Chapter 4

Small oscillations and normal modes

4.1 Linear oscillations

Discuss a generalization of the harmonic oscillator problem: oscillations of a system of several degrees of freedom near the position of equilibrium remember for $s=1$

$$
\begin{equation*}
L=\underbrace{\frac{1}{2} M(q) \dot{q}^{2}}_{T}-V(q), \quad T>0 \tag{4.1}
\end{equation*}
$$

q_{0} minimum of the potential energy, $x=q-q_{0}$ displacement expand $V(q)$ and $M(q)$

$$
\begin{gathered}
V(q)=\underbrace{V\left(q_{0}\right)}_{\text {const }}+\underbrace{\left.\frac{d V}{d q}\right|_{q=q_{0}}}_{=0}\left(q-q_{0}\right)+\frac{1}{2} \underbrace{\left.\frac{d^{2} V}{d q^{2}}\right|_{q=q_{0}}}_{k>0}\left(q-q_{0}\right)^{2}+\ldots \\
V(q)=\text { const }+\frac{1}{2} k x^{2}+O\left(x^{3}\right)
\end{gathered}
$$

if $k=0$ non-linear oscillation, higher derivatives important

$$
M(q)=M\left(q_{0}\right)+O(x)=m+O(x)
$$

restrict to orders $O\left(x^{2}\right), O\left(\dot{x}^{2}\right)$ (in general also $O(x \dot{x})$) in L for linear oscillations

$$
L=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k x^{2}
$$

procedure is called: linearization of the original Lagrangian (4.1) results: linear differential equation with constant coefficients

$$
m \ddot{x}+k x=0
$$

ansatz for the solution

$$
x=A \cos (\omega t+\varphi)
$$

algebraic equation

$$
-m \omega^{2}+k=0 \quad \Rightarrow \quad \omega=\sqrt{\frac{k}{m}}
$$

$m>0, k>0: \omega^{2}>0$
A - amplitude, ω - frequency, $\omega t+\varphi$ - phase, φ - initial phase
now consider s degrees of freedom

$$
L=T-V\left(q_{1}, \ldots q_{s}\right), \quad T=\frac{1}{2} \sum_{i, j} M_{i j}(q) \dot{q}_{i} \dot{q}_{j}
$$

since $\dot{q}_{i} \dot{q}_{j}$ is symmetric relative to $i \leftrightarrow j$, the coefficients $M_{i j}$ can be chosen symmetric

$$
M_{i j}(q)=M_{j i}(q)
$$

denote by $q_{i 0}, i=1, \ldots, s$ the point of the minimum for the potential energy V expand V relative to $x_{i}=q_{i}-q_{i 0}$

$$
V(q)=\text { const }+\frac{1}{2} \sum_{i, j} k_{i j} x_{i} x_{j}+O\left(x_{k}^{3}\right), \quad k_{i j}=\left.\frac{\partial^{2} V}{\partial q_{i} \partial q_{j}}\right|_{q_{i 0}}=k_{j i}
$$

for $x_{i} \neq 0$ the potential energy increases with respect to its minimum at $x_{i}=0$ quadratic form

$$
\sum_{i, j} k_{i j} x_{i} x_{j} \geq 0
$$

expand $M_{i j}(q)$

$$
M_{i j}(q)=m_{i j}+O\left(x_{k}\right), \quad m_{i j}=M_{i j}\left(q_{k 0}\right)=m_{j i}
$$

since $T>0$ we have another quadratic form

$$
\sum_{i, j} m_{i j} \dot{x}_{i} \dot{x}_{j} \geq 0
$$

again restrict ourselves to $O\left(x_{i} x_{j}\right), O\left(\dot{x}_{i} \dot{x}_{j}\right)$

$$
L=\frac{1}{2} \sum_{i, j}\left(m_{i j} \dot{x}_{i} \dot{x}_{j}-k_{i j} x_{i} x_{j}\right)
$$

