
lasting interest [1]. One may say it is one of the prime examples when talking about
nucleation theory, which itself is a vast and well established field of Statistical Physics
[2–4]. Consequently, current research involving this or similar phase transitions is as
multifaceted as it is meticulously scrutinised by the scientific community.

Exemplary, objectives range from increasingly sophisticated procedures such as surface
growth, where condensation is an underlying process [5–7], to theoretical reconsidera-
tions of the universality class of the transition [8]. However, the most apparent applica-
tions evolving, amongst others, around our transition are weather models and forecasts,
the long history and economic relevance of which are indisputable. Not only due to the
historic evolution but also because of their complexity, many of the involved processes,
such as nucleation rates, are modelled via efficient parametrisations [9], some of which
are heuristically obtained. While this is a justified approach, the optimisation of param-
eters and microphysics still requires a bottom-up understanding.

FIGURE 1.1: Snapshots of the two phases we are interested in: a homogeneous gas phase
on the left and an inhomogeneous phase featuring a liquid droplet with surrounding gas
on the right. Note that in the chosen, simplified model, particles have no actual volume or
mass. Thus, the size of the point-particles in the figure is arbitrary.

This leads us exactly to that one thing physicists love to do: describing a complex pro-
cess or phenomenon through a basic model to focus on essentials. So, in order to look
at the condensation-evaporation transition, we employ a Lennard-Jones gas that con-
sists of a short-range interaction potential acting between massless point-particles as
a representation of atoms or molecules. As illustrated in Fig. 1.1, we can then distin-
guish between a homogeneous gas phase (left) and a mixed phase consisting of a liquid
condensate with surrounding vapour (right). Despite having simplified the problem
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significantly, we can only simulate systems of limited complexity and size in computers,
even with today’s ever more capable hardware. For this reason we are going to apply
a finite-size scaling analysis [10–12], which allows to predict the macroscopic behaviour
(corresponding to an infinitely large system) from a number of finite but differently
sized systems.

In our context, two formulations to obtain the finite-size scaling have been established,
both of which yield the same leading order behaviour. One of them was originated
by Binder et al. [13–18] and works by identifying the transition through the chemical
potential, where the surface free energy is minimised during the derivation.

The other formulation, presented by Biskup et al. [19, 20] utilises similar assumptions
(including free-energy contributions due to the condensate and gas) but uses the influ-
ence of the droplet size on its probability to introduce an excess fraction that describes
the amount of excess particles within the single equilibrium droplet, if it exists at all.
Thereby, an explicit treatment of the chemical potential is not necessary. The charm of
this approach is its frugality; a generic although genuine derivation is presented, which
suffices with bare necessities. By only considering local density fluctuations in the gas, as
well as the surface contribution of the droplet, a self-consistent formalism arises without
specific requirements on the model. It feels truly coherent.

We will proceed with this thesis by giving an overview of our used models and meth-
ods. Within the theory section, we will then follow Biskup et al. and recapitulate the for-
malism, which has already been verified for the discrete lattice gas [21–23]. In the given
references, Monte Carlo simulations were used along with the equivalence between lat-
tice gas and Ising model [24], but we will stay in continuous space and validate the
theory for the Lennard-Jones fluid. To that end, grand canonical Monte Carlo (GCMC)
simulations are performed, which allow us to evaluate density fluctuations. Various
similar investigations involving the grand canonical ensemble have been conducted by
Wilding et al. [25–29], although with a focus on the behaviour near the critical point.

So far, all mentioned references and considerations took place in what one could call
the native regime. Therein, temperature is assumed to be fixed at all times and the phase
transition is driven by density; we expect a known particle excess, and the remain-
ing question is whether it contributes to local density fluctuations in the gas or a liquid
condensate is formed. When keeping one’s focus on density and temperature, a second,
orthogonal regime can be studied, as it was done by Zierenberg and co-workers [30–34].
In this regime, the transition is driven by temperature while keeping the density fixed.
The according leading-order scaling of the transition temperature was analytically de-
rived based on Biskup’s formalism and cross-checked with multicanonical simulations.
Since data was only created for the 2D and 3D lattice gas as well as the 3D Lennard-
Jones gas, this leaves a vacant spot to fill and provides a great starting point to have a
closer look at the Lennard-Jones fluid in two dimensions.

All in all, we have two goals in this thesis. Firstly, we want to fill the gap just mentioned
and possibly give a comparison between the results for the different models and dimen-
sions. Since the simulations of the fixed-density scheme will take place in the (multi-)
canonical ensemble, this should be a diligent but rather routine piece of work. Having
said that, it opens the door for our second concern; once we manage to also create a sim-
ilar set of data in the fixed-temperature scheme, we can provide a truly well-balanced
look at the condensation-evaporation transition. In an ideal scenario, this includes the
respective theory, Monte Carlo simulations and subsequent finite-size scaling analysis
for both regimes.
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2 Model and Methods

2.1 The Lennard-Jones Gas
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FIGURE 2.1: Schematic of the Lennard-Jones potential. The characteristic length and
energy scale are set by σ and ε, respectively.

This thesis focuses on the Lennard-Jones gas, a continuous particle model. The accord-
ing potential, in the literature also referred to as Lennard-Jones or 12-6 potential, de-
scribes the interactions between individual particles:

V (rij) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)
, (2.1)

where rij is the distance between the i-th and j-th particle. We see that the energy
scale is given via ε, while σ sets the characteristic length scale as illustrated in Fig. 2.1.
Furthermore, the potential may be expressed in terms of rmin = 21/6σ, the distance at
which energy is minimised

V (rij) = ε

((
rmin

rij

)12

− 2

(
rmin

rij

)6
)
. (2.2)

In order to take all particles of the system into account, we have to calculate the pairwise
interaction and include all pairs to obtain the Hamiltonian

H =
1

2

∑
i 6=j

V (rij) . (2.3)
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The Lennard-Jones potential is only one part of the description of the system we are
going to investigate. We also assume a number of massless and dimensionless particles
in a two dimensional simulation volume. Moreover, we look at particle numbers for
which the fluid is sufficiently dilute. In other words, we adjust the particle number
per volume or particle density to be somewhere in the region of typical gas and liquid
phases. While this may seem trivial, it has some important implications; since we do not
take solid configurations into account, geometric constraints such as optimal packing
ratio do not play a role. Besides, there is a typical scenario where one particle will only
have very few other particles close to itself and the majority is rather far away.

2.1.1 Domain Decomposition

Without any modification, the interactions due to the potential have infinite range but
are formally short range. The immediate consequence is that we have to do computa-
tions of order N2 for a system containing N particles. In addition, we have to calculate
even the tiniest of interactions for particles very far away, which on average, do not
contribute much to the total energy. Long story short, in most simulations done today
a cutoff radius rc is introduced, beyond which the potential is ignored; the so called
domain decomposition is then a useful tool to further speed up the computation. It
is shown schematically in Fig. 2.2. In the left sketch, one has to calculate interactions
between the blue particle of interest with all other particles, no matter how far away
they are. On the right-hand side, the whole volume is split into boxes that are sized
according to the cutoff radius. Hence, to calculate the energy due to the blue particle, it
is sufficient to consider the black particles located nearby within neighbouring boxes.

FIGURE 2.2: Comparison of required interactions for a (blue) particle of interest: without
decomposition, all particles have to be considered (left sketch). When the domain decom-
position is used (right sketch), only particles within the neighbouring domains need to be
included into calculations.

When limiting the interaction range, the potential has to be modified. One way is to just
truncate for radii larger than cutoff radius, which will cause an actual jump in the value
of the potential when crossing said radius. The straight forward way to avoid this is to
shift the original potential by its cutoff value. Both situations are illustrated in Fig. 2.3.
Subsequently, one has to decompose the volume. Wilding [25, 26], for instance, chose



2.2. Monte Carlo Simulations 5

to define the system size in integer multiples of the cutoff radius, thus, domain length
and rc are precisely equal. This integer division was then understood as a reduced unit
for the length scale. However, we wanted to employ real numbers as the system size,
therefore, our domain length was determined at runtime to be as small as possible but
still larger than the cutoff radius.

����
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-ϵ*

�(���)

���� ��

��� � �����

���

FIGURE 2.3: Illustration of two different ways to limit the interaction range of the po-
tential. Other methods exist to smooth the discontinuity at rc (for Molecular Dynamic
simulations) but were not needed for our Monte Carlo based studies.

A further complication when comparing results with aforesaid reference is that a trun-
cated but not shifted potential was used there. This leads to systematic deviations for
most observables. Apart from test runs to verify the program with references, our sim-
ulations were performed using the following truncated and shifted potential:

V ∗(rij) =

{
V (rij)− V (rc) rij < rc = 2.5σ

0 else
. (2.4)

2.2 Monte Carlo Simulations

When talking about computer simulations utilising Monte Carlo methods, it is benefi-
cial to recapitulate the most essential underlying concepts. As noble and well intended
as this sounds, one walks a thin line between delivering necessary background and
getting lost in detail. Hence, we shall, while referring to the literature, favour verbal
summary over explicit mathematical formulation in this section.

Since Statistical Physics deals with many-particle systems, one needs to distinguish be-
tween microscopic and macroscopic descriptions; while the former treat individual par-
ticles or the interaction between them, think equations of motion, the latter deal with
properties of the system as a whole, e.g. its specific heat. One can measure a number
of such observables, or the macroscopic state of the system through a real experiment.
The microscopic state, on the other hand, is an exact configuration of the system, corre-
sponding to a single point in phase space, which in turn is spanned by the generalised
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momenta p̄ and positions q̄ of all particles. For an N -particle system in three dimen-
sions, phase space is consequently 6N dimensional and using the Hamiltonian H(p̄, q̄)
one can calculate the energy of any such configuration. One can also track the trajec-
tory of the system through phase space via the equations of motion in order to obtain
an average over time of a given observable, say O.

However, there is often no way to know the exact configuration at a given time. Instead,
we focus on the macroscopic state and consider a large number of systems; specifically,
we look at an ensemble of systems in all possible microstates but require every system to
occupy the same macroscopic state. Furthermore, taking the average over the ensembles
at set time instead of taking the time average of a single system will yield the same
result. This is called the ergodic hypothesis; it is also commonly quoted by saying that
all points in phase space are accessible to a given system. Now, what is that probability
to be at a certain point? Let us denote the particular point in phase space or microstate
with {φ} to specify all the required coordinates. The probability of the microstate or the
configuration weight is then WX({φ}), with a probability density

PX({φ}) =
1

ZX
WX({φ}) . (2.5)

Here X denotes the chosen ensemble, often expressed through its natural variables, for
instance, NVT. The partition function ZX is the integral over all the weights over the
whole phase space:

ZX =

∫
{φ}

d{φ}WX({φ}) . (2.6)

We want to point out that the actual configuration weight is dependant upon the chosen
ensemble, and it is not just an intrinsic property of the system. Further, the partition
function, while seemingly simple deserves additional notice, as it is often times straight
forward to write down but impossible to solve.

Using the introduced formalism, we can identify the ensemble average of the observable
O with the expectation value (denoted by the triangular brackets)

〈O〉X =
1

ZX

∫
{φ}

d{φ} O({φ}) WX({φ}) =

∫
{φ}

d{φ} O({φ}) PX({φ}) . (2.7)

2.2.1 Importance Sampling

As we just mentioned, in Monte Carlo simulations one deals with ensemble averages
over a series of measurements taken from different configurations of the studied system.
Those measurements are called a time series, somewhat contradictory to the abandoned
time evolution. Nonetheless, they are snapshots of the systems evolution through phase
space. This probabilistic evolution is called a Markov chain: the system undergoes a large
number of Monte Carlo moves, each of which attempting to change the system from
one configuration {φ} to another one, say {φ?}. This could be done using simple sampling,
where configurations are drawn completely randomly. What we want to do instead is to
draw new configurations from the a priori unknown probability distribution P ({φ}) as
of Eq. (2.5). Thereby, using importance sampling, microstates shall get chosen according
to their weight and a transition has the probability

p({φ} → {φ?}) , (2.8)
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which is only dependant upon the two involved configurations {φ} and {φ?}. Addition-
ally, we want the updates to be ergodic and the system to have no memory of previous
configurations. When looking at systems in equilibrium, the master equation

d

dt
P ({φ}, t) =

∫
{φ?}

d{φ?}
[
P ({φ}, t) p({φ} → {φ?})− P ({φ?}, t) p({φ?} → {φ})

]
(2.9)

is time independent
d

dt
P ({φ}, t) = 0 , (2.10)

thus, ∫
{φ?}

d{φ?} P ({φ}) p({φ} → {φ?}) =

∫
{φ?}

d{φ?} P ({φ?}) p({φ?} → {φ}) . (2.11)

One possible solution is the so called detailed balance condition

P ({φ})
P ({φ?})

=
p({φ?} → {φ})
p({φ} → {φ?})

. (2.12)

Equivalently, we could say that the system has the same probability to go from {φ} to
{φ?} and vice versa. In order to implement this criterion, we usually consider the total
transition probability p({φ} → {φ?}) as the product of the probability s({φ} → {φ?}) to
suggest a new configuration and the probability a({φ} → {φ?}) to accept it. Using this
ansatz, we can solve Eq. (2.12) by

a({φ} → {φ?}) = min

(
1,
P ({φ?}) s({φ?} → {φ})
P ({φ}) s({φ} → {φ?})

)
, (2.13)

which is often called the acceptance test or acceptance ratio. Hinting at the following
pages, we want to mention that the suggestion probabilities can either be symmetric or
antisymmetric, the latter ones leading to different acceptance tests for different Monte
Carlo moves.

As a consequence of importance sampling, we may express the expectation value of an
observable in Eq. (2.7) differently than through the integral over the ensemble. Actually,
we already stressed out that configurations are drawn following the probability distri-
bution P ({φ}). Hence, we have probability P ({φ}) to measure the observable O({φ})
that belongs to the configuration, and it makes sense to approximate the expectation
value by the mean of all n measurements taken

〈O〉X ≈
1

n

n∑
i=1

Oi . (2.14)

For later use when comparing data between ensembles, one has to remember that Oi
was measured in ensemble X and implicitly contains the configuration weight WX of
that ensemble.
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2.2.2 Canonical Ensemble and Neglecting Momenta

The canonical ensemble is used to characterise a closed system that is in contact with a
much larger system, that in turn functions as a heat bath. The transfer of energy shall
be permitted, while particle number, volume and temperature are constant, hence, the
canonical ensemble is often referred to as NVT ensemble. One can easily see its rel-
evance, justified by the similarity to real life experiments, for which it is far easier to
control temperature, than internal energy, for instance. Using another ensemble, i.e. the
very fundamental microcanonical NVE ensemble, one can show [35, 36] that the config-
uration weight for the NVT ensemble is the Boltzmann weight e−βH, where β = 1/kBT
is the inverse temperature. Unless explicitly stated otherwise, we set kB = 1 in this
thesis.

