Chapter 4

Small oscillations and normal modes

4.1 Linear oscillations

Discuss a generalization of the harmonic oscillator problem:
oscillations of a system of several degrees of freedom near the position of equilibrium

remember for s =1

L=;M(q)¢*~V(g), T>0 (4.1)

DN | —
|

qo minimum of the potential energy, * = ¢ — qo displacement
expand V(¢) and M(q)

A% 1 d?V
V = V e - Y - 2 A
(9) (qz)+ i), ., (4 =)+ 5 | (¢ —q0)" +
=0 k>0

1
V(q) = const + 5 ka® + O(z?)
if £ = 0 non-linear oscillation, higher derivatives important
M(q) = M(qo) + O(x) = m+ O(x)

restrict to orders O(x?), 0O(4?) (in general also O(x)) in L for linear oscillations

1 1
L:§mx2—§k‘:r2

procedure is called: linearization of the original Lagrangian (4.1)
results: linear differential equation with constant coefficients

mi+kx=0
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ansatz for the solution

x = Acos(wt + ¢)

k
—mw’ +k=0 = w=1/—
m
m>0,k>0: w?>>0

A — amplitude, w — frequency, wt + ¢ — phase, ¢ — initial phase

algebraic equation

now consider s degrees of freedom
1 .
L=T-V(q,...qs), T= §ZMij(Q>Qin
Z?]

since ¢;¢; is symmetric relative to ¢ <+ j, the coefficients M;; can be chosen symmetric
M;;(q) = Mji(q)

denote by ¢;0,7 = 1,...,s the point of the minimum for the potential energy V'
expand V relative to x; = ¢; — ¢

o*V
94:0q; qi0

1
V(q) = const + 5 Z k/’i]‘ T4 + O(.@i) y kij = = kji

i,j

for x; # 0 the potential energy increases with respect to its minimum at x; = 0
quadratic form

i’j

expand M;;(q)
M;i(q) = mij + O(xy), mij = Mij(qro) = my;

since T' > 0 we have another quadratic form
i,J

again restrict ourselves to O(z;x;), O(&;3;)

1 .
L = 5 Z(m” iEi.Z']‘ — kij mixj)

Y]
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Introduce a matrix notation
column vector

and the transposed vector (7" denotes transposition) as a raw vector
x' = (zy,..., 1)

mass matrix m and matrix of elasticity k

mir ... Mys /{/’11 kls
m=| i k=

mg1 ... Mgg ksl k’ss
introduce the scalar product
S
(xy)=x"-y=) zy
=1

form of the Lagrangian

with (x, mx) > 0 and (x, kx)>0
k and m are symmetric matrices:

equation of motion

d 0L 9L

E&—a—x = mx+kx=0

ansatz for the solution

x = A cos(wt + ¢)

= (—w’m+k)A =0 eigenvalue equation
non-trivial solutions for

det (—w?m + k) =0 characteristic equation
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assuine

wf A ,w? eigenvalues — solutions of the characteristic equation

put the eigenvalues w? into the eigenvalue equation, find the eigenvectors A
(—w2 i+ k) A =0 (4.2)

if A is a solution, then aA(® is also a solution

introduce the normal mode vector x(®(¢)

xW(t) = A Qa(t), Qall) = aa cos(wal + pa)

()., — normal coordinate, w, — normal frequency
a, — arbitrary amplitude, ¢, — arbitrary phase

the complete solution

x(t) =Y x(t) = A Q,(1)

in components
i(t) = > A Qalt)
a=1

the solution contains s arbitrary amplitudes a,, and phases ¢, which have to be found from
the initial conditions x(0) and x(0)

In the language of vector algebra the transformation from vector x to Q is a linear trans-
formation

A~

x=UQ, xi:ZUmQa and UmEAga)

with
1 o} AL 4l
X = : . Q= : , U= : : :
s Qs ALY Al
for that transformation both quadratic forms for 7" and V' become diagonal:
L:XS:L L ZEMQQ—EKQQ (4.3)
s a a 9 a g 9 a'yy .