Introduce a matrix notation
column vector

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{s}
\end{array}\right)
$$

and the transposed vector (T denotes transposition) as a raw vector

$$
\mathbf{x}^{T}=\left(x_{1}, \ldots, x_{s}\right)
$$

mass matrix \hat{m} and matrix of elasticity \hat{k}

$$
\hat{m}=\left(\begin{array}{ccc}
m_{11} & \ldots & m_{1 s} \\
\vdots & \vdots & \vdots \\
m_{s 1} & \ldots & m_{s s}
\end{array}\right) \quad \hat{k}=\left(\begin{array}{ccc}
k_{11} & \ldots & k_{1 s} \\
\vdots & \vdots & \vdots \\
k_{s 1} & \ldots & k_{s s}
\end{array}\right)
$$

introduce the scalar product

$$
(\mathbf{x}, \mathbf{y}) \equiv \mathbf{x}^{T} \cdot \mathbf{y}=\sum_{i=1}^{s} x_{i} y_{i}
$$

form of the Lagrangian

$$
L=\frac{1}{2}(\dot{\mathbf{x}}, \hat{m} \dot{\mathbf{x}})-\frac{1}{2}(\mathbf{x}, \hat{k} \mathbf{x})
$$

with $(\dot{\mathbf{x}}, \hat{m} \dot{\mathbf{x}}) \geq 0$ and $(\mathbf{x}, \hat{k} \mathbf{x}) \geq 0$
\hat{k} and \hat{m} are symmetric matrices:

$$
\hat{m}^{T}=\hat{m}, \quad \hat{k}^{T}=\hat{k}
$$

equation of motion

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{\mathbf{x}}}=\frac{\partial L}{\partial \mathbf{x}} \quad \Rightarrow \quad \hat{m} \ddot{\mathbf{x}}+\hat{k} \mathbf{x}=0
$$

ansatz for the solution

$$
\begin{gathered}
\mathbf{x}=\mathbf{A} \cos (\omega t+\varphi) \\
\Rightarrow \quad\left(-\omega^{2} \hat{m}+\hat{k}\right) \mathbf{A}=0 \quad \text { eigenvalue equation }
\end{gathered}
$$

non-trivial solutions for

$$
\operatorname{det}\left(-\omega^{2} \hat{m}+\hat{k}\right)=0 \quad \text { characteristic equation }
$$

assume

$$
\omega_{1}^{2}, \ldots, \omega_{s}^{2} \quad \text { eigenvalues - solutions of the characteristic equation }
$$

put the eigenvalues ω_{α}^{2} into the eigenvalue equation, find the eigenvectors $\mathbf{A}^{(\alpha)}$

$$
\begin{equation*}
\left(-\omega_{\alpha}^{2} \hat{m}+\hat{k}\right) \mathbf{A}^{(\alpha)}=0 \tag{4.2}
\end{equation*}
$$

if $\mathbf{A}^{(\alpha)}$ is a solution, then $a \mathbf{A}^{(\alpha)}$ is also a solution
introduce the normal mode vector $\mathbf{x}^{(\alpha)}(t)$

$$
\mathbf{x}^{(\alpha)}(t)=\mathbf{A}^{(\alpha)} Q_{\alpha}(t), \quad Q_{\alpha}(t)=a_{\alpha} \cos \left(\omega_{\alpha} t+\varphi_{\alpha}\right)
$$

Q_{α} - normal coordinate, ω_{α} - normal frequency
a_{α} - arbitrary amplitude, φ_{α} - arbitrary phase
the complete solution

$$
\mathbf{x}(t)=\sum_{\alpha=1}^{s} \mathbf{x}^{(\alpha)}(t)=\sum_{\alpha=1}^{s} \mathbf{A}^{(\alpha)} Q_{\alpha}(t)
$$

in components

$$
x_{i}(t)=\sum_{\alpha=1}^{s} A_{i}^{(\alpha)} Q_{\alpha}(t)
$$

the solution contains s arbitrary amplitudes a_{α} and phases φ_{α} which have to be found from the initial conditions $\mathbf{x}(0)$ and $\dot{\mathbf{x}}(0)$
In the language of vector algebra the transformation from vector \mathbf{x} to \mathbf{Q} is a linear transformation

$$
\mathbf{x}=\hat{U} \mathbf{Q}, \quad x_{i}=\sum_{\alpha} U_{i \alpha} Q_{\alpha} \quad \text { and } \quad U_{i \alpha} \equiv A_{i}^{(\alpha)}
$$

with

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{s}
\end{array}\right), \quad \mathbf{Q}=\left(\begin{array}{c}
Q_{1} \\
\vdots \\
Q_{s}
\end{array}\right), \quad \hat{U}=\left(\begin{array}{ccc}
A_{1}^{(1)} & \ldots & A_{1}^{(s)} \\
\vdots & \vdots & \vdots \\
A_{s}^{(1)} & \ldots & A_{s}^{(s)}
\end{array}\right)
$$