Expressed through the generalised phase space coordinates {φ} the partition function
then reads

ZNVT =

∫
{φ}

d{φ} e−βH({φ}) , (2.15)

which is of course equivalent to doing the integration for momenta p̄ and position q̄
explicitly

ZNVT =

∫
dp̄

∫
dq̄ e−βH(p̄,q̄) . (2.16)

This rewriting allows us to highlight an important trick played in most Monte Carlo
simulations; they do not treat momenta. When looking at Eq. (2.16) we see that for a
Hamiltonian that allows to separate momenta and positions, such as for any classical
system in d dimensions, the integrations can be done independently

ZNVT =

∫
dp̄

∫
dq̄ exp

[
−β

(
N∑
i=1

p̄2
i

2m
+ V (q̄)

)]

=

∫
dp̄ exp

[
−β

dN∑
i=1

p2
i

2m

]∫
dq̄ e−βV (q̄)

= (2πmkBT )dN/2
∫

dq̄ e−βV (q̄) . (2.17)

When the observables contributing to an expectation value are no function of momen-
tum, the same trick can be played and the factor cancels. However, one has to be care-
ful: for observables that depend on the distribution of energy, such as involved in free-
energy barriers, an explicit treatment is necessary [33]. Nevertheless, we shall from
now on only consider the configuration part of phase space, unless explicitly noted oth-
erwise. The configurational partition function of the canonical ensemble is

ẐNVT =

∫
dq̄ e−βV (q̄) , (2.18)

where the circumflex in the notation (indicating the difference to the full canonical par-
tition function) will be neglected. The according probability density is given by

PNVT(q̄) =
1

ZNVT
e−βV (q̄) . (2.19)

Since we have effectively reduced phase space, it seems reasonable to revisit the nota-
tion to express microstates via {φ}. Clearly, such a notation does not allow to distinguish
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if momenta are included or left out. While this seems disadvantageous, it is a handy
feature; as {φ} contains all coordinates that matter in the chosen context of ensemble
and phase space, it enables general expressions for partition functions and states to stay
well arranged and to focus on individual coordinates, whilst others of less interest are
neatly grouped.

Let us take a look at the acceptance ratio. The typical Monte Carlo move in this en-
semble is the displacement of one of the many particles in the system. Clearly, if a
random particle is chosen and moved to a random position, the suggestion probability
is symmetric, i.e.

s({φ} → {φ?}) = s({φ?} → {φ}) . (2.20)

Since the probability density is just the Boltzmann weight P ({φ}) ∝ exp [−βV ({φ})], we
can now simplify Eq. (2.13) to

a({φ} → {φ?}) = min
(

1, e−β∆E
)
. (2.21)

Here ∆E = V ({φ?}) − V ({φ}) is the difference in potential after and before the move
and we have just obtained the acceptance criterion of the METROPOLIS algorithm [37].

2.2.3 Density of States

Having discussed the canonical ensemble, this is a good moment to talk about another
concept: the density of states. Starting again with phase space, in which a configuration
is described by a set of variables {φ}, we can calculate the energy of such a state with
the Hamiltonian. We further employ the postulate of equal weights, which states that for
isolated systems in equilibrium, such as considered here, all configurations of equal
energy have the same probability. Under this assumption, one can hypothetically group
and count all the configurations with equal energies up to some infinitesimal deviation
E ≤ H({φ}) ≤ E + δE.

This number is what is called the density of states Ω(E); it is the amount of phase space
configurations with potential energy E. Often, one finds the expression for the canonical
partition function involving the the density of states as

ZNVT =

∫
dE Ω(E) e−βE , (2.22)

where instead of integrating over the configurational phase space {φ}, one now inte-
grates over the possible energy range. Of course, this can be done in any ensemble
where states can be expressed through their potential energy. The general formulation
of a partition function for ensemble X in terms of the density of states reads

ZX =

∫
dE Ω(E) WX(E) . (2.23)

This formulation assumes the configuration weight to be only dependent on energy. If
this also holds for an observable of interest, i.e. O({φ}) = O(E) with E = E({φ}) we can
calculate the expectation value of that observable using the density of states

〈O〉X =
1

ZX

∫
dE Ω(E) O(E) WX(E) . (2.24)
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From here we can identify the energy probability distribution

PX(E) =
1

ZX
Ω(E)WX(E) , (2.25)

which completes the transition. We went from treating a system through its microstates
to a macroscopic representation, where the state variable is energy and the link between
the macroscopic and the microscopic scale is made through the density of states. As a
concluding remark we want to note that the density of states itself fits the description
of a partition function, specifically that of the configurational NVE ensemble.

2.2.4 Grand Canonical Ensemble

Imagine a large volume in which a simulation in a canonical ensemble takes place with
fixed particle number. So, basically, particles are moving around in a large, closed box.
If we now divide the box into smaller ones, we will have a varying particle number in
each sub-volume. This very idea has actually been implemented to evaluate varying
local densities while keeping the total density fixed [38, 39]. Having said that, it would
not make sense to run a simulation of the smaller box using the canonical ensemble.
Thus, let us use this as a motivation for the grand canonical ensemble: it enables us to
look at particle and density fluctuations. The according (so called GCMC) simulations
are especially useful for studying inhomogeneous systems [36].

Instead of a constant particle number N as in the canonical case, we fix the chemi-
cal potential, yielding the ensemble description µVT. The chemical potential quantita-
tively describes how favourable it is to add another particle into the simulation box and
thereby implicitly influences the expected particle number. Since N is not a constant,
another dimension in phase space has to be considered. We adjust the variables de-
scribing the microstates to (N, {φN}), where {φN} includes the configuration of all the
N particles currently present. Minimising entropy under the constraints given by the
ensemble, one can show [35] that

WµVT(N, {φN}) = e−βV ({φ
N
})eβµN (2.26)

is the configuration weight in the grand canonical ensemble. The partition function is

ZµVT =
∞∑
N=0

∫
{φ
N
}

d{φN} e
−βV ({φ

N
})eβµN , (2.27)

which can also be related to the canonical partition function:

ZµVT =

∞∑
N=0

ZNVT eβµN . (2.28)

We have already taken into account that discrete particle numbers imply summation
instead of integration. The probability distribution reads

PµVT(N, {φN}) =
1

ZµVT
e−βV ({φ

N
})eβµN . (2.29)

Furthermore, we want to give the acceptance ratio for update moves. Moving a particle
around within the box is the same as for a canonical simulation, but we have to be
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more careful when inserting particles into the system or removing them. The suggestion
probability of an insertion (for which the particle number changes from (N)→ (N + 1)
and the spacial configuration changes from {φ} → {φ?}) is just

s+({φ} → {φ?}) =
1

V
. (2.30)

We randomly pick a position in the simulation volume V and place the particle. Ad-
mittedly, Eq. (2.30) is unphysical in the sense that one should treat infinitesimal volume
increments. Anyhow, this is not possible due to numerical precision limits in computers
and the derived acceptance criterion turns out the same. For the particle deletion from
(N + 1)→ (N) with {φ?} → {φ}, the suggestion probability is

s−({φ?} → {φ}) =
1

N + 1
, (2.31)

because we have to select one particle to remove, independently of its position. If we
now require detailed balance as of Eq. (2.12), we see that

a+({φ} → {φ?})
a−({φ?} → {φ})

=
s−({φ?} → {φ})
s+({φ} → {φ?})

P (N + 1, {φ?})
P (N, {φ})

, (2.32)

hence,
a+({φ} → {φ?})
a−({φ?} → {φ})

=
V

N + 1

e−βV ({φ?})eβµ(N+1)

e−βV ({φ})eβµN
=

V

N + 1
e−β∆E+βµ . (2.33)

As earlier, employing the expression for the energy difference before and after the up-
date move ∆E = V ({φ?})−V ({φ}), we arrive at the acceptance criterion for the insertion

a+({φ} → {φ?}) = min

(
1,

V

N + 1
e−β∆E+βµ

)
. (2.34)

Following similar reasoning we get the acceptance test for a deletion, i.e. going from
(N)→ (N − 1) and the now different target configuration {φ} → {φ′} with ∆E adjusted
accordingly

a−({φ} → {φ′}) = min

(
1,
N

V
e−β∆E−βµ

)
. (2.35)

2.2.5 Update Moves

When we talk about update moves in the context of Monte Carlo simulations, we refer
to the complete process of changing the system from one configuration to another. That
includes the following tasks: first, a possible new configuration, depending only on
the old one, is proposed. Secondly, the program has to evaluate the necessary changes
in variables needed to check the acceptance criterion; the check itself is then done by
comparing to a (pseudo) random number, which is drawn from a uniform distribution
[0, 1). Depending on the outcome, the new or old configuration is kept. Having said
that, such an update move can be realised in a variety of ways, from flipping a single
spin in the Ising model, to decreasing the volume of an isobaric simulation, or to very
complex cluster updates, that change multiple spins as a group.

Across the simulations in this thesis, a total of four different update moves were im-
plemented. Two of them are particle displacement moves with symmetric suggestion
probabilities, while the other two, specifically the insertion and its reverse, the deletion
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of a particle, require different acceptance criteria due to their different probabilities to
be suggested.

The first move is a simple particle shift. One of the present particles is selected using
a random number and moved by a small amount in a random direction. This small
distance is also determined randomly but so that it is not larger than a given thresh-
old, which was eventually chosen to be 0.8σ. While the prefactor was obtained rather
heuristically, to optimise performance, it is reasonable to adjust the range according to
the characteristic length scale σ. Intuitively, the particle shift seems to be the most nat-
ural update move in the sense that particles only move small steps at a time.

In contrast, the second displacement move (a jump) also picks a random particle but
attempts to place it in a completely random position within the simulation volume,
independently of the original position. For both displacement moves, the energy due to
the selected particle has to be calculated twice; once for the old configuration and once
for the new one, hence the effort is proportional up to at most 2N . Due to the nature of
this move, it is most efficient in sampling the gas phase rather than the liquid phase.

Third in line, but only of interest for the grand canonical simulations, is the insertion.
A position is selected and the interaction a particle would have in the position is cal-
culated. Note that because no particle was present before, we only have to calculate N
interactions this time. Now, the particle number N also influences the likelihood to be
accepted according to the chemical potential. We discovered quite late that it is imper-
ative to not only choose the coordinates of the particle randomly, but also to insert it
in a random position into the list of present particles. Methodically adding particles to
the end of the memory causes a systematic deviation when reweighting to the canon-
ical ensemble. The reason is that the deletion move would tend to select old particles
more often for possible deletion than freshly inserted ones. For more details and an
illustration of this particular issue, please see Sec. 4.1.

The deletion move simply does the opposite; it selects some of the present particles with
probability 1/N and calculates its interaction energy, which is subtracted if the deletion
move is accepted.

Both displacement moves were tested in all simulations, employing different ratios to
choose which move to propose. It turned out that values of measured observables were
not influenced. Nonetheless, the choice which move to propose matters, as the accep-
tance ratios and the time after which the weights for MUCA and MUGC converged were
strongly dependant upon the suggestion ratio. The two algorithms are outlined in the
following section.

2.3 Advanced Simulation Techniques

A common obstacle when dealing with first-order phase transitions, such as the con-
densation-evaporation transition studied in this thesis, is the very strong suppression
of certain states. This can be explained by the phase coexistence at the transition, which
generates a double peak in the probability distribution. Figure 2.4 illustrates this in
terms of energy. Each peak belongs to one phase and states of those energies are very
likely, while configurations with intermediate energies hardly occur at all. In order
to obtain a good estimate of a distribution, our Monte Carlo simulation is required to
sample each energy sufficiently, or to be more precise, it has to gather statistic in both
phases. However, the region of suppressed intermediate states, often called the barrier,
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prevents the simulation from going from one phase to the other within an acceptable
amount of computation time. This section focuses on algorithms and the involved meth-
ods to increase the occurrence of such tunnel events. There are methods that, in simple
words, try to walk around the barrier, such as parallel tempering, but we implemented
two versions of the multicanonical method, MUCA for short. It beats the barrier by sam-
pling from a different, in fact flat probability distribution and subsequently uses mod-
ified configuration weights. The trick is that the original and desired distribution can
be regained mathematically exact in a post-production step using so called reweighting
techniques, as will be discussed in Sec. 2.3.4.

2.3.1 The Multicanonical Method
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FIGURE 2.4: Probability distribution with suppressed states between a double peak:
a) On a linear scale - b) On a logarithmic scale - c) Dividing the continuous distribution
into equally sized bins of discrete values - d) Flat MUCA histogram with manually set
boundaries.

The multicanonical method [40–43] is derived from the canonical ensemble with fixed
particle number, volume and temperature. We have seen before that for this ensemble
the partition function is often written in terms of the density of states. Thereby, the
energy E is used as governing variable. So far, energy was treated as a continuous
quantity, which it is of course, especially for off-lattice systems such as the one at hand.
Nonetheless, computers have finite precision, so let us discretise energy into small inter-
vals or bins of size ∆E. This allows us to express the sampled probability distribution
via a histogram H(E). Whenever a microstate with E−∆E/2 < E < E+ ∆E/2 is mea-
sured, an entry into the according bin of the histogram is made. Since the microstates
are drawn from PNVT(E) we see that

H(E) ∝ PNVT(E) =
1

ZNVT
Ω(E)WNVT(E) . (2.36)
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In the canonical ensemble, the configuration weight W (E) is the Boltzmann weight
e−βE and the partition function reads

ZNVT =

∫
dE Ω(E) e−βE , (2.37)

where for the aforementioned discrete energies, the integral is just a sum. In order to
gain statistics for unfavoured states we now want the probability distribution to be flat,
or in other words, we want

H(E) ≈ const . (2.38)

To that end, we replace the Boltzmann weight with a multicanonical configuration
weight, for which we first assume that it gives a flat histogram. Formally, we can write
the multicanonical partition function as

Zmuca =

∫
dE Ω(E) Wmuca(E) =

∫
dE Ω(E)W(E) . (2.39)

Note the two different notations. While Wmuca(E) is the formal configuration weight of
this new, multicanonical ensemble, we also introduced the curly weightW(E). This was
done to emphasise that those weights are used in the actual simulation and that they
are obtained iteratively in advance, but it mainly highlights similarities with MUGC,
as of Sec. 2.3.3. Again, we want to ensure detailed balance and obtain the acceptance
criterion in terms of the simulation weights. Due to symmetric suggestion probabilities,
a particle displacement that changes the energy from E → E? will be accepted with

a(E → E?) = min

(
1,
W(E?)

W(E)

)
. (2.40)

The remaining question is how the iteration leading to the final simulation weights
W(E) is done. Let us, therefore, look at an iteration step (t) that was performed with
non-final weights W(t)(E) and produced the histogram H(t)(E). The trivial modification
is then done with

W(t+1)(E) =
W(t)(E)

H(t)(E)
. (2.41)

We see that states that were occupied very often, with an accordingly large number of
entries in the histogram, get a lower weight in the next iteration. Unfavoured states,
on the other hand, are assigned a larger weight and should therefore score more often
in the next iteration. This update actually corresponds to the current estimate of the
density of states for the energy bin of interest

Ω(E) ≈ H(E)

W(E)
. (2.42)

We self-consistently update the weights until they match the inverse density of states
well enough, so that H(E) fulfils a certain flatness criterion. Employing the final weights,
we will have a flat histogram and can relate

W(E) ≈ 1

Ω(E)
=

1

ZNVE
. (2.43)

This also gives some understanding of the weights themselves; they are just an itera-
tively improving estimate for the inverse density of states.
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While this method is rather sophisticated and allows to save effort in the production
run, the iteration process to obtain the weights is accordingly challenging and compu-
tationally intensive. It is key to have sufficient statistic for every bin of every iteration
step. In the implementations used in this thesis, we aimed for approximately 106 en-
tries in every bin during iterations. Typically, the algorithm only occupies very few bins
at first and then eats its way towards a flat and broader histogram in later iterations.
This behaviour is actually advantageous and an easy way to tune the performance was
realised by increasing the amount of statistic, depending on the expected numbers of
populated bins. Also, the choice of the initial weight configuration is of some interest.
One could simply initialise the weights according to the Boltzmann weights of infinite
temperature, hence W(t=0)(E) = const, but it turns out that choosing a finite tempera-
ture may be favourable. When dealing with phase transitions, the initial temperature
should be sufficiently above or below the critical temperature. This can be justified by
considering that we need to manually set the lower and upper limit of the energy range,
for which the histogram shall be flat. This requires a preliminary understanding of the
system, but it successfully avoids the iteration from attempting to flatten the histogram
for an infinite energy range. From Eq. (2.41) we see that in order to avoid zero divi-
sions, one has to find a way to deal with empty bins. These are commonly encountered
at the edges of the energy range occupied by the current iteration. Either the weights at
such unoccupied energies are not updated, or one can extrapolate from the last hit bin
with the aforementioned appropriate temperatures, sufficiently below and above the
critical temperature. By doing so, we can usually ensure that the iteration starts at one
border and successively enlarges the sampled energy region until arriving at the other
predefined border.

A major disadvantage of the trivial modification is a certain loss of information gathered
in previous iterations, upon each update. When looking at Eq. (2.41) again, we see
that only the last histogram H(t)(E) contributes to the change. While there is of course
some implicit memory of past iterations encapsulated in the previous weight, we have
no measure how many data points actually contributed in total. Hence, a few unluckily
sampled iterations can ruin a large portion of the previous work.

The solution to this particular issue is the error weighted or recursive weight modifica-
tion [44]. Using this approach, a memory of all the previous statistics is kept and the
weighted average is used to determine how severely weights are changed. To this end,
we introduce the quality parameter q(t)(E), which measures how flat the histogram
is locally. This is done by comparing two neighbouring bins, namely those at E and
E + ∆E through the relation

q(t)(E) =
H(t)(E + ∆E)H(t)(E)

H(t)(E + ∆E) +H(t)(E)
. (2.44)

Doing a quick back of the envelope calculation, one can be convinced that q(t)(E) is
small if the entries in neighbouring bins are different, while a large parameter value,
corresponding to good quality, occurs when neighbouring entries are approximately
the same. Note that this parameter only represents the latest iteration. Therefore, we
shall accumulate those to

Q(t)(E) =
t−1∑
i

q(i)(E) , (2.45)

which offers the desired memory over all previous iterations, excluding the most recent
one. By introducing q(t)(E) and Q(t)(E) we moved the algorithm away from looking at
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individual bins towards a representation where the ratio between bins is considered. In
the same spirit we can express a ratio between the iteration weights as

R(t)(E) =
W(t)(E + ∆E)

W(t)(E)
. (2.46)

We now desire to update this ratio somehow depending on the determined quality of
the last and all previous iterations. Having done so, we then obtain the new weights
from the new ratio. The updated ratio is

R(t+1)(E) = R(t)(E)

(
H(t)(E)

H(t)(E + ∆E)

)κ
, (2.47)

with

κ =
q(t)(E)

Q(t)(E) + q(t)(E)
. (2.48)

Before relating the weight ratio to its physical meaning, let us have a closer look at three
possible outcomes of such an update, in a quite heuristic way:

1. If the neighbouring bins are approximately equal, as it is the case if the used
weights are satisfying, we want to keep them. We see that H(t)(E)/H(t)(E +
∆E) ≈ 1 in Eq. (2.47). Thus, only small corrections are made to the ratio.

2. If both histogram entries are rather different, the exponent κ becomes more in-
teresting. This is the case when all previous weights were actually good but due
to unlucky sampling in the last iteration, the most recent histogram entries differ
greatly. Due to good previous results, the accumulated quality Q(t)(E) will be
large, while q(t)(E) is neglectable. As a consequence, κ→ 0 and the ratio will not
be changed much. The memory helped to compensate for random fluctuations.

3. On the other hand, if most previous weights led to unwanted histograms but the
new iterations provided better results, this would reflect in q(t)(E) being the dom-
inant contribution. Accordingly, κ → 1 and the ratio will be tuned heavily to
incorporate the new information.

We see that the direct update of weights could not check the flatness of histograms as ef-
ficiently as the error weighted recursion. The flatness criterion was implemented rather
implicitly through repetitive sampling with adapted configuration weights. However,
there are certain disadvantages to the more advanced method. Due to the long-lasting
memory implemented in the quality parameter, it is nearly impossible to compensate
for large scale fluctuations. By way of example, if the iteration accidentally jumps to
the second set boundary very early, one can systematically observe oscillations in the
weights and histograms as the energy range is enlarged from two sides. Those oscilla-
tions then prevent the weights from converging to the required criterion. Of course, this
can be avoided by carefully setting the initial weights as described earlier, to ensure a
steady and step-wise but slow exploration of the energy regime.

So far, we made a point of showing the algorithm in a straight forward way and show-
casing self-consistency. We shall now give some physical interpretation from which the
update rule Eq. (2.47) can actually be derived in terms of entropy. Remembering the
microcanonical ensemble, we can relate entropy and the density of states

S(E) = kB ln Ω(E) , (2.49)
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which then allows an identification with the configuration weights

lnW(E) ≈ −S(E) . (2.50)

We see that the configuration weights are our temporarily best local estimates for the
microcanonical entropy. Asking for the difference in entropy between two bins of en-
ergy E and E + ∆E

∆S(E) = S(E + ∆E)− S(E) , (2.51)

we realise that this is nothing else than the logarithm of the inverse weight ratio, intro-
duced in Eq. (2.46)

∆S(t)(E) = ln

[
W(t)(E)

W(t)(E + ∆E)

]
= − lnR(t)(E) . (2.52)

Furthermore, one can see from Eq. (2.51) that for small energy bins, ∆S(E)/∆E is the
derivative of entropy with respect to energy, which is nothing else than the microcanon-
ical inverse temperature β(E). Without going into any detail, we want to point out that
the quality factor given in Eq. (2.44) is in fact just a weight of the estimate for β(E) that
analytically minimises its error for each iteration, justifying the name of this update
method.

When implementing any of the two methods, it is highly commended to store the
weights in a logarithmic fashion and accordingly, to employ logarithmic arithmetic. The
reason for this is again the precision limit of computers when, for example, adding very
large numbers to very small numbers, ranging over orders of magnitude. Further, when
we refer to a flat histogram, we usually mean that entries in all bins do not vary by more
than 10% to 20%. This is for the most part sufficient, but more sophisticated methods
exist, which measure and predict the flatness over multiple iterations. In simple words:
just because the last iteration led to a flat histogram, one cannot be sure that the next
and possible crucial one will again do so. Other variations of MUCA attempt to pre-
dict suitable weights [45] to reduce the iterations needed. We considered and tested
such an ansatz for the thesis but failed to implement in a timely manner. In our final
program, we simply check for sufficient tunnel events, which are a description for the
system moving from one phase to another. A tunnel event is observed when the sim-
ulation reaches an energy value near to one of the set borders after previously visiting
the other border. This also ensures that the whole desired energy range is sampled.

2.3.2 Parallel Muca

Even when utilising the error weighted recursion, the iterative process of repeatedly
sampling with updated weights is often equally or more time consuming than the actual
production run. The parallel implementation of the multicanonical algorithm [46] can
speed up this process by gathering the statistics on multiple threads at the same time.

As illustrated in Fig. 2.5, we have i = 1, ..., n threads, each generating its own histogram
H

(t)
i (E) using the shared weights W(t)(E), which were obtained from the last iteration.

After the sampling, the histograms are collected to a total histogram H
(t)
Σ =

∑n
i H

(t)
i (E)

on the host, which is then processed to obtain the weights W(t+1)(E) for the next sam-
pling step using either update rule. The new weights are then send to all threads to
create the next histograms H(t+1)

i (E) and so forth. Not only does the approach allow
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FIGURE 2.5: Illustration of the parallel MUCA. Each thread creates an individual Markov
chain yielding separate histograms H(t)

i (E) but the threads are still correlated through the
shared weights.

to gather statistics more quickly, but each thread is actually independent and (mostly)
uncorrelated of the others. The only correlation is created through the shared weights,
effectively pushing all the threads in the same direction. When deciding if the weights
are sufficiently flat, we also check for tunnel events, the amount of which should now
exceed the thread count. Thereby, one can be decently sure that every thread sampled
the total range.

One could then use the final weights and let a single thread perform the simulation
run, yielding a single time series. Instead, we usually just divide the desired amount of
statistics onto a number of threads to gain separate time series. Those are then imported
into the post processing routine, each making up one of the blocks from which the
jackknife bins are created. Hence, we choose the number of threads of the production
to match the desired number of jackknife bins; in this work usually 128, see Sec. 2.5 for
details. It has to be mentioned that due to separating the Markov chain, a difference
between the observables obtained from parallel and single-thread implementations are
expected. However, it has been shown in the reference that the (very small) relative
deviation stays constant for an increasing number of threads, while the total amount of
measurements was unchanged.

2.3.3 Muca in the Grand Canonical Ensemble

We now want to adapt the multicanonical method to the grand canonical ensemble and
conveniently call it MUGC. That is, while the original algorithm provided a flat energy
probability, we now aim for a flat probability distribution of the particle number N .
This idea is rather similar to the multimagnetic method, which can be implemented on
lattice systems.

Using Eq. (2.22) and (2.28) we can express the grand canonical partition function in
terms of the density of states

ZµVT =

∞∑
N=0

∫
dEN Ω(EN ) e−βEN eβµN . (2.53)

Beware of the footnote N for every occurrence of energy to clarify the explicit de-
pendence. We now redo the formalism of replacing the original configuration weight
WµVT(N,EN ) = e−βEN eβµN with a chosen, custom one: Wmugc(N,EN ). In contrast to
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the multicanonical method, the iteratively obtained weights W(N) only replace part of
the full configuration weight:

Zmugc =

∞∑
N=0

∫
dEN Ω(EN ) Wmugc(N,EN ) (2.54)

=
∞∑
N=0

∫
dEN Ω(EN ) e−βEN W(N) , (2.55)

or in terms of the canonical partition function

Zmugc =

∞∑
N=0

ZNVT W(N) . (2.56)

We see that the weights used in the production W(N) only ensure equal likelihood for
different values of N but not for energies, since the original Boltzmann factor is kept.
Hence, this procedure only defeats the barrier in one of the two variables. Further,
the weights are only valid for one specific inverse temperature β. The role of inverse
temperature of the multicanonical ensemble is filled by the chemical potential.

Using the same reasoning as in Sec. 2.2.4, the acceptance criteria for insertions and dele-
tions turn out to be different form each other due to asymmetric suggestion probabili-
ties. An update that attempts to insert a particle and thereby goes from state {φ} → {φ?}
at some (N) → (N + 1) with according energy change ∆E = EN+1 − EN is accepted
with

a+({φ} → {φ?}) = min

(
1,

V

N + 1

W(N + 1)

W(N)
e−β∆E

)
(2.57)

= min

(
1, exp

[
−β∆E + ln

[
V

N + 1

]
+ lnW(N + 1)− lnW(N)

])
.

(2.58)

The deletion attempt changing the system from {φ} → {φ′} with (N) → (N − 1) and
∆E = EN−1 − EN is accepted with

a−({φ} → {φ′}) = min

(
1,
N

V

W(N − 1)

W(N)
e−β∆E

)
(2.59)

= min

(
1, exp

[
−β∆E + ln

[
N

V

]
+ lnW(N − 1)− lnW(N)

])
. (2.60)

We explicitly give the criteria using the logarithmic representation as those were even-
tually implemented. Retrospectively, we highly recommend doing so from the begin-
ning, as it removes one possible cause of problems when debugging. While we could
not isolate troublesome issues to be solely dependant upon the lacking precision when
using non logarithmic scales, there is no performance disadvantage, especially when
combining the more precise way with a lookup table.

Given below are two ways to express the probability distribution, which emphasise the
remaining barrier in energy. Comparing to the probability in dependence of particle
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number and energy for the grand canonical ensemble

PµVT(N,EN ) =
1

ZµVT
Ω(EN ) e−βEN eβµN , (2.61)

we give the analogon for MUGC as

Pmugc(N,EN ) =
1

Zmugc
Ω(EN ) e−βEN W(N) . (2.62)

Having done so, we remember that we only achieve a flat histogram H(N) for the
particle number. This corresponds to

Pmugc(N) =
1

Zmugc

∫
dEN Ω(EN ) e−βEN W(N) (2.63)

=
1

Zmugc
ZNVT W(N) , (2.64)

where we had to integrate over all energies EN , possible with the particle number at
hand. This is helpful in the sense that it again warrants the association with the canoni-
cal partition function and we see the similarity to the original MUCA through Eq. (2.36)
and (2.43)

W(N) ≈ 1

ZNVT
. (2.65)

Furthermore, we come to recognise one of the intrinsic challenges with this method.
The iteratively obtained weights have to be based on a sufficiently sampled phase space.
That is, for each of the many particle numbers, enough positions have to be visited to
sample the density of states.

Formally, the presented technique is rather similar to that used by Wilding [28] or
MacDowell et al. [15, 18]. The major difference is that we employ the sophisticated error
weighted recursion to iteratively obtain the production weights W(N) for some chosen
temperature, whereas Wilding’s process systematically moves away from the critical
point, further lowering the temperature in each step. Near the critical point there is
no suppression of the later unfavoured states, as the two phases are indistinguishable.
Consequently, the weights can be used from the previous temperature, yielding a suf-
ficiently flat histogram from which the weights of the next iteration are obtained. One
minor advantage of our approach is abandoning the factor involving explicit values of
the chemical potential. We incorporate this into the weights. Hence, no a priori knowl-
edge of the actual value of the chemical potential is required. Numerical estimates are
gained from reweighting to the equal height chemical potential later, as one would do
with inverse temperature in the MUCA formalism.

In order to acquire the weights within passable amounts of time, rather well tuned pa-
rameters of the simulation are necessary. Firstly, we set the inverse temperature to be
β = 2.5 so that T ≈ 0.9Tcrit is sufficiently below the critical temperature. Secondly and
more importantly, a maximum particle density ρmax = 0.82 should not be exceeded to
avoid a jamming transition. This corresponds to the right-hand (or upper) boundary of
the simulation range and was pretty much determined by trial and error. The problem
with larger densities is the transition into the solid phase, where further insertions be-
come impossible due to constraints such as the packing ratio. The system becomes so
packed that there is no position in which an insertion would cause an acceptable energy
change. This chain of thought also leads to the third and last imperative consideration.
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In contemplation of reaching the before said maximum density, we have to enable shift
moves in the simulation. Theoretically, and this is in fact done by Wilding, one could
suffice without the shift move and realise particle movement through consecutive dele-
tions and insertions. But for our weights to converge, we need many entries in every
bin of the histogram and the deletion with subsequent insertion is not efficient enough
in changing the configuration of a very dense liquid to accept further insertions. The
shift moves allow the system to finely adjust configurations through very local changes,
which correspond to subtle density fluctuations. Having said that, even with all the
tweaking, the algorithm only postpones the critical slowing down [15]. Not only are we
neglecting the energy contribution to the joint (density and energy) probability distri-
bution [27], but to sample the whole phase space efficiently, further factors such as the
actual geometry of the condensate need to be considered [29].

2.3.4 Reweighting between Ensembles

The MUCA and MUGC methods are our preferred choice over common METROPOLIS

simulations. Nonetheless, they involve an additional step of post processing to obtain
the canonical estimates for observables that we are usually interested in.

To start with a general case, say a simulation was done in ensemble Y and we want
to obtain expectation values of an observable O in another ensemble X . Looking at
Eq. (2.14) and keeping in mind that each observation is expected with the configuration
weight of the chosen ensemble, we can reweight with

〈O〉X =
〈O WX/WY 〉Y
〈WX/WY 〉Y

. (2.66)

Here, the configuration weight used in the simulation WY is divided out and the de-
sired target weight WX is multiplied. It seems trivial that the series of measurements
was taken in ensemble Y , as denoted by the outer index, but it is important because it
implicates the underlying phase space including the spanning variables.