for that transformation both quadratic forms for T and V become diagonal:

$$
\begin{gather*}
L=\sum_{\alpha=1}^{s} L_{\alpha}, \quad L_{\alpha}=\frac{1}{2} M_{\alpha} \dot{Q}_{\alpha}^{2}-\frac{1}{2} K_{\alpha} Q_{\alpha}^{2} \tag{4.3}\\
M_{\alpha}=\left(\mathbf{A}^{(\alpha)}, \hat{m} \mathbf{A}^{(\alpha)}\right), \quad K_{\alpha}=\left(\mathbf{A}^{(\alpha)}, \hat{k} \mathbf{A}^{(\alpha)}\right)
\end{gather*}
$$

the Lagrangian has the form of s non-interacting oscillations
we get the one-dimensional equations of motion for s independent normal coordinates Q_{α}

$$
M_{\alpha} \ddot{Q}_{\alpha}+K_{\alpha} Q_{\alpha}=0, \quad \alpha=1, \ldots, s
$$

Note that normal frequencies are real:

$$
\omega_{\alpha}^{2}=\frac{K_{\alpha}}{M_{\alpha}}=\frac{\left(\mathbf{A}^{(\alpha)}, \hat{m} \mathbf{A}^{(\alpha)}\right)}{\left(\mathbf{A}^{(\alpha)}, \hat{k} \mathbf{A}^{(\alpha)}\right)} \geq 0
$$

So, each normal coordinate Q_{α} corresponds to an oscillation with one frequency ω_{α} :

$$
\ddot{Q}_{\alpha}+\omega_{\alpha}^{2} Q_{\alpha}=0
$$

the oscillation is called normal mode
The solution in the original variables x_{i} is a linear superposition of oscillations with different frequencies

4.2 Orthogonality of normal modes

Assume two eigenvectors $\mathbf{A}^{(\alpha)}, \mathbf{A}^{(\beta)}$ are given with $\omega_{\alpha} \neq \omega_{\beta}$
the corresponding normal mode vectors are $\mathbf{x}^{(\alpha)}=\mathbf{A}^{(\alpha)} Q_{\alpha}$ and $\mathbf{x}^{(\beta)}=\mathbf{A}^{(\beta)} Q_{\beta}$
there is no reason that the scalar products of two eigenvectors or normal mode vectors have to vanish:

$$
\left(\mathbf{A}^{(\beta)}, \mathbf{A}^{(\alpha)}\right) \neq 0, \quad\left(\mathbf{x}^{(\beta)}, \mathbf{x}^{(\alpha)}\right) \neq 0
$$

Consider the eigenvector equations [see (4.2)]

$$
\Rightarrow \quad \omega_{\alpha, \beta}^{2} \hat{m} \mathbf{A}^{(\alpha, \beta)}=\hat{k} \mathbf{A}^{(\alpha, \beta)}
$$

multiply from the left with $\mathbf{A}^{(\beta, \alpha)}$

$$
\begin{align*}
\omega_{\alpha}^{2}\left(\mathbf{A}^{(\beta)}, \hat{m} \mathbf{A}^{(\alpha)}\right) & =\left(\mathbf{A}^{(\beta)}, \hat{k} \mathbf{A}^{(\alpha)}\right) \tag{4.4}\\
\omega_{\beta}^{2}\left(\mathbf{A}^{(\alpha)}, \hat{m} \mathbf{A}^{(\beta)}\right) & =\left(\mathbf{A}^{(\alpha)}, \hat{k} \mathbf{A}^{(\beta)}\right)
\end{align*}
$$

and subtract

$$
\omega_{\alpha}^{2}\left(\mathbf{A}^{(\beta)}, \hat{m} \mathbf{A}^{(\alpha)}\right)-\omega_{\beta}^{2}\left(\mathbf{A}^{(\alpha)}, \hat{m} \mathbf{A}^{(\beta)}\right)=\left(\mathbf{A}^{(\beta)}, \hat{k} \mathbf{A}^{(\alpha)}\right)-\left(\mathbf{A}^{(\alpha)}, \hat{k} \mathbf{A}^{(\beta)}\right)
$$

it is known that for each real matrix \hat{n} :