For the multicanonical ensemble, the configuration weight is just the production weight

Wmuca(E) =W(E) , (2.67)

and observables are only dependant upon energy, so that we can obtain canonical esti-
mates with

〈O〉NVT =

〈
O(E) e−βE/W(E)

〉
muca

〈e−βE/W(E)〉muca

. (2.68)

Note that the underlying phase space for the canonical ensemble is identical to that of
the multicanonical ensemble. As we can only make a finite amount of measurements
Oi, we again approximate the expectation value with a sum over all n measurements
〈·〉 → 1

n

∑n
i and

〈O〉NVT =

∑n
i
Oi
W(Ei)

e−βEi∑n
i

1
W(Ei)

e−βEi
, (2.69)

where the prefactor was already cancelled. Reweighting from MUGC to obtain a canon-
ical estimate seems possible when taking care of the variables of phase space. Since the
sampling took place for different values of particle number N , phase space of the grand
canonical or MUGC ensemble is larger than that of the canonical ensemble and has to
be projected. The target configuration weight is again just the Boltzmann weight e−βEN
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for the chosen particle number

WNVT(EN ) = e−βEN , (2.70)

and the simulated weight was

Wmugc(N,EN ) = e−βENW(N) . (2.71)

We see that the Boltzmann factor cancels, as it was already part of the simulation weight

〈O〉NVT =
〈O(N,EN )/W(N)〉mugc

〈1/W(N)〉mugc

. (2.72)

The projection from the grand canonical to the canonical phase space is done using the
Kronecker delta, so that only measurements taken for the target particle number are
included in the average

〈O〉NVT =

∑n
i
Oi
W(Ni)

δNiN∑n
i

1
W(Ni)

δNiN
=

1

m

n∑
i

Oi δNiN , (2.73)

where m =
∑n

i δNiN is simply the number of contributing time-series entries. Through
this equation, one can assume that the grand canonical simulation is theoretically just
multiple canonical simulations stitched and mixed together. In fact, one should be able
to recover a valid canonical time series for a chosen observable just by reduction to one
fixed particle number. In order to make this a feasible approach, the amount of gener-
ated statistics of such a grand canonical simulation has to be increased accordingly.

Thus far, this section has only dealt with obtaining expectation values from time series,
which is sometimes referred to as time-series reweighting. For observables of a continuous
nature, such as energy, this is the preferred method, as it is mathematically exact and
allows to recover expectation values to full precision. The second, often more efficient
reweighting technique is the so called histogram reweighting. It relies on collecting the
measurements of the time series into a histogram and requires to discretise the quantity
of interest in order to sort into bins. Picking up energy as an example, this would lead
to a small systematic bias. Assuming we obtained a histogram H(E) from a MUCA

simulation, we can obtain a probability distribution using

PNVT(E) =
H(E) e−βE/W(E)∑
E H(E) e−βE/W(E)

. (2.74)

We can also estimate the canonical expectation value

〈O〉NVT =

∑
E Oacc(E) e−βE/W(E)∑
E H(E) e−βE/W(E)

, (2.75)

where Oacc(E) is the collection of all observables belonging to the energy range as-
signed to the bin. Since the energy contributing to the bin may vary

Oacc(E) =
∑
{φ}

O({φ}) δE({φ})E , (2.76)

which is practically done by picking out those Oi(Ei) of the time series for which Ei
falls into the bin H(E).
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Adapting the histogram reweighting to particle numbers as the binning variable, we
discover immediately that the bias due to discretisation is not present, making it the
preferred choice over time-series reweighting.

2.4 Observables

We are interested in quite a number of physical quantities required for the understand-
ing of the condensation-evaporation transition. Having said so, there are only three
observables that we directly measure during the simulation.

1. The Energy E is an important property of the system due to its current config-
uration. We measure the energy after a certain number of sweeps. Before mak-
ing the entry into the time series, a synchronisation of energy is performed. To
be more precise, the interaction for all particles is calculated explicitly using the
Lennard-Jones potential. This compensates for very small deviations that can oc-
cur due to our update moves, which only change the total energy according to the
energy change of the individually moved particle. Additionally, a histogram is
created and updated after every single Monte Carlo move. While the energy will
be sorted into bins of a certain width, again causing unwanted bias, this provides
way more statistics than could be stored in the time series.

2. The particle number N , while constant in the canonical ensemble, is the observ-
able of main interest in grand canonical simulations. It is recorded in the same
fashion as the energy; note, however, that this histogram is unbiased. Using the
volume, which is constant in all our test cases, one can directly obtain the particle
number density ρ.

3. The number of particles within the droplet ND is of major interest as it is directly
measurable and provides the means to calculate the particle excess in the droplet.
As we outline in Sec. 2.4.1, the measurement of particles in the droplet is costly,
which is why we limit ourselves to recording it in the time series, after each full
sweep.

By employing the canonical expectation value and using the recorded data of the three
direct observables, we derive, for instance, the thermal derivative

∂ 〈O〉
∂T

=
1

kBT 2
(〈EO〉 − 〈E〉 〈O〉) , (2.77)

such as the specific heat CV : for O = E, this is just the variance of the energy. Similarly,
the reduced isothermal compressibility κ̂, see Sec. 3.3, is obtained from the fluctuation of
particle number. From the particle number of the grand canonical simulation, we can
also gather the density in the liquid ρl and gas phase ρg as well as the fraction of parti-
cles in the largest cluster η = ND/N . The reweighted histogram of the particle number
distribution provides the according probability distribution from which we can estimate
the planar surface tension, which along with geometric reasoning [22] allows to obtain
the surface tension of the droplet τ . We repeat the simulations and measurements for
systems of different volume and/or particle number, so that we can study the finite-size
scaling of the transition, especially the transition temperature T Vc . The lower and upper
indices are chosen to highlight that we are looking at the condensation at finite volume.
This transition can be spotted in a number of ways, but we identify T Vc through the
peak of the specific heat, as is characteristic for first-order phase transitions.
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2.4.1 Cluster-Size Identification

We want to know the size of the liquid droplet, which is of course essential to determine
the current phase of the system. To put a name on it, we are interested in the number
of particles within the droplet; from that number we can also estimate the droplet size
using the liquid density.

In the simulation volume, the largest droplet is just the largest cluster of particles. We
decide if a particle belongs to a cluster depending on its distance to another particle,
namely if the distance is below a threshold of

rij ≤ 2σ . (2.78)

A straight forward and simple implementation was chosen in favour of more efficient
but complicated cluster identification algorithms. We naively iterate through all parti-
cles of the system assigning a cluster index and then checking the distance to all other
particles. If close enough, the indices are matched and possibly the size of the so far
largest cluster is updated. No domain decomposition is used. As a consequence, this
task is even slower than a full computation of system energy, if clusters are large.

This is an explicit function call and we do not track the largest cluster size as a system
property. An improvement could be made by updating this quantity as part of the
Monte Carlo moves, for which energies (and thereby some particle distances) have to
be calculated anyway. This would also allow us to make use of the already present
domain decomposition.

2.5 Error Estimation

“Their value [. . .] does, on the other hand, agree well with our result, although since no error bars
were quoted it is impossible to tell to what extent the accord is meaningful.” [26]

Whenever we present data generated by computer simulations, an error estimate should
be provided to judge the credibility of the data. A variety of ways exist to obtain error
bars. The results shown in this thesis use the probably most famous one: the jackknife
method [47]. Therein, errors are obtained in a self-consistent manner, measuring fluc-
tuations. Assuming a time series of a certain length, the series is cut into NB equally
long blocks or bins of size k. Using those, the so called jackknife bins are created by using
all data of the time series except one bin. For each of those jackknife bins, an estimator
OJ,n for the observable of interest is obtained. From those one can calculate the average
jackknife estimate

OJ =
1

NB

NB∑
n

OJ,n . (2.79)

If the estimator is simply the mean, this is identical to the average of the whole original
time series. The squared error is then calculated using the bias corrected estimator

ε2OJ
= σ2

OJ
=
NB − 1

NB

NB∑
n=1

(
OJ,n −OJ

)2
, (2.80)

which also includes the inflation factor to correct for the repeated occurrence of the
same data in most jackknife bins. Evidently, it is straight forward to use the jackknife,



2.5. Error Estimation 25

which is probably why many publications do not elaborate on the details. On the con-
trary, as we attempt to support with Fig. 2.6, using the jackknife correctly can be tricky.
The derivation of Eq. (2.80) is partly based on the binning method, which assumes that
each of the NB blocks is larger than the autocorrelation time. Therefore, all blocks are
taken to be uncorrelated. As we see in the figure, if we choose the size k (of the ex-
cluded block) too small, we will underestimate the error. Conversely, using the the
largest possible block sizes reduces the sum in Eq. (2.80) to very few addends, which
causes heavy fluctuations exceeding the actual error value. All in all, it is desirable to
compromise and to choose a block length in the a priori unknown stable region.
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FIGURE 2.6: Jackknife variance for increasingly large bins. To avoid underestimation, a
certain minimum block size k is needed. Choosing k too large leads to strong fluctuations.
Note the difference in the error between MUCA and METROPOLIS for equally long time
series. This can be explained by the larger energy domain sampled with MUCA; a lot of
statistic does not contribute to the estimator of the target temperature, leading to a larger
variance in the actually contributing data.

To illustrate this, we created three time series for the same system but using different
simulation techniques. Those are a METROPOLIS (indicated red in the figure), a multi-
canonical production run utilising a single thread (yellow) and a parallel multicanonical
run on 128 threads (blue). The length of the total time series obtained for all simulations
is 1.28×106, where the 128 seperate time series of the parallel production were concate-
nated. This was only done in this test case to compare with the other two methods. In
Fig. 2.6 we can clearly identify the stable region for an error estimate. Also note that
the METROPOLIS variance is smaller than that obtained from MUCA, which can be ex-
plained qualitatively by the fact that MUCA samples the whole energy range, including
the possible double peak in the probability distribution. METROPOLIS will only sample
one of them. In addition, the figure justifies our choice of bin size k = 104 for this the-
sis, which we automatically obtain from the parallel MUCA simulations. The individual
time series of each thread are imported as a single bin from which the jackknife bins are
created.
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3 Theory

3.1 Finite-Size Scaling

The main goal of finite-size scaling theory is to obtain information about infinite-size
systems, such as critical exponents and transition points, from the finite systems one
can actually simulate. To this end, the correlation length ξ is of major interest. It is
defined to describe the length scale (determining the exponential decay) over which
critical fluctuations are correlated, or plainly, it measures over what distance variables
at different positions are related.

For second-order phase transitions, the correlation length diverges when approaching
the critical temperature from either side, leading to power-law singularities. Using the
specific heat as an example, we know C ∼ |1 − T/Tcrit|−α, but also that the correlation
length scales as ξ ∼ |1− T/Tcrit|−ν , where α and ν are the respective critical exponents.
Evidently specific heat and correlation length relate through

C ∼ ξ
α
ν . (3.1)

While finite-size effects are negligible as long as ξ/L is small, they become apparent for
ξ ≈ L. Furthermore, as the correlation length exceeds the system dimension L near the
critical temperature, the system size effectively limits the range of correlation and takes
the role of ξ, yielding the finite-size scaling ansatz

Cmax ∼ L
α
ν . (3.2)

For ξ � L, the system is effectively zero-dimensional and cannot exhibit a singularity
[11]. The apparent finite-size effect is the rounding of the singularity over a region of
the driving variable, temperature in the given example.

For first-order phase transitions, such as the evaporation-condensation transition, the
correlation length ξ stays finite at the transition temperature Ttran [12]. As a conse-
quence, no universal scaling as the one outlined above occurs for first-order transitions.
Instead, we observe a jump in energy, or in other words, the discontinuity occurs in the
first temperature derivative of free energy. This also leads to an increasingly sharp peak
in specific heat for increasing system sizes. The properties of the peak still scale in a
systematic way, which we shall inquire.

3.2 The Condensation-Evaporation Transition

The condensation-evaporation transition is a first-order phase transition that takes place
when crossing the coexistence curve of the liquid and gas phase, as indicated by the red
line in Fig. 3.1. Since we are looking at the transition between a pure gas phase and a
mixed phase consisting of a liquid droplet with surrounding gas, this is a sub-transition
of the whole gas-liquid transition. It can be observed for sufficiently dilute systems
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at a temperature below the critical temperature. In this thesis, we are looking at two
different ways to cross the coexistence curve, as indicated by the dashed arrows in the
figure below.
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FIGURE 3.1: An idealised pressure-temperature phase diagram. The line of coexistence
relevant to us is drawn in red. Note the two crossing schemes indicated by the arrows:
crossing either at fixed temperature or at fixed density (which is a non-trivial function of
pressure).

The native approach (or transition regime) is to cross at fixed temperature by varying
the density, which we will shortly discuss in Sec. 3.2.1. This will be accomplished by
increasing the particle number in the volume above the native gas density, thereby cre-
ating a particle excess. The orthogonal approach as of Sec. 3.2.2 keeps the density fixed
and crosses by changing the temperature. While the two regimes seem rather different
physically speaking, it was shown by Zierenberg and Janke [30, 31] that the finite-size
scaling up to first order is in fact the same for both regimes.

3.2.1 Crossing at Fixed Temperature

In this section, we will discuss the theoretical background of the condensation-evap-
oration transition for a fixed temperature below the critical temperature. Looking at
Fig. 3.3, we see that the condensation takes place when increasing the particle number
or density, after starting of in the very dilute gas phase, close to a vacuum. In corre-
spondence to the energy barrier, the probability to observe any of the consecutive mixed
phases is even more suppressed. By further increasing the density, the system enters a
striped phase that minimises surface free energy due to the periodic boundary condi-
tions. An even further increase leads to a phase inverse to our droplet, specifically, a gas
bubble inside a surrounding liquid that eventually vanishes for large enough densities.

Let us continue by considering a gas with variable particle number and assume a fixed
chemical potential at fixed temperature below Tcrit. In terms of a grand canonical en-
semble, this provides an equilibrium particle number or background contribution Ng. In
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FIGURE 3.2: Sketch of the transition in density-temperature space. Adapted from Zieren-
berg and Janke [30]. The solid line is the infinite-size transition, which is here treated as
a function ρg(T ) on the left and ρl(T ) on the right. Note the asymmetry of the curve, in
contrast to that of an Ising gas. The two lower black bullets are the infinite-size transition
points that coincide with the respective pure phase, while the dashed arrow indicates the
finite-size scaling direction for a fixed simulation temperature Tsim.
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FIGURE 3.3: Snapshots of a test system of linear size L = 30 in dependence of density
and the according probability distribution. At the set equal-height chemical potential, the
full liquid-gas transition takes place from 0 ≤ ρ ≤ 0.82, while for the condensation-evapo-
ration transition, the region ρ ≤ 0.2 is of interest. The peak positions correspond to the
equilibrium gas density ρg(T ) and liquid density ρl(T ) and are almost independent of
system size. Snapshots and probability look similar to the Ising gas but the distribution
is not perfectly symmetric.
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order to make sure of a particle excess, which corresponds to the desired supersatura-
tion, it is now necessary to momentarily fix the particle number to be greater than the
background contribution, i.e. N > Ng. This translates to a canonical ensemble and one
can define the particle excess δN = N − Ng; if said particle excess is large enough,
a droplet formation will occur. Alternatively, below the transition density ρVc , corre-
sponding to too little excess, all excess will go into the gas phase. The equilibrium
droplet formation has been covered in great detail, amongst others, by Biskup [20] and
Binder [15]. One can show [19] that the probability of the formation of multiple in-
termediately sized droplets, as opposed to a single large droplet, effectively vanishes.
Thus, the problem at hand is reduced to the scenario of a homogeneous gas phase and
an inhomogeneous mixed phase featuring a liquid droplet in equilibrium with the sur-
rounding vapour. In this situation, one can identify the competition between entropy
maximisation in the gas phase versus the minimisation of energy in the droplet-vapour
phase. On the following pages we provide a recapitulation of the results by Biskup that
are valid for the Lennard-Jones gas, while omitting the findings that concern the Ising
gas, only.