$$
(\mathbf{A}, \hat{n} \mathbf{B})=\left(\hat{n}^{T} \mathbf{A}, \mathbf{B}\right)
$$

in our case \hat{k} and \hat{m} are real and symmetric

$$
\hat{k}^{T}=\hat{k}, \quad \hat{m}^{T}=\hat{m}
$$

using $(\mathbf{A}, \mathbf{B})=(\mathbf{B}, \mathbf{A})$ the difference vanishes

$$
\Rightarrow \quad \omega_{\alpha}^{2}\left(\mathbf{A}^{(\beta)}, \hat{m} \mathbf{A}^{(\alpha)}\right)-\omega_{\beta}^{2}\left(\hat{m} \mathbf{A}^{(\alpha)}, \mathbf{A}^{(\beta)}\right)=\left(\mathbf{A}^{(\beta)}, \hat{k} \mathbf{A}^{(\alpha)}\right)-\left(\hat{k} \mathbf{A}^{(\alpha)}, \mathbf{A}^{(\beta)}\right) \equiv 0
$$

we get

$$
\left(\omega_{\alpha}^{2}-\omega_{\beta}^{2}\right)\left(\mathbf{A}^{(\beta)}, \hat{m} \mathbf{A}^{(\alpha)}\right)=0
$$

Therefore:

$$
\left(\mathbf{A}^{(\beta)}, \hat{m} \mathbf{A}^{(\alpha)}\right)=0 \quad \text { and }[\operatorname{see}(4.4)] \quad\left(\mathbf{A}^{(\beta)}, \hat{k} \mathbf{A}^{(\alpha)}\right)=0
$$

Conclusions:
The normal mode vectors $\mathbf{x}^{(\alpha)}$ and $\mathbf{x}^{(\beta)}$ with $\omega_{\alpha} \neq \omega_{\beta}$ are orthogonal to each other, if their scalar product is defined using the so called metric tensors \hat{m} or \hat{k}
$\Rightarrow \mathbf{x}^{(\alpha)}$ and $\mathbf{x}^{(\beta)}$ are orthogonal in the metric of mass or elasticity

$$
\left(\mathbf{x}^{(\beta)}, \hat{m} \mathbf{x}^{(\alpha)}\right)=0, \quad\left(\mathbf{x}^{(\beta)}, \hat{k} \mathbf{x}^{(\alpha)}\right)=0
$$

In case of degenerate frequencies:
e.g. the normal mode vectors $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ with $\omega_{1}=\omega_{2}$
the linear combination $a \mathbf{x}^{(1)}+b \mathbf{x}^{(2)}$ is also a solution with the same frequency
\Rightarrow the space of solution is the plane given by the vectors $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$
choose a pair of independent vectors which satisfy the orthogonality condition in the mass metric
together with all other normal mode vectors with non-degenerate frequencies they build the basis for the normal coordinates leading to the diagonal Lagrangian of decoupled oscillators (4.3)

4.3 The double pendulum in the field of constant gravity - an example

$s=2$, use as generalized coordinates θ_{1} and θ_{2}
for the notations, see the figure

Cartesian coordinates and the generalized coordinates are related via

$$
\begin{array}{ll}
x_{1}=l_{1} \sin \theta_{1}, & x_{2}=l_{1} \sin \theta_{1}+l_{2} \sin \theta_{2} \\
z_{1}=l_{1} \cos \theta_{1}, & z_{2}=l_{1} \cos \theta_{1}+l_{2} \cos \theta_{2}
\end{array}
$$

the Lagrangian can be found as follows (see Landau/Lifshitz, $\S 5$, problem 1)

$$
\begin{aligned}
L= & \frac{1}{2}\left(m_{1}+m_{2}\right) l_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} l_{2}^{2} \dot{\theta}_{2}^{2}+m_{2} l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right) \\
& +\left(m_{1}+m_{2}\right) g l_{1} \cos \theta_{1}+m_{2} g l_{2} \cos \theta_{2}
\end{aligned}
$$