Having fixed the temperature permits an inspection of the transition in terms of fixed
thermal fluctuations. For the supersaturated particle gas with excess δN , the free energy
of those fluctuations can be approximated with an idealised Gaussian ansatz

FF =
(δN)2

2κ̂V
, (3.3)

where κ̂ is the reduced isothermal compressibility (see Sec. 3.3), which in our context
mainly describes the width of the Gaussian. As usual, β = 1/kBT is the inverse temper-
ature and V is the volume.

The other contributions to the free energy stem from the macroscopic droplet with vol-
ume VD. They are approximated by

FD = τ (VD)
d−1
d , (3.4)

where τ is the surface free energy of a droplet of unit volume. In order to obtain τ , we
follow a technique that determines the planar interface tension by comparing the height
of the maximum probability in Fig. 3.3 with the minimum probability that belongs to
the stripe state [48–50]. This difference in probability is identified as the free energy
barrier. In the stripe state, exactly two interfaces, each of length L are present, which
subsequently allows to extrapolate the surface free energy of a roughly round droplet.

According to the two different free-energy contributions, we now want to decompose
the total particle excess, which we defined as the difference between the actual particle
number N and the background Ng. Keeping in mind that N is set in a canonical ensem-
ble, while the background contribution Ng corresponds to the expectation value of the
particle number in a grand canonical ensemble, we separate δN into the particle excess
inside the droplet δND and the particle excess in the fluctuating phase δNF

δN = N −Ng = δND + δNF . (3.5)

Looking at the transition in terms of the relevant densities, we can restrict ourselves to
two variables. On the one hand, we have the (grand canonical) background density
of the the gas phase ρg, which satisfies ρg = Ng/V for an infinite-size system. On the
other hand, we have the background density in the liquid phase ρl, as is present within
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the macroscopic droplet. This consideration allows linking the particle excess inside the
droplet to its volume

δND = (ρl − ρg)VD . (3.6)

Furthermore, we introduce what can be seen as a normalised droplet size, that is to say
the scalar fraction of particle excess inside the droplet

λ =
δND

δN
, (3.7)

so that δND = λδN and δNF = (1− λ) δN . Using this definition of λ, the total free
energy F = FD + FF becomes

F = τ

(
λδN

ρl − ρg

) d−1
d

+
(1− λ)2 (δN)2

2κ̂V
. (3.8)

By utilising the dimensionless density parameter

∆ =
(ρl − ρg)

d−1
d

2κ̂τ

(δN)
d+1
d

V
, (3.9)

we can rewrite the total free energy Eq. (3.8) as

F = τ

(
δN

ρl − ρg

) d−1
d (

λ
d−1
d + ∆ (1− λ)2

)
. (3.10)

For the presumed fixed temperature, many of the relevant variables remain constant,
in particular ρl, ρg, κ̂ and τ . In the limit of large systems, we may minimise the last
expression with respect to the fraction of excess λ within the one droplet. This allows
us to formulate λ as a function almost exclusively dependant on the density parameter
∆. Hence, when only regarding the λ-depending part in Eq. (3.10), the consideration
boils down to the following functional:

Φ∆(λ) = λ
d−1
d + ∆ (1− λ)2 . (3.11)

This can either be minimised analytically as shown by Biskup et al. [20] or numerically,
yielding λ(∆). Instead of going through this intensive derivation we want to support
the claim using Fig. 3.4, which depicts the reduced free-energy function Φ∆(λ) in d = 2
dimensions. There exists a constant threshold

∆c =
1

d

(
d+ 1

2

) d+1
d

, (3.12)

which determines if a condensate forms. For ∆ < ∆c no condensation occurs (λ = 0),
while for ∆ > ∆c the previously mentioned formation of a single macroscopic droplet
containing a non-trivial excess fraction (λ > λc) takes place. Directly at the threshold
one gets

λc =
2

d+ 1
. (3.13)

For this expression, the self-consistency of ∆c is easy to check. In the two dimensional
case the numerical values are ∆2D

c ≈ 0.9186 and λ2D
c = 2/3.

Thanks to the above formalism, the condensation-evaporation transition can be clearly
identified through the dimensionless density parameter, at ∆ = ∆c.
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FIGURE 3.4: The reduced free-energy function Φ∆(λ) in two dimensions for different
values of the density parameter ∆. Directly at the threshold ∆c, the functional is minimised
for λ = 0 and for λ = λc. Below the threshold, i.e. ∆− < ∆c, no droplet formation occurs as
λ = 0. Above the threshold, for ∆+ > ∆c, the only minimum is at some non-trivial λ > λc.

By construction, the density parameter contains the leading-order finite-size corrections
to the transition density. Thus, it may be understood as a shifted density or particle
number N , that accounts for corrections due to system size and dimensionality. Further-
more, we can interpret λ(∆) as the expectation value of the equilibrium droplet size,
which we measure in simulations through the number of particles inside the droplet
ND. Due to the assumptions stressed out before, also λ includes finite-size corrections
of first order.

Aiming for an explicit look at the finite-size behaviour, Eq. (3.4) can be written in terms
of the actual particle density ρ = N/V instead of the particle excess:

∆ =
(ρl − ρg)

d−1
d

2κ̂τ
(ρ− ρg)

d+1
d V

1
d . (3.14)

We see that the only quantity defining the transition in the previous equation is the
finite-size transition density ρ = ρVc , where the (lower and upper) indices shall em-
phasize that the condensation takes place at finite volume. Consequently, it holds that
∆(ρVc ) = ∆c, which yields

ρVc = ρg +

(
2κ̂τ∆c

(ρl − ρg)
d−1
d

) d
d+1

V −
1
d+1 . (3.15)

Therein, we can clearly identify the leading-order behaviour with respect to the infinite-
size transition density, which coincides with the gas density ρg = ρ∞c . This allows us
to conclude the theoretical background of the fixed temperature, yielding the finite-size
behaviour in leading order as

ρVc − ρg ∝ V −
1
d+1 . (3.16)
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While the description of a known, fixed particle excess over some background density
was done using a canonical framework, the approach of this section actually requires
grand canonical simulations. Those allow to measure densities through their expecta-
tion values, providing numerical values for the liquid and gas density, which we can
confirm to stay constant for changing system sizes. Moreover, we will qualitatively jus-
tify the temperature dependence of infinite-size quantities such as ρl(T ) and ρg(T ) in
our results.

3.2.2 Crossing at Fixed Density

The previous discussion covered the liquid vapour system at fixed temperature. Free
energy was approximated through contributions from fluctuations of the density and
from the surface free energy of the droplet. It was key to describe the contributions
in terms of infinite-size quantities that do not change with system size, as long as the
temperature is indeed kept constant.
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FIGURE 3.5: Illustration of the infinite-size transition (solid line). This time, the curve
is treated as a function Tg(ρ) with the according (dashed) finite-size scaling direction at
fixed simulation density ρsim. The scaling is orthogonal to the previous, fixed-temperature
approach. Note that the representation through a transition line only holds for the infinite-
size system, as the transition gets smeared out for finite systems. This is discussed in the
next section, which treats the transition rounding.

Looking at the other alternative, we arrive at the orthogonal scheme, which is depicted
in Fig. 3.5. This time, one keeps the density fixed. Namely, let us start again by contem-
plating the liquid-vapour system with N particles and finite periodic volume V . For a
now chosen density, the transition temperature T Vc separates the phase of the droplet
surrounded with bulk gas from the homogeneous supersaturated gas phase. For large
enough systems, the transition temperature approaches the infinite-size transition tem-
perature Tg = T∞c , as indicated in Fig. 3.5 by the lower black dot.

We realise that the infinite-size transition line can either be regarded as a function of
temperature ρg(T ), which we had done in Fig. 3.2, or as a function of density Tg(ρ).
Considering the chosen, fixed density, therefore, enforces the latter scheme, in which a
change in system size causes a shift in the transition temperature. The finite-size scaling
direction is again marked by the dashed arrow.

Moreover, both transition schemes work for every point (ρ, T ) of the phase diagram.
This becomes clear when picking any point, e.g. a finite-size transition point (ρVc , T

V
c )



34 Chapter 3. Theory

and treating it in a canonical ensemble, for which it belongs to one fixed-temperature
and one fixed-density scheme, simultaneously. The same holds for any canonical func-
tion f(ρ, T ) and the orthogonal crossing schemes are equivalent. This translates to a
functional dependence for which the ansatz f(ρ, T )V α = 1 allows to change from one
scheme to another by a Taylor series expansion. Around some T ? this yields in first
order

V −α = f(ρ, T ?) + f ′(ρ, T ?) (T − T ?) + ... . (3.17)

This can be solved for T and the remaining task is to find suitable functional depen-
dencies [30]. To this end, let us reconsider the dimensionless density parameter ∆ as
of Eq. (3.9). In the present scheme, the infinite-size quantities (that were assumed to be
constant in the previous section) become functions of temperature. This includes the
background densities ρg(T ) and ρl(T ), the reduced isothermal compressibility κ̂(T ), the
surface free energy τ(T ) and also the particle excess δN(T ) = (ρ− ρg(T ))V . Consider-
ing those dependencies, Eq. (3.9) reads

∆ =
(ρl(T )− ρg(T ))

d−1
d

2κ̂(T )τ(T )

(δN(T ))
d+1
d

V
. (3.18)

Exact computation of f(ρ, T ) is generally impossible, but it turns out that rewriting
Eq. (3.18) to the form

∆
d
d+1V −

1
d+1 = f(ρ, T ) =

ρ− ρg(T )

ρl(T )− ρg(T )

(
(ρl(T )− ρg(T ))2

2κ̂(T )τ(T )

) d
d+1

(3.19)

allows sufficient simplification, when expanded. At the condensation transition ∆ = ∆c
is constant and the left-hand side of the equation is only depending on the system size
V . Therefore, by fixing the system size, one can find a suitable combination of T and
ρ that solves Eq. (3.19) and provides the transition point (ρ, T ) = (ρVc , T

V
c ). This can

be done numerically, but we will instead carry out the Taylor expansion of Eq. (3.19)
around the infinite-size transition temperature T ? = Tg, keeping ρ = N/V constant:

f(ρ, T ) = f(ρ, Tg) + f ′(ρ, Tg) (T − Tg) + ... . (3.20)

Revisiting Fig. 3.5, one readily sees that ρg(Tg) = ρ, which causes the first term f(ρ, Tg)
to vanish. Solving for the finite-size transition temperature T = T Vc yields

T Vc = Tg +
∆

d
d+1
c

f ′(ρ, Tg)
V −

1
d+1 + ... , (3.21)

where f ′(ρ, Tg) remains unsolved but we obtained the leading-order behaviour of T Vc .
A comparison with Eq. (3.16) yields the same finite-size scaling for both regimes, in
terms of system volume

T Vc − Tg ∝ V −
1
d+1 . (3.22)

For fixed density, this also holds in terms of the particle number

TNc − Tg ∝ N−
1
d+1 . (3.23)
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3.2.3 Transition Rounding

As a motivation on why to think about rounding, we know from thermodynamic con-
siderations how, for instance, the fluctuations of energy around the expectation value
scale with the particle number in a canonical ensemble. When thinking of the accord-
ing energy probability distribution, this corresponds to the width or the rounding of the
curve. Particularly, one can show that ∆E/〈E〉 ∝ 1/

√
N , which shows that in the ther-

modynamic limit (N → ∞) the fluctuations vanish. The energy distribution is peaked
so sharply around the average, that the canonical ensemble becomes equivalent to the
microcanonical ensemble, which has no energy fluctuations by definition.

So far, we have treated the leading-order finite-size scaling of the finite-size transition
density ρVc and temperature T Vc with regard to the respective infinite-size transition
quantities ρg and Tg. In this section, the leading-order behaviour of the transition round-
ing will be discussed, i.e. ∆ρ = (ρ− ρVc ) and ∆T = (T − T Vc ), as was done in the work
by Binder [13] as well as Zierenberg and Janke [30, 31, 34]. It is clear, that in order to
provide a meaningful discussion of the transition region, a choice has to be made about
which system states actually belong to that region and which do not.

Thus, one starts with a two-state approximation of the system, where the first state
corresponds to the system in the condensed phase with a droplet, which has probability
Pcond ∝ e−βFcond . The second state, describing the completely evaporated phase, has
probability Pevap ∝ e−βFevap . It is worth mentioning that Fcond and Fevap are not to be
confused with the free-energy contributions of fluctuations and the droplet as given in
Section 3.2.1. Instead, they evaluate the total free energy Eq. (3.8) for the system in
the two different states. The crossing of the phase boundary from the homogeneous
(evaporated) to the inhomogeneous (condensed) state is then linked to the difference in
free energy

∆F = Fcond − Fevap . (3.24)

With this in mind, we can write the expectation value of any observable in terms of the
probabilities of the two states

〈O〉 =
Oevap e

−βFevap +Ocond e
−βFcond

e−βFevap + e−βFcond
(3.25)

=
Oevap +Ocond e

−β∆F

1 + e−β∆F
. (3.26)

Choosing |β∆F | ≈ 1 in the above expression implies that both phases have equally
significant contributions to the expectation value, which is a decent criterion for the
transition region. Of course, this is the condition applied in the mentioned references.
Interchangeably, one requires that free-energy fluctuations are of the order kBT ,

∆F ≈ kBT . (3.27)

The description up to this point is valid for the fixed-temperature as well as the fixed-
density scheme, and the derived expressions for the rounding will in fact be similar, but
the considerations to justify them are different.
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Rounding for Fixed Temperature

In order to estimate the transition rounding at fixed temperature, we start by evaluating
the total free energy Eq. (3.8), for the two different states. Firstly, we know that for the
condensed phase λ 6= 0, which leads to

βFcond = a λ
d−1
d (δN)

d−1
d + b (1− λ)2 (δN)2

V
, (3.28)

where a = βτ/(ρl − ρg)
d−1
d and b = β/2κ̂ contain the (in this scheme) constant infinite-

size quantities. On the other hand, we have λ = 0 in the gas phase, thus,

βFevap = b
(δN)2

V
, (3.29)

which consistently recovers Eq. (3.3) for the homogeneous state. Using those two ex-
pressions and the particle excess δN = (ρ− ρg)V , the free-energy difference Eq. (3.24)
can be rewritten in terms of the density

β∆F (ρ) = a λ
d−1
d (ρ− ρg)

d−1
d V

d−1
d + b

(
(1− λ)2 − 1

)
(ρ− ρg)2 V (3.30)

= a (ρ− ρg)
d−1
d V

d−1
d

[
λ
d−1
d +

b

a
(ρ− ρg)

d+1
d V

1
d

(
(1− λ)2 − 1

)]
. (3.31)

Directly at the transition, the free-energy difference β∆F (ρVc ) = 0, but the transition
density ρVc 6= ρg since the system is of finite size. This implies that the factor proceeding
the expression in square brackets in the previous equation cannot be zero. It follows
that

β∆F (ρVc )︸ ︷︷ ︸
=0

= a
(
ρVc − ρg

) d−1
d V

d−1
d︸ ︷︷ ︸

6=0

[
λ
d−1
d +

b

a

(
ρVc − ρg

) d+1
d V

1
d

(
(1− λ)2 − 1

)]
︸ ︷︷ ︸

=0

. (3.32)

Aiming for the desired expression containing ∆ρ = (ρ − ρVc ), we expand (3.31) around
the transition density f(ρ)|ρVc ≈ f(ρVc ) + f ′(ρVc )(ρ − ρVc ) + ..., where f(ρVc ) = 0 and the
first term of the differentiation vanishes due to Eq. (3.32). The second term yields

β∆F (ρ) ≈ b
(

(1− λ)2 − 1
) d+ 1

d

(
ρVc − ρg

)
V
(
ρ− ρVc

)
+ ... (3.33)

and with the leading-order behaviour for ρVc from Eq. (3.16) we arrive at

β∆F (ρ) ∝ V
d
d+1 ∆ρ . (3.34)

At last, one concludes that for a free-energy difference of order unity the finite-size
rounding scales as

∆ρ ∝ V −
d
d+1 . (3.35)
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Rounding for Fixed Density

We have stated before that the infinite-size quantities become functions of temperature
in the fixed-density approach. This impedes an evaluation of Eq. (3.8) and we instead
relate to the scaling of the droplet volume VD, which is known [51]. We start with
the most general expression for β∆F (T ), this time treated as a function of temperature,
and expand around the condensation temperature (in regard to earlier notation, here we
chose to write TNc over T Vc in order to stress the fixed density). We identify F = E − TS,
which entails ∂

∂T (βF ) = − 1
kBT 2E, so that the expansion reads

β∆F (T )
∣∣
TNc
≈ β∆F (TNc )−

(
1

kBT 2
∆E

) ∣∣∣∣∣
TNc

(
T − TNc

)
+ ... . (3.36)

Next, we recognise ∆T = (T − TNc ) as the desired measure for the rounding and con-
sider the scaling behaviour of ∆E = Econd − Eevap. Evidently, we can neglect the con-
tribution due to the evaporated particles by thinking of the dilute gas; particles are
separated further than the relevant interaction length-scale, in our case, the cutoff ra-
dius of the Lennard-Jones potential. The energy contribution of the condensate Econd,
on the other hand, scales with the droplet volume VD, which itself is dependant on the
droplet radius and was shown [51] to grow in leading order as

Econd ∝ VD ∝ N
d
d+1 . (3.37)

Plugging the scaling for TNc into Eq. (3.36) and approaching the infinite-size transition
temperature Tg, we see that the corrections to TNc in the denominator only contribute to
the energy scaling in higher orders and that

β∆F ∝
(

1

kBT 2
g

N
d
d+1

)
∆T . (3.38)

By again applying our condition |β∆F | ≈ 1, we arrive at the leading-order finite-size
scaling of the transition rounding for fixed density

∆T ∝ N−
d
d+1 , (3.39)

or equivalently, in terms of volume

∆T ∝ V −
d
d+1 . (3.40)
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3.3 Isothermal Compressibility

We superficially used the reduced isothermal compressibility κ̂ without any explana-
tion, when we followed the formalism of Biskup. As it turns out though, a closer in-
vestigation is needed to reproduce numerically matching results for the dimensionless
density parameter ∆, if a relationship to a real physical quantity is desired, too.

In its widest physical sense, compressibility is a description for the amount of volume
change that occurs due to a given pressure change. This process can either be adiabatic
or isothermal, which in terms of thermodynamic variables defines if either entropy, or in
our case, temperature, is kept constant for the partial derivative. Formally the isother-
mal compressibility κ can be written as:

κ = − 1

V

(
∂V

∂p

)
T

. (3.41)

While this expression is rather intuitive, physically speaking, it is not immediately clear
how to relate it to particle fluctuations. Starting with the grand canonical partition func-
tion

ZµVT =
∞∑
N=0

∫
{φ}

d{φ} e−βV ({φ})eβµN , (3.42)

where β = 1/kBT as usual denotes inverse temperature, one can derive the expression
for an expectation value of the particle number 〈N〉 through differentiation with respect
to the chemical potential µ. Remembering the general expression for the ensemble av-
erage Eq. (2.7), we see that

〈N〉 =

∑
N

∫
{φ} d{φ} N e−βV ({φ})eβµN∑

N

∫
{φ} d{φ} e−βV ({φ})eβµN

. (3.43)

For constant volume and temperature it follows that

〈N〉 =
1

βZµVT

∂ZµVT

∂µ
, (3.44)

〈
N2
〉

=
1

β2ZµVT

∂2ZµVT

∂µ2
. (3.45)

This can be combined in the usual way to obtain an expression motivated by the vari-
ance:

〈
N2
〉
− 〈N〉2 =

(
1

β2ZµVT

∂2ZµVT

∂µ2
−
(

1

βZµVT

∂ZµVT

∂µ

)2
)
T,V

(3.46)

=

(
1

β2

∂2 lnZµVT

∂µ2

)
T,V

. (3.47)

Next, we need to employ the potential according to the grand canonical partition func-
tion, namely the Landau free energy (or grand potential)

J(µ, V, T ) = F −G = −pV (3.48)
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with the total differential

dJ = −S dT − p dV −N dµ , (3.49)

where F and G are the Helmholtz and Gibbs free energy, respectively. Partition function
and potential are related via

J(µ, V, T ) = − 1

β
lnZµVT = −pV . (3.50)

For fluids of constant volume and temperature we can then write

∂2 lnZµVT

∂µ2
= βV

∂2p

∂µ2
, (3.51)

which allows to relate the particle fluctuations as in Eq. (3.47) with the partial derivative
∂p/∂µ so that

∂2p

∂µ2
=
β

V

(〈
N2
〉
− 〈N〉2

)
. (3.52)

What remains to do is to establish the link to the compressibility, or in other words to
rewrite the partial derivative. Dividing Eq. (3.48) by N and substituting G = Nµ we
can write

F

N
− µ = − pV

N
. (3.53)

If we now introduce a volume per particle v = V/N and assume that the Helmholtz free
energy can also be expressed per particle

f(v, T ) =
1

N
F (N,V, T ) , (3.54)

one can write the chemical potential as

µ(T, p) = f(v, T ) + pv . (3.55)

Since f(v, T ) is no function of pressure, it follows that ∂µ/∂p = v and

∂µ

∂v
=
∂µ

∂p

∂p

∂v
= v

∂p

∂v
= −1

κ
, (3.56)

as well as
∂2p

∂µ2
=

∂

∂µ

(
1

v

)
= − 1

v2

∂v

∂µ
=

κ

v2
, (3.57)

where the commonly practised sketchy formalism of inverse partials was used. Nonethe-
less, this allows to combine all the pieces using Eq. (3.52) and (3.57) to obtain the well
known expression for isothermal compressibility, see e.g. [52]:

κ =
vβ

〈N〉

(〈
N2
〉
− 〈N〉2

)
. (3.58)

Having omitted some finer points so far, this equation deserves further discussion.
The attentive reader has noted the appearance of 〈N〉 in the denominator, that has not
been accounted for. We introduced the volume per particle, assuming a strictly known
particle number N , and implicitly used this idea to treat the Gibbs free energy and
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Helmholtz free energy, which are of course the potentials belonging to the canonical en-
semble, where this is perfectly consistent. However, when using the ansatz to establish
a relation with the grand canonical ensemble, where particle insertion and deletion are
possible, the volume per particle has to be adjusted to v = V/〈N〉 and it is helpful to
rather treat it as an inverse density ρ = ∂p/∂µ = 1/v instead. This clarifies that v does
not describe the size of a particle but the simulation volume available to that particle.
Additionally, the direct correspondence of particle number and density is emphasised.

Further, we strictly assumed the system to be homogeneous, which is not the case
throughout all our simulations; the coexistence of the pure gas with the inhomogeneous
phase of a liquid droplet with surrounding gas are studied. It has been shown quanti-
tatively (e.g. using NpT simulations [53]), that the compressibility is larger for systems
in the gas phase than in the liquid phase. This is just what one would expect from ev-
eryday language; gases are easier to compress than liquids. Using the expression as in
Eq. (3.58), we were able to qualitatively confirm this behaviour, where the values for
the Lennard-Jones system differ by one to two orders of magnitude between the liquid
and the gas phase.

Reduced Isothermal Compressibility

After discussing this general approach, we now relate to the response function that is
used by Biskup et al. [20], which follows a different reasoning. More precisely, let us
recall the probability of particle excess δN was given as

P ∼ exp

[
−(δN)2

2κV

]
, (3.59)

which “is just the leading-order asymptotic of a full-fledged Gaussian (central limit) distribu-
tion” [19]. By direct comparison, we realise that the denominator should equate to two
times the variance, and thereby, the width of the considered peak in the probability
distribution. So, let us introduce a reduced isothermal compressibility

κ̂ =
β

V

(〈
N2
〉
− 〈N〉2

)
. (3.60)

When substituted for κ, this gives the desired expression for the variance up to the
factor of β. In order to have a closer look at this quantity, it is useful to include the
Ising gas into the discussion due to its analogy to our Lennard-Jones gas. On the one
hand, this identification helps to appreciate the similarity between compressibility and
its Ising equivalent, the magnetic susceptibility. On the other hand, there is a tight cor-
respondence between the two respective models themselves. Magnetic susceptibility is
commonly denoted as

χ =
β

V

(〈
M2
〉
− 〈M〉2

)
, (3.61)

where the volume V is just the total number of spins. The magnetisation M is the
sum of all spin values, each representing either an occupied or unoccupied lattice site.
Hence, M corresponds to the particle number in the grand canonical Lennard-Jones
system and we see that both, κ̂ and χ describe the normalised variance of the according
observable.

This also means that we can determine each of the two quantities directly through the
width of one of the two peaks of the respective probability distribution, as illustrated
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in Fig. 3.6 for the reduced compressibility. If we were to look at this distribution for
an Ising gas, namely the probability of magnetisation, we would expect perfectly sym-
metric and equally broad peaks for the gas and liquid phase. This is due to particle-hole
symmetry, which can be summarised by saying the Ising system is invariant under a
transformation that flips all spins at once. In the gas language, this manifests by vacant
sites becoming occupied and vice versa, while only the sign of magnetisation changes.
One of the consequences is that both probability peaks (or both phases) yield the same
value for magnetic susceptibility.

κ

� κ


�
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FIGURE 3.6: Logarithmic probability distribution of density, expressed through the mea-
sured particle number N at constant volume for a grand canonical simulation. The peak-
width allows us to measure the respective reduced isothermal compressibility κ̂g and κ̂l.
Note the broken symmetry as well as the larger peak-width in the liquid phase (right-hand
side, largeN ). Due to particle-hole symmetry, both peaks would be symmetric and equally
broad for an Ising gas; the Lennard-Jones simulation, on the other hand, samples a partly
solid phase indistinguishably from the liquid phase.

Regarding the Lennard-Jones gas now, one can see in Fig. 3.6 that the symmetry is
broken. The right-hand peak, belonging to the liquid phase, is broader than the left
one, which represents the gas phase. Apart from the absent particle-hole symmetry, this
can be explained through the solid phase, which occurs for even larger densities and
cannot trivially be extracted from the measurement of the fluid phase. In fact, another
phase transition takes place and effects such as jamming and close-packing constraints
become relevant. Those effects can become a problem from the simulation point of
view, resulting in the necessity to finely tune the MUGC algorithm with an upper limit
of density. It becomes more and more unlikely to insert particles into increasingly dense
configurations.

We see in the figure that the reduced compressibility is clearly larger in the right-hand
peak. Even though we expected and explained this behaviour, it certainly does not dif-
fer from the left-hand one by several orders of magnitude as seen of the real isothermal
compressibility. Ergo, let us relate Eq. (3.58) and (3.60).

To that end, we already identified the volume per particle with inverse density v = 1/ρ.
We can also relate the total system volume with the expectation value of the particle
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number via V = 〈N〉 /ρ and write Eq. (3.60) as

κ̂ =
ρβ

〈N〉

(〈
N2
〉
− 〈N〉2

)
= ρ2κ . (3.62)

Here, it is key to treat the density as an infinite-size quantity, which is constant for
systems of any size in the respective phase. Hence, we have to treat the two peaks,
phases and corresponding (real) compressibilities separately. To be more precise, we
get

κg =
1

ρ2
g

κ̂g (3.63)

for the gas phase and

κl =
1

ρ2
l

κ̂l (3.64)

for the liquid phase. As we have reasoned, κ̂g and κ̂l are of the same order, which
implies that the large difference between the real compressibilities of the two phases is
caused by the density factor.
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4 Results

4.1 Simulation Details

At the beginning of this chapter, we want to shortly summarise the details and param-
eters used in the simulations that lead to the results of this thesis. For all the presented
data: kB = 1, ε = 1, σ = 1 and the Lennard-Jones potential was limited to rc = 2.5σ
along with the shift by −V (rc) to compensate the offset.

First of all, we performed MUGC simulations at fixed inverse temperature β = 2.5,
which corresponds to roughly T ≈ 0.9Tcrit. System sizes went from L = 5 up to L = 70,
while covering the full density range 0 ≤ ρ ≤ 0.82 to obtain the infinite-size quantities,
where ρ = N/L2. A choice of the value of the chemical potential µ is not required.
However, in order to obtain MUGC weights that actually converge during the iteration,
it was necessary to perform shift moves (instead of doing only particle insertions and
deletions). The used suggestion rates were sshift = 0.5, sins = 0.25 and sdel = 0.25.
The shift solves the difficulty related to the strong decrease in the acceptance chance of
insertions and deletions for high densities.

The parallel MUGC production run provided 128 time series, each of length 104 after
thermalisation for 100 sweeps, and featured a flat probability distribution of the particle
number N . Sweeps were set to scale as m × L2, usually with a prefactor of m ≈ 20.
Time-series entries were recorded after 5 sweeps, histogram entries were made after
every update move. In a post-production program, the probability distribution was
then reweighted to fulfil the equal-height criterion: starting with large negative values
of µ = −5, the flat MUGC histogram was reweighted to the final µeqh, by iteratively
increasing or decreasing the chemical potential until both peaks had the same height.
The resulting grand canonical distribution was then analysed, supplying estimators of
ρg, ρl, κ̂ and σ, the planar surface tension. This was repeated for every system size.

In the orthogonal scheme, parallel MUCA simulations were performed at a fixed density
of ρ = 0.01. Thus, the system size could be described through the particle number,
ranging from N = 64 to N = 2435. This allows a straight forward comparison to
the lattice gas language. The chosen energy range was −2N ≤ E ≤ 0 with bin sizes
between ∆E = 0.5 and ∆E = 2.0. Sweeps were defined as N2, time-series entries
were made after 5 sweeps and the energy histogram was updated after every move.
Subsequent to the production run, again yielding 128 time series each of length 104,
canonical estimates for temperatures of interest 0.25 ≤ T ≤ 0.4 were gathered through
reweighting.

The estimate of the constant infinite-size quantities from the full-range MUGC enabled
us to guess suitable values of N in dependence of system size, which were needed to
perform canonical METROPOLIS simulations. Due to the double peak nature, one can be
sure that a thermalised system would stay in its current phase. For the smaller systems
of L ≤ 180, a sweep was defined again as N2; one out of the 1.28 × 106 time-series
entries was recorded after every sweep and thermalisation consisted of 1000 sweeps.
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This was repeated 12 times in each phase to obtain independent estimators and errors.
For larger systems, it is infeasible to produce such an amount of statistics. The time-
series length was shortened to 1.28 × 104 for L = 360, thermalisation was cut to 100
sweeps and estimators per phase were reduced from 12 to 3. For even larger systems
(work in progress), more ways to optimise need to be considered; sweeps of length
N2 become impossible to realise and it grows incredibly difficult to obtain a properly
thermalised state to begin production.

Along with the METROPOLIS simulations leading to the rescaled representation, another
set of parallel MUGC simulations over a now smaller density range 0 ≤ ρ . 0.1 (which
roughly corresponds to ∆ < 3) was performed solely to reweight to the canonical en-
semble. Revisiting Eq. (2.73), we see that knowledge of neither the density probability
peak-position nor the chemical potential is required for this. To reduce fluctuations,
the length of the 128 time series had to be increased to 105 and beyond, depending on
the system size. Apart from gaining a smooth curve of λ as a function of the density
parameter ∆ to connect the individual entries from the METROPOLIS simulations, this
served as a consistency check for the MUGC.