Consider the special case $m_{1}=m_{2}=m, \quad l_{1}=2 l, \quad l_{2}=l$

$$
L=4 m l^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m l^{2} \dot{\theta}_{2}^{2}+2 m l^{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)+4 m g l \cos \theta_{1}+m g l \cos \theta_{2}
$$

linearize the Lagrangian $\left(\left|\theta_{i}\right| \ll 1\right)$

$$
L=\frac{1}{2} m l^{2}\left(8 \dot{\theta}_{1}^{2}+4 \dot{\theta}_{1} \dot{\theta}_{2}+\dot{\theta}_{2}^{2}\right)-\frac{1}{2} m g l\left(4 \theta_{1}^{2}+\theta_{2}^{2}\right)
$$

identify the matrices of mass and elasticity

$$
\hat{m}=m l^{2}\left(\begin{array}{ll}
8 & 2 \\
2 & 1
\end{array}\right), \quad \hat{k}=m g l\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right)
$$

the equations of motion

$$
8 \ddot{\theta}_{1}+2 \ddot{\theta}_{2}+4 \omega_{0}^{2} \theta_{1}=0, \quad 2 \ddot{\theta}_{1}+\ddot{\theta}_{2}+\omega_{0}^{2} \theta_{2}=0, \quad \omega_{0}=\sqrt{\frac{g}{l}}
$$

Search the solution in the form

$$
\mathbf{x}=\binom{\theta_{1}}{\theta_{2}}=\mathbf{A} \cos (\omega t+\varphi)=\binom{A_{1}}{A_{2}} \cos (\omega t+\varphi)
$$

the eigenvalue equation $\left(-\omega^{2} \hat{m}+\hat{k}\right) \mathbf{A}=0$

$$
\left[-m l^{2} \omega^{2}\left(\begin{array}{ll}
8 & 2 \\
2 & 1
\end{array}\right)+m g l\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right)\right]\binom{A_{1}}{A_{2}}=0
$$

divide the matrix equation by $m l^{2}$ and introduce $\omega_{0}^{2}=\frac{g}{l}$

$$
\begin{aligned}
& {\left[-\omega^{2}\left(\begin{array}{ll}
8 & 2 \\
2 & 1
\end{array}\right)+\omega_{0}^{2}\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right)\right]\binom{A_{1}}{A_{2}}=0} \\
& \Rightarrow\left(\begin{array}{cc}
-8 \omega^{2}+4 \omega_{0}^{2} & -2 \omega^{2} \\
-2 \omega^{2} & -\omega^{2}+\omega_{0}^{2}
\end{array}\right)\binom{A_{1}}{A_{2}}=0
\end{aligned}
$$

solve the characteristic equation

$$
\operatorname{det}\left(\begin{array}{cc}
-8 \omega^{2}+4 \omega_{0}^{2} & -2 \omega^{2} \\
-2 \omega^{2} & -\omega^{2}+\omega_{0}^{2}
\end{array}\right)=0 \quad \Rightarrow \quad \omega_{1,2}=\sqrt{\frac{3 \mp \sqrt{5}}{2}} \omega_{0}
$$

determine the eigenvectors $\mathbf{A}^{(1)}$ and $\mathbf{A}^{(2)}$ from

$$
\left(\begin{array}{cc}
-8 \omega_{i}^{2}+4 \omega_{0}^{2} & -2 \omega_{i}^{2} \\
-2 \omega_{i}^{2} & -\omega_{i}^{2}+\omega_{0}^{2}
\end{array}\right)\binom{A_{1}^{(i)}}{A_{2}^{(i)}}=0
$$

the $\mathbf{A}^{(i)}$ are defined up to a normalization
for $\mathbf{A}^{(1)}$ we get the two equations

$$
\left(-8 \omega_{1}^{2}+4 \omega_{0}^{2}\right) A_{1}^{(1)}-2 \omega_{1}^{2} A_{2}^{(1)}=0, \quad-2 \omega_{1}^{2} A_{1}^{(1)}+\left(-\omega_{1}^{2}+\omega_{0}^{2}\right) A_{2}^{(1)}=0
$$

from the second equation we obtain (same result from the first equation)

$$
A_{2}^{(1)}=\frac{2 \omega_{1}^{2}}{\omega_{0}^{2}-\omega_{1}^{2}} A_{1}^{(1)}=(\sqrt{5}-1) A_{1}^{(1)}
$$

choose $A_{1}^{(1)}=1$

$$
\Rightarrow \quad \mathbf{A}^{(1)}=\binom{1}{\sqrt{5}-1}, \quad \text { analogously } \quad \mathbf{A}^{(2)}=\binom{-1}{\sqrt{5}+1}
$$

the normal mode vectors

$$
\mathbf{x}^{(1,2)}=\mathbf{A}^{(1,2)} Q_{1,2}=\binom{ \pm 1}{\sqrt{5} \mp 1} a_{1,2} \cos \left(\omega_{1,2} t+\varphi_{1,2}\right)=\binom{ \pm 1}{\sqrt{5} \mp 1} Q_{1,2}
$$

complete solution

$$
\mathbf{x}=\mathbf{x}^{(1)}+\mathbf{x}^{(2)}=\binom{Q_{1}-Q_{2}}{(\sqrt{5}-1) Q_{1}+(\sqrt{5}+1) Q_{2}} \equiv\binom{\theta_{1}}{\theta_{2}}
$$

with the angles

$$
\begin{aligned}
& \theta_{1}(t)=a_{1} \cos \left(\omega_{1} t+\varphi_{1}\right)-a_{2} \cos \left(\omega_{2} t+\varphi_{2}\right) \\
& \theta_{2}(t)=(\sqrt{5}-1) a_{1} \cos \left(\omega_{1} t+\varphi_{1}\right)+(\sqrt{5}+1) a_{2} \cos \left(\omega_{2} t+\varphi_{2}\right)
\end{aligned}
$$

the constants $a_{1}, a_{2}, \varphi_{1}, \varphi_{2}$ are found from the initial conditions
Let us also check that the Lagrangian becomes diagonal using the normal coordinates Q_{α}

$$
L=\sum_{\alpha=1}^{2}\left(\frac{1}{2} M_{\alpha} \dot{Q}_{\alpha}^{2}-\frac{1}{2} K_{\alpha} Q_{\alpha}^{2}\right) \quad \text { and } \quad \omega_{\alpha}^{2}=\frac{K_{\alpha}}{M_{\alpha}}
$$

we find

$$
\begin{aligned}
m g l\left(4 \theta_{1}^{2}+\theta_{2}^{2}\right) & =2 \sqrt{5}\left[(\sqrt{5}-1) Q_{1}^{2}+(\sqrt{5}+1) Q_{2}^{2}\right] m g l \\
m l^{2}\left(8 \dot{\theta}_{1}^{2}+4 \dot{\theta}_{1} \dot{\theta}_{2}+\dot{\theta}_{2}^{2}\right) & =2 \sqrt{5}\left[(\sqrt{5}+1) \dot{Q}_{1}^{2}+(\sqrt{5}-1) \dot{Q}_{2}^{2}\right] m l^{2}
\end{aligned}
$$

identify

$$
\begin{gathered}
M_{1,2}=2 \sqrt{5}(\sqrt{5} \pm 1) m l^{2}, \quad K_{1,2}=2 \sqrt{5}(\sqrt{5} \mp 1) m g l \\
\omega_{1,2}^{2}=\frac{\sqrt{5} \mp 1}{\sqrt{5} \pm 1} \frac{g}{l}=\frac{(\sqrt{5} \mp 1)^{2}}{4} \frac{g}{l}=\frac{3 \mp \sqrt{5}}{2} \omega_{0}^{2}
\end{gathered}
$$

$M_{1,2}$ and $K_{1,2}$ can be found also from $M_{\alpha}=\left(\mathbf{A}^{(\alpha)}, \hat{m} \mathbf{A}^{(\alpha)}\right), \quad K_{\alpha}=\left(\mathbf{A}^{(\alpha)}, \hat{k} \mathbf{A}^{(\alpha)}\right)$
In a plane with orthogonal axes θ_{1}, θ_{2} the eigenvectors $\mathbf{A}^{(1)}$ and $\mathbf{A}^{(2)}$ give the directions of the new axes of normal coordinates Q_{1} and Q_{2} the axes Q_{1} and Q_{2} are not orthogonal to each other

$$
\left(\mathbf{A}^{(1)}, \mathbf{A}^{(2)}\right)=(1, \sqrt{5}-1)\binom{-1}{\sqrt{5}+1}=3 \neq 0
$$

but the vectors $\mathbf{A}^{(1)}$ and $\mathbf{A}^{(2)}$ are orthogonal in the metric of mass or elasticity

$$
\left(\mathbf{A}^{(1)}, \frac{\hat{k}}{m g l} \mathbf{A}^{(2)}\right)=(1, \sqrt{5}-1)\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right)\binom{-1}{\sqrt{5}+1}=(1, \sqrt{5}-1)\binom{-4}{\sqrt{5}+1}=0
$$