The MUGC results need to match the METROPOLIS data, which in turn was also exem-
plary confirmed by MUCA simulations. A systematic deviation, where MUGC under-
estimated λ or equivalently, the number of particles inside the droplet ND, lead us to
reconsider how the insertion and deletion moves work. We want the deletion to uni-
formly select a random particle at index i in memory out of the N currently present
ones with probability 1/N . Figure 4.1 illustrates this through histograms H(i), repre-
senting a probability distribution of suggested indices i without normalisation. The
blue histograms were recorded for a certain or single particle number each, for instance,
whenever the system contained 80 particles and a deletion was proposed, we made an
entry at deletion index i, yielding a distribution that represents the index probability.
As expected, distributions are flat for every single but set particle number. However,
looking at the total distribution, drawn red in the figure, we see that lower indices are
more likely to be selected for deletion. The total histogram was recorded independently
of the current particle number, or in other words, it is the sum of all histograms for
single particle numbers.

While this behaviour is perfectly fine and consistent, it requires the particles to be
spread out randomly in memory, so that the index does not have physical implications.
Consequently, when inserting particles, one must not do so in a systematic manner at
one or the other side of the memory container, but one rather needs to select an index
for insertion arbitrarily. Our initial method: systematically inserting particles at the end,
caused a relation between the index and the time (or number of sweeps), for which the
particles have been in the system. Thus, old particles were deleted more often, causing
the deviation from canonical simulations. This was a rather difficult issue to track as
the grand canonical results, especially the infinite-size quantities, seem unaffected by
the offset.

4.2 Fixed Temperature

The finally chosen inverse temperature for this regime as well as the grand canonical
and METROPOLIS simulations was β = 2.5, which corresponds to about T ≈ 0.9Tcrit.
The implications of the chosen temperature are sketched in Fig. 4.2, showing probability
distributions of density for different inverse temperatures. Starting sufficiently below
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FIGURE 4.1: Histograms H(i) of the randomly selected index i of a particle deletion.
Blue: For a certain or single number of currently present particles, the distribution is flat.
Red: The total distribution, recorded for all possible particle numbers, shows that lower
indices are selected more often. Hence, the insertion move must not insert particles sys-
tematically at the end of the memory container but rather choose the index for insertion
randomly. Otherwise, old particles have lower indices and are deleted more often than
recently inserted ones, causing a deviation from canonical results.
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FIGURE 4.2: Probability distribution of density for different temperatures, reweighted
to the equal-height chemical potential. For decreasing inverse temperatures β, the peak
positions shift inwards and the probability difference between favoured and suppressed
states reduces. Past the critical point, the equal-height criterion cannot be fulfilled and
any chosen chemical potential produces a single peak. Our final choice for the inverse
simulation temperature of β = 2.5 is sufficiently far away from the critical point (grey,
dashed).
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the critical point, or in other words, with β = 2.5 > βcrit, we see the well established
double-peak nature, characteristic for phase coexistence.

As the inverse temperature is decreased and the critical point is approached, the two
peaks become less pronounced and intermediate states in mixed phases become more
and more likely to be observed. Additionally, the peak positions wander inwards. This
is consistent with Fig. 3.2, which back in the theory section, illustrated the transition
in the density-temperature plane: as the (real) temperature is fixed at increasingly large
values, the liquid and gas density of the infinite-size system grow closer and closer until
the critical temperature is reached and the phases are not distinguishable anymore.

Evidently, we observe only one individual peak above the critical temperature, the po-
sition of which is not defined in our context. Note that the peak of the blue curve
(β < βcrit) in Fig. 4.2 is not located where it could be expected from symmetry. Our
criterion to find the chemical potential, which identifies the phase transition through
the equal height of two separate peaks, cannot be fulfilled and the single-peak position
remains arbitrary. However, it should be mentioned that it is in fact possible to obtain a
suitable value for the single-peak chemical potential by extending gathered points along
the measured scaling directions in µ-T space [25, 26].

Chemical Potential

Since we are not primarily interested in the critical point, we return to the chosen tem-
perature β = 2.5 and proceed to showcasing some possible situations that can be en-
countered when looking for the equal-height chemical potential µeqh.

The reweighting program starts at some negative and large chemical potential µ− <
µeqh, reweights to that value and measures the height and the position of the (at first)
single peak, positioned far on the left. In figure 4.3 this corresponds to the feint yellow
peak near ρ ≈ 0. Depending on which of the (possibly two) peaks below and above a
(manually chosen) threshold density is larger, the iteration either increases or decreases
µ. If only one peak is present, increasing the chemical potential will move it to the
right. Similarly, when two peaks are already present, raising µ enlarges the right-hand
one and lowers the left, while the respective positions stay roughly the same. When the
chemical potential is build up to exceed µeqh, increasingly dense states are favoured.
This includes mixed phases consisting of solid and liquid contributions. In the figure
we can identify this behaviour by the occurrence of another double peak-like structure
for larger densities near ρ ≈ 0.8. Due to the manually set upper boundary, the solid
states are not sampled by MUGC and the rightmost peak appears to be cut off. While
it would certainly be interesting to also investigate the sold-liquid transition, the grand
canonical method involving particle insertions is not suited for the task.

System Size

In order to support the subsequent plots of the infinite-size quantities, another set of
probability distributions is shown in Fig. 4.4, this time for differently sized systems
with otherwise equal parameters.

As we assumed before, the peak positions indeed match for all system sizes, leading
to similar, almost size independent estimates for the background gas and liquid den-
sity. The peak width on the other hand, lessens as L is increased. Nonetheless, due
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FIGURE 4.3: Influence of the chemical potential on the probability distribution of density.
Values further away from equal height in either direction are drawn increasingly transpar-
ent. Yellow: For large negative values µ− < µeqh, particle insertions become unlikely,
thereby increasing the likelihood of the gas phase, which is observed through the larger
left-hand peak. Blue: At µ = µeqh, the two peaks have the same height and both phases
are equally likely. Red: For least negative chemical potentials µ+ > µeqh, dense states are
favoured. Note the suppressed region near ρ ≈ 0.8 where a liquid-solid transition takes
place.
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FIGURE 4.4: Probability distribution of density for different linear system sizes L. The
peak positions, representing the expectation values of the densities of the homogeneous
phases, stay constant. In the region of suppressed states, note the stepwise change in slope
for the largest systems as opposed to the smooth transition for small systems. The system-
atically located slope changes indicate the sub-transitions between different phases.
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to the volume scaling factor in the definition of the reduced isothermal compressibil-
ity, the respective estimates will also turn out to be size independent. Unmistakably,
the probability suppression of mixed phases heightens in proportion to system size.
While the suppressed interval seems like one smooth region for small systems, we can
clearly identify individual sections for the largest systems. Having a close look at the
curve for L = 50, one can see two rather sudden changes in slope to either side of
the flat minimum, before reaching the peak positions. Those regions indicate the sub-
transitions: starting in the left peak with a pure gas phase, the systems transitions to the
mixed phase featuring a liquid droplet with surrounding gas, superseded by the striped
liquid-gas phase at the probability minimum. As the density is increased further, a so-
to-say inverse droplet phase occurs, consisting of a gas bubble in a liquid surrounding,
before the pure liquid phase is attained. For snapshots of those phases, please refer to
Fig. 3.3 in Sec. 3.2.1.

4.2.1 Infinite-Size Quantities

As we have stressed before, certain quantities or observables of the system stay constant
at fixed temperature, independently of the system size. Consequently, they match the
value that the infinite-size system would yield, accounting for this section’s title. Apart
from a general insight into the system, they provide the means to formulate the density
and the particle excess through the dimensionless parameters ∆ and λ(∆), respectively.

The first infinite-size quantities of interest to us are the background density of the pure
liquid phase ρl and the pure gas phase ρg, individually depicted in Fig. 4.5 a) and b),
respectively. We obtain the values from the corresponding peak positions of the prob-
ability distributions by calculating the expectation value for each phase (separated by
the probability minimum) and assume that each peak approximately resembles a nor-
mal distribution. Errors stem from jackknifing the 128 threads, as outlined in Sec. 2.5.
Note the different magnitude of the two densities. While we encounter strong finite-
size effects for small systems of L < 30, the fit to ρ = const works rather well beyond
that threshold. Using the GNUPLOT fit routine with corrected errors for 30 ≤ L ≤ 70 we
obtain

ρl = 0.75085(4) (4.1)
ρg = 0.027871(2) . (4.2)

In the same spirit, we measure the width of each peak as the variance around the peak
position. This yields the two estimates for the reduced isothermal compressibility, κ̂g

and κ̂l, where only the former is used for the rescaling. Note the stronger fluctuations
of the peak width of the liquid phase (responsible for κ̂l) in Fig. 4.5 d). At a first guess,
this can be explained by the partial solid-phase contributions to that peak, skewing the
distribution and rendering the assumed Gaussian approximation less accurate. The fit
for L ≥ 30 yields

κ̂l = 0.3123(9) (4.3)
κ̂g = 0.17116(6) . (4.4)

In order to estimate the normalised surface free energy of the droplet τ , we actually
measure the planar surface tension σ and map it onto a (2D) sphere. This works quite
well for the Lennard-Jones system, as the surface tension of the round droplet can be
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FIGURE 4.5: The infinite-size quantities almost stay constant as the system size scales:
a) Liquid density - b) Gas density; note the different magnitudes and quickly vanishing
finite-size effects of the two respective densities - c) Combined plot of both densities -
d) Reduced isothermal compressibility, as obtained from the gas peak of the probability
distribution (κ̂g) and for completeness also from the liquid peak (κ̂l).
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FIGURE 4.6: Scaling of the planar interface tension σ for systems of size 10 ≤ L ≤ 70. In
the plotted units, a linear fit was employed, ignoring possible higher-order or logarithmic
corrections [54].
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assumed to be isotropic for all angles, in contrast to lattice systems [49, 50]. For those,
the contributing planar surface tension varies with angle; think of a diagonal interface
compared to one parallel to the system boundary of a cubic lattice.

We then follow the method first outlined by Binder [48] to measure the probability of
the pure-phase peaks Pmax and the probability minimum Pmin, in between. At the min-
imum, one finds a mixed, strip-like phase consisting of a liquid and a gas contribution
that are separated by an interface. Due to periodic boundary conditions and the second
law, the length of the two interfaces of the stripe matches the system size L. This can
be exploited to measure the planar interface tension as

σ =
1

2βL
ln

[
Pmax

Pmin

]
. (4.5)

Figure 4.6 shows this behaviour for differently sized systems. The intersection with zero
indicates the infinite-size value

σ∞ = 0.1253(4) . (4.6)

From the planar interface tension, we can deduce the surface tension of the droplet [22]
via τ = 2

√
πσ∞ and estimate

τ = 0.444(2) . (4.7)

While σ clearly shows a size dependence, we only use the infinite-size estimate for the
rescaling. This is reasonable, since we are only interested in the leading-order behaviour
and the theoretic derivation of the dimensionless parameters is tailored around this aim.
Including the corrections to the interface tension would require the consistent inclusion
of corrections for all other quantities.

4.2.2 Transition in Reduced Parameters

Using our estimators for the constants in this regime, we can now rescale the directly
measured quantities describing the condensation. Namely, the particle number N is the
measure of density, and the number of particles within the droplet ND describes the
droplet excess. From Eq. (3.9) we see that in d = 2 dimensions and with κ̂ = κ̂g, we can
express the dimensionless density parameter as

∆ =

√
ρl − ρg

2κ̂gτ

(N − ρgV )
3
2

V
. (4.8)

Similarly, the fraction of particle excess within the droplet λ = δND/δN can be written
as

λ =
(ρl − ρg)ND

(N − V ρg) ρl
, (4.9)

where we assumed that the surrounding vapour is of density ρg, while the droplet of
volume VD = ND/ρl has the liquid density ρl. Since we are using the native units and
the lengthily discussed compressibility (normalised with volume), a correction factor to
tweak ∆ into the units intended by Biskup et al. is not required. A direct comparison
with the literature is possible. The results are shown in Fig. 4.7. Individual data points
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were obtained from METROPOLIS simulations; the continuous lines of manageable sys-
tem sizes stem from MUGC. The analytic solution [22]

λ =


4

3
cos2

π − arccos
(

3
√

3
8∆

)
3

 ∆ > ∆c

0 else

, (4.10)

is also shown.
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FIGURE 4.7: Transition in reduced parameters: MUGC simulations (yielding the solid
lines) were only realisable up to L = 180 but match the METROPOLIS results (data points
with error bars). The dashed line for L = 360 is a guide to the eye, only. The dimension-
less density parameter ∆ includes leading-order corrections, and λ is the excess fraction
within the droplet. As anticipated, the smearing-out of the transition decreases for large
systems. The measured data approaches the analytic solution (black line), confirming the
rescaling. Note that the estimates for the infinite-size quantities influence the collapse point
and could cause skewing in ∆ and λ. We want to point out the strong overestimation of
excess within the droplet as a finite-size effect, especially in the gas phase. For very small
systems (e.g. L = 30, not shown here) the measured λ even exceeds the transition value for
all densities. The reader is kindly asked to excuse the clumsy choice of system sizes.

The figure visualises that the behaviour predicted by theory is supported by the data
from our Lennard-Jones system. Furthermore, we can observe a good qualitative agree-
ment with comparable plots obtained for the lattice models [22, 32]. Especially for the
largest systems, we have no excess λ within the droplet, as long as the rescaled density
stays below the threshold ∆c ≈ 0.91. Beyond the threshold, droplet formation occurs
and a large fraction of excess is located inside the droplet, almost matching the analytic
prediction λ ≥ λc = 2/3. All in all, we are inclined to confirm both, the rescaled tran-
sition density ∆c and the transition excess fraction λc. However, in order to validate
this claim, a detailed finite-size scaling analysis should be undertaken. Continuing our
quantitative description, we see the anticipated smearing-out or rounding of the tran-
sition for small systems, which is accompanied by a systematic overestimation of the
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excess within the droplet. For instance at L = 30 (not shown), the excess actually ex-
ceeds the threshold and λ > λc, over the whole density region. Lastly, the positions in
∆ of the METROPOLIS simulations seem to fluctuate or to be ill chosen. This is due to
the mapping from the discrete scale (N ) to the continuous scale (∆) and vanishes for
sufficiently large system sizes. The continuous lines from MUGC, on the other hand,
provide a better resolution; every possible N is covered, but immense computational
effort is required to provide a smooth curve.

4.2.3 Finite-Size Behaviour at Fixed Temperature

For completeness, we want to outline the procedure to measure the finite-size scaling of
density [32], which has not been completed at the time of writing due to limited system
sizes. As we have seen in Fig. 4.7, the leading-order behaviour is satisfyingly covered
by the rescaling. Still, we can presume that higher-order corrections exist, since the data
sets do not cross or collapse at a size-independent density. Thus, measuring the ac-
tual finite-size transition density ∆c(L) may prove helpful to identify those corrections.
There are two apparent ways to do so: the peak position of the first derivative could
be used to pinpoint the transition, which requires a rather fine resolution in density.
Hence, this method may work for MUGC simulations but not so well for the few data
points provided by METROPOLIS. Either way, a discrete derivative has to be employed.
Alternatively, one would define the transition through the intersection of λ(∆) with the
analytic excess threshold λc = 2/3. From there, one can read of a reduced density value,
corresponding to a size-dependent particle number Nc(L), in the vicinity of which the
transition should take place. Additional simulations with either technique should be
performed, to enclose the final value from both sides. Errors are then obtained through
the closest points above and below, where precision is still limited by discrete N .



4.2. Fixed Temperature 53



54 Chapter 4. Results

4.3 Fixed Density

A considerable amount of work evolving around the fixed-density scheme has been
done in the recent years, presenting sophisticated methods for treating the condensation-
evaporation transition on various models [30–32]. This regime allows to natively har-
ness the full potential of MUCA with subsequent reweighting to the canonical ensemble.
In accordance with the given references, we chose the density to be ρ = 0.01.

Furthermore, we adapt the convention of expressing system size in terms of the particle
number N , in order to ease the comparison with lattice systems. A typical probability
distribution of energy is shown for a few sizes in Fig. 4.8. Having mostly treated distri-
butions for varying particle numbers so far, where the two peaks belong to the homoge-
neous liquid and gas phase, we want to point out that the shown peaks now represent
the homogeneous gas phase (right peak) and the mixed phase of a macroscopic liquid
droplet with surrounding gas (left peak).
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FIGURE 4.8: Probability distribution of Energy at βeqh on a linear and a logarithmic scale.
In contrast to previous distributions, the peaks correspond directly to the evaporation-
condensation transition, where the high-energy peak at E = Eg stands for the pure gas
and the low-energy peak represents the droplet with surrounding vapour. Again, the sup-
pression of states increases with system size.

To determine the transition temperature TNc , the same approach as described for locat-
ing the equal-height chemical potential could be used. However, it was shown that the
obtained infinite-size transition point (thermodynamic limit) is the same for different
definitions of the finite-size transition temperature [55]. Since temperature is a contin-
uously defined variable in this regime, opposed to density in its respective scheme, we
preferred the procedure where the transition is located through the peak position in the
first thermal derivative.

We want to support with Fig. 4.9 and 4.10 that the peak positions as well as the shown
rounding are in fact the same for both observables E and η. Furthermore, when in-
specting the droplet fraction η = ND/N , we can reconfirm the effects of the transition
that were observed in the fixed-temperature scheme. Evidently, η is not a rescaled ob-
servable of temperature, hence, the transition temperature shows finite-size behaviour.
Nonetheless, we can observe a similar transition rounding for small systems and the
previously highlighted overestimation of droplet size across the whole range of the
driving variable, which is now temperature. Apart from the estimate for droplet size
being too large, which is mostly apparent in the high-temperature (gas) phase, we still
have the same behaviour: above the transition point, almost no particles are in the
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FIGURE 4.9: Droplet Fraction η = ND/N and its first thermal derivative for increasing
system sizes at fixed density. Note the smearing-out of the transition as a clear finite-size
effect. Qualitatively, η resembles the behaviour observed in Fig. 4.7: for small systems, the
droplet size is overestimated across the whole regime, including the gas phase, where no
droplet is expected.
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FIGURE 4.10: Energy and its first thermal derivative, the specific heat, here normalised
with 1/N . The expected first-order behaviour is apparent, including the pronounced step-
like discontinuity in energy and the increasingly sharp peaks in the specific heat. Note that
peak positions, from which TNc is obtained, nicely coincide with those of dη/dT .
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droplet, but as soon as the condensation point is crossed, a suddenly very large droplet
is present containing in fact most of the particles.

4.3.1 Finite-Size Behaviour at Fixed Density

We look at the finite-size behaviour for the transition temperature TNc and the transition
rounding ∆T = ∆T (N). Especially, we want to obtain an estimate for the infinite-size
transition point Tg = T∞c , which is commonly denoted by T0 in the Ising language.

Using d = 2 dimensions, the fit to leading order was done as

∆T = a′N−
d
d+1 (4.11)

TNc = Tg + aN−
1
d+1 . (4.12)

Including the next higher order, we fitted

∆T = a′N−
d
d+1 + b′N−

2d
d+1 (4.13)

TNc = Tg + aN−
1
d+1 + bN−

2
d+1 . (4.14)

Additionally, the intermediate regime was fitted to

∆T = a′N−1 (4.15)

TNc = Tg + aN−
1
d . (4.16)

We start the discussion with the rounding ∆T , illustrated in Fig. 4.11. While we lack an
analytic solution for Tg, we know that the transition rounding approaches zero in the
thermodynamic limit. Moreover, in the chosen log-log plot, the leading-order scaling
(N−d/(d+1), blue) and the intermediate fit (to N−1, yellow) are both straight lines, en-
abling intuitive comparison. It is apparent that the leading-order behaviour is not yet
exhibited, even for our largest systems up to N = 2435. Since no direct fit was possible,
the blue line only represents a guide to the eye, the slope of which was taken from the
fit including the next higher order (red line). The consideration of the next higher order
is done empirically, but seems justified, as intermediate and large system sizes beyond
N = 215 are matched within error bars. The intermediate fit, on the other hand, moti-
vated by the general scaling of first-order transitions [56], starts to deviate for systems
larger than N = 724. The slope is slightly too steep.

Let us have a look at the scaling of TNc now. In the intermediate regime, systems are
still rather small, which causes the previously stressed overestimation of the droplet
fraction. The reason is that almost all particles of the system contribute to the conden-
sate, which is an effect typically observed for homopolymere aggregation [57]. In our
case, the largest droplet contains at least one particle, after all. Subsequently, this causes
the linear droplet size to scale as R ∝ N1/d. Although we have not shown the explicit
dependence on the radius, this serves as a good motivation for the intermediate scaling
of TNc with N−1/d. As we see in Fig. 4.12, we are able to leave the intermediate regime,
at least with our Lennard-Jones system. This is usually not the case for other systems,
where interactions are increasingly expensive to compute.
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FIGURE 4.11: Finite-size scaling of the transition rounding, obtained from the half-width
of the specific-heat peaks, on a log-log scale. Blue: Realisable systems are too small to show
the leading-order behaviour. We provide a guide to the eye as a mere outlook. Red: In-
cluding the next higher order, intermediate and large systems are covered. Yellow: Within
the intermediate regime, a fit to the scaling ansatz N−1 for first-order transitions [56], is
also possible. Furthermore, this describes smaller systems slightly better than our empir-
ical inclusion of the second order. If data for the largest systems was not available, this
ansatz could have falsely been assumed to work on all length scales.
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FIGURE 4.12: Finite-size scaling of the transition temperature, as obtained from the peak
positions of the specific heat. Blue: The fit to leading order strongly deviates for small
systems. Red: Including the next higher order into the fit, all data points are covered within
error bars. Yellow: Up to medium system size, a fit to N−1/d describes the scaling; due to
rather limited particle numbers, almost all particles contribute to the droplet. However,
having access to larger systems, we see that this ansatz is misleading and should only be
considered for the intermediate regime.
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A fit of TNc to leading order (N−1/(d+1), again indicated in blue) is possible and already
falls within error bars for systems with N ≥ 256. This clearly highlights that the be-
haviour shown in the intermediate regime is not globally valid; especially the outlook
of the thermodynamic limit and Tg is misleading (yellow line). Nonetheless, even this
statement has to be considered with care; as no analytic solution exists for our system,
any predictions remain questionable. Having this in mind, we only provide numerical
results for the leading-order fit, even though the fit including higher-order corrections
(red line) looks superior.

Taking into account all data points for systems N ≥ 256, the least-square fit to leading
order yields

Tg = 0.35962(4) , (4.17)

with χ2 ≈ 1.5 and Q ≈ 0.005. Excluding, for instance, one more system size, thereby
using systems N ≥ 304, decreases the χ2 ≈ 1.1 and puts Q ≈ 0.27. This smaller fit range
yields Tg = 0.35955(4) as the transition temperature.

A Different Representation of the Transition Rounding

The previously discussed finite-size plots become cluttered very quickly. Identifying
different scaling regimes can be especially tricky. To that end, we came up with another
representation, see Fig. 4.13 and 4.14. Here we create a multitude of fits to

∆T = cNα , (4.18)

each of which belongs to a different range [Nmin : Nmax] of included system sizes. We
then map the exponent α to a colour scale, which allows to visually distinguish the
scaling regimes; dark blue belongs to a scaling with (α = −1), as expected for interme-
diate systems, and red indicates the respective leading-order regime (α = −d/(d+ 1)).
In those charts one would expect the infinite-size limit in the upper-right corner, i.e. in-
cluding only the largest available systems into the fit. A fit over the full range, con-
taining all available data, is located in the very bottom-right, while the lower-left treats
only the small systems. The additional data sets for the 3D Lennard-Jones, as well as
2D and 3D lattice models, were provided by Johannes Zierenberg [30] and are greatly
appreciated.

Starting with the 2D Lennard-Jones system in Fig. 4.13, we can clearly identify the inter-
mediate scaling behaviour and the beginning of the transition towards the leading-order
behaviour for large systems. The 2D lattice model shows the same trend, but neither of
the two actually reaches the leading-order regime. Additionally, we experience heavy
finite-size effects on the lattice (bottom-left), where the fit exponents do not match our
defined domain. Interestingly, the exponent actually exceeds the expectation (α = −1)
in the intermediate regime of the (2D and 3D) lattice systems.

When looking at the 3D systems in Fig. 4.14, we notice the leading-order behaviour is
actually exhibited. Of course, since the leading-order exponent in three dimensions is
numerically closer to the intermediate exponent, the colour scale covers a smaller do-
main and thereby suggests the leading-order behaviour more dominantly. Nonetheless,
the additional degree of freedom helps to reach the infinite-size behaviour quicker than
in two dimensions. A similar train of thought allows to reason that the 3D Lennard-
Jones system transitions from the intermediate to the leading-order behaviour at smaller
system sizes than the 3D lattice system; the continuous models are less sensitive to the
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FIGURE 4.13: Matrix representation of the transition rounding ∆T for a fit to Nα in two
dimensions. This visualises the exponent α obtained from different fit ranges and thereby
allows to identify scaling regimes. While the lattice system can be simulated for way larger
particle numbers, strong discretisation and finite-size effects occur for small systems. In
both models, α clearly matches the intermediate regime (dark blue) for medium system
sizes. The leading order behaviour (red) is not reached.
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FIGURE 4.14: Matrix representation of the transition rounding in 3D. Note the different
colour scale. Numerically, the leading-order exponent (red) is closer to the intermediate
regime than in two dimensions. In fact, both models show leading-order behaviour for fits
including only very large systems (top-right). Due to the additional degree of freedom, the
discretisation effects on the lattice system are less severe. We thank Johannes Zierenberg
for providing the data on the remaining three models as was published in [30].
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discretisation and to configurational constraints, leading to a rather smooth change of
colour.

Considering all four charts at once, we see that both 3D systems exhibit the intermedi-
ate scaling for much smaller particle numbers than the 2D equivalents. Hence, we have
to assume that still larger sizes are necessary to actually measure the leading-order be-
haviour in two dimensions, which is computationally not feasible at present. Especially
our 2D Lennard-Jones system is plagued by restraining factors; not only that we are
confined, well, to two dimensions, but the interactions are costly too and, thereby, limit
the particle number to a fraction of what is possible on the lattice.
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5 Conclusion

After having given an overview of the required computational methods, we recapit-
ulated the theory around the condensation-evaporation transition in the two different
schemes. In order to acquire data at fixed temperature, allowing density fluctuations,
we implemented custom Monte Carlo simulations in the grand canonical ensemble. The
method is rather similar to other realisations [15, 28], but the program itself is set apart
by the tight integration with the iterative MUCA algorithm. This leads to a strong sim-
ilarity between the new MUGC and the original MUCA code and output; allowing easy
comparison, maintenance and analysis. Well established tools such as time-series and
histogram reweighting, jackknife binning and finite-size scaling were then employed to
obtain the infinite-size quantities. Those estimates were required to create the rescaled
and dimensionless representation in the spirit of the discussed theory. Not only could
we thereby confirm the theoretic predictions and results from lattice systems [21–23, 32],
but this thesis actually complements those findings with an off-lattice system.

Having said so, the presented framework helps closing the gap between the fixed-
temperature and the fixed-density approach; the employed grand canonical simulations
gave us the opportunity to follow the formalism of Biskup et al. [19, 20], which, to the
authors knowledge, has so far only been done on lattice systems [21–23, 32].

In addition, we were able to successfully perform a cross-check between data from
grand canonical MUGC and the canonical methods METROPOLIS and MUCA. This check
is a detail that is only mentioned as a side note in the literature, if it is mentioned at
all. Contrariwise, we found it to be insightful and useful; it helped to fix a subtle but
quite influential issue of the grand canonical implementation, which we could not have
uncovered otherwise.

Concerning the scheme of fixed density, we used the native MUCA algorithm to gather
data of the Lennard-Jones system, with particle numbers even slightly exceeding two
thousand. The subsequent finite-size scaling treatment enabled us to partially confirm
the expectations [30, 31]; although we managed to simulate system sizes that clearly
extend beyond the intermediate regime, the leading order behaviour was not exhib-
ited yet. Nonetheless, as we adhered to parameters identical to the reference, the pre-
sented results aim to conclude the discussion of the condensation-evaporation transition
at fixed density, at least for the set of the four systems: lattice gas and Lennard-Jones
gas in two and three dimensions, respectively. Our final page of figures was intended to
capture this motivation. While the matrix-style representations do not show anything
new or revolutionary, they allow to identify scaling regimes and are a nice gimmick for
visualisation.

All in all, we think that we were able to present a well rounded examination of the tran-
sition by splitting our focus in two major directions. Clearly, as each scheme deserves
individual attention, we could not treat both with the initially desired amount of detail.
In spite of that, we ended up with a resourceful framework and a good setup, which
can serve as a starting point for future investigations.
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5.1 Outlook

As a first outlook, we want to mention the finite-size analysis of the transition density at
fixed temperature, which is currently work in progress. The difficulty lies in the scaling
to large systems: linear system sizes greater than a thousand is what we are aiming
for. In this region, thermalisation becomes a major problem, which we circumvent, at
least for the METROPOLIS simulations, by preparing a state that is far enough on either
side of the transition. While trivial for the gas phase, we have to grow the droplet by
inheriting suitable configurations from smaller systems.

When we started working on this thesis, it seemed artificially limiting to deal with a
system in two rather than in three dimensions; especially because the computational
effort is virtually identical. Then again, the transition to the more complicated case is
straight forward from the perspective of programming. With minor modifications, the
whole code is applicable in 3D. Thus, looking at mere two dimensions was a justified
choice to begin with, even more so, because the system is much easier to visualise (think
of snapshots and states). Thereby, direct control is possible: the influence of changing
parameters, for instance, can be observed right away, without looking for cut-planes.

Following this train of thought, we could identify mechanisms and processes at work,
possibly through the microcanonical analysis [58] or by having a closer look at the free-
energy barrier [23, 33, 59]. This would then allow to actually pinpoint where the nu-
cleations takes place, not just for one particularly chosen density or temperature but as
a point in phase space containing, amongst others, both parameters. Closely related to
free-energy barriers, we came across two more noteworthy techniques involved with
the transition.

Firstly, the string method [60] focuses on rare events and finding the most probable
path to change from one metastable region to another. This is especially fascinating
as we implicitly encountered this problem; MUGC only deals with the barrier in one
direction of phase space (density) while struggling with another (energy).

Secondly, we may have a closer look at the formalism introduced by Binder after all;
as we have teased before, the condensation-evaporation transition can be identified
through the discontinuity of the chemical potential as a function of density. This seems
similar to the equal-height criterion we employed during reweighting, but it is actually
quite different, because we were considering the two pure phases. To list only a few of
the many references with similar scope, we hope to find a conclusion on how exactly
both formalisms interlink through a comparison with e.g. [16–18].

Apart from pointing out a personal interest in porting the code to run on GPUs and
heterogeneous computing environments through OPENCL, we also want to give some
motivation for a consideration of Molecular Dynamic simulations. Admittedly, both,
MC as well as MD simulations struggle with critical slowing down and evaluating ac-
tual time scales is difficult. However, in recent years new methods have surfaced that
may allow to investigate kinetic effects and to gain an intuition about the involved time
scales, after all [61, 62]. Along with simulations to determine hysteresis, this may help
relating to experiments. Since the 2D simulations represent a 3D system with confine-
ment, nanotubes and surface deposition come to mind. Speaking of the comparison to
experiments, a particularly straight forward thing to do would be to cross-check the gas
density we measure with literature values of Argon. Having said so, even this seem-
ingly simple comparison requires simulations in 3D, which seems like a nice aspiration
to conclude the thesis.
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