My = (A, i A®) K, = (A@, kA©)
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the Lagrangian has the form of s non-interacting oscillations
we get the one-dimensional equations of motion for s independent normal coordinates @),

Mo Qo+ KoQa=0, a=1,...s
Note that normal frequencies are real:

(@) 1 Al®)
w2 = Ko (A7, TAnA ) >0
Mo~ (A, AW@)

So, each normal coordinate @), corresponds to an oscillation with one frequency w:
Qa + wi Qa =0

the oscillation is called normal mode
The solution in the original variables x; is a linear superposition of oscillations with different
frequencies
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4.2 Orthogonality of normal modes

Assume two eigenvectors A A®) are given with w, # ws

the corresponding normal mode vectors are x(®) = A(® @, and x¥) = A(®) Qs

there is no reason that the scalar products of two eigenvectors or normal mode vectors
have to vanish:

(A9, A@) £0, (x, x®) £0
Consider the eigenvector equations [see (4.2)]
= W2 ymACD) = ACH)
multiply from the left with A (%)

w

QN

(A® mA®) = ( AD A(a)) (4.4)
W3 (A i AP) = ( A@ A(ﬁ))
and subtract
W2 (A®) i A@) = w2 (A 5 AP)) = (Aw)’ ;;A(m) _ (A(cw’ ,;A@)

it is known that for each real matrix n:

(A,nB) = (' A,B)
in our case k and 7 are real and symmetric

K=k, m"=m
using (A, B) = (B, A) the difference vanishes
= w2 (AP M A@) — w2 (mA© | A®) = (Aw), ;;A(oo) _ (;;A(cw, A(ﬁ)) -0
we get
(w2 —wd) (AP mA®) =0

Therefore:

(A® M A®@) =0 and [see (4.4)] (AW , 1%A<a>) —0
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Conclusions:
The normal mode vectors x(*) and x®) with w, # wg are orthogonal to each other, if their

scalar product is defined using the so called metric tensors m or k

= x(® and x® are orthogonal in the metric of mass or elasticity
(x®) mx®) =0, <X<5> , ;;Xm)) —0

In case of degenerate frequencies:

e.g. the normal mode vectors x( and x® with w; = w,

the linear combination ax(® 4+ bx® is also a solution with the same frequency

= the space of solution is the plane given by the vectors x(!) and x(®

choose a pair of independent vectors which satisfy the orthogonality condition in the mass
metric

together with all other normal mode vectors with non-degenerate frequencies they build the
basis for the normal coordinates leading to the diagonal Lagrangian of decoupled oscillators

(4.3)
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4.3 The double pendulum in the field of constant grav-
ity — an example

s = 2, use as generalized coordinates 6; and 6,

for the notations, see the figure

Xy Xo

. S

) ,,,,,,,j: 7777777777777777777 ; n,

Cartesian coordinates and the generalized coordinates are related via

xIr = ll sin 91 s To = ll sin (91 + l2 sin 02

z1 =1y cosby, 29 =1y cosfy + Iy cos by

the Lagrangian can be found as follows (see Landau/Lifshitz, §5, problem 1)

1 : 1 . .
L = 5 (m1 + m2) l% 9% + 5 mo l% 0% + mo lllg 9192 COS(01 — 92)

+(my1 + msa) gly cos by +ma gly cos by
Consider the special case my =ma=m, L =21, Ilh=I1
L=4ml*6 + %ml%’% +2m 1?6105 cos(y — ;) +4mgl cosby +m gl cos by
linearize the Lagrangian (|6;] < 1)
L= %le (862 + 46,0, + 62) — %mg1(4ef +62)

identify the matrices of mass and elasticity

. o (8 2 s 4 0
m—ml(21), k—mgl<01

the equations of motion

8é1+252+4w89120, 291+52+w§92:0, Wo = %
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Search the solution in the form

X = ) _ A cos(wt + @) = 4 cos(wt + )
92 AQ

the eigenvalue equation (—w? 7 + k) A = 0

e (37 omn (42)] (4) -

divide the matrix equation by m {? and introduce w(Q) .

o (32)ea (3] ()

N —8w?+4wi 2w’ A
—2w? —w? + Wi Ay )

solve the characteristic equation

3FV5
9

Wo

—8w? +4wd  —2uw?
det ( —2w? —w? + w?

)_0 = W2 =

determine the eigenvectors A® and A® from

—8w?+4wi —2w? AP\ 0

the A® are defined up to a normalization
for A we get the two equations

(—8wi +4w?) Agl) — 2w} Agl) =0, —2uw Agl) 4 (0?4 w?) Aél) —0

from the second equation we obtain (same result from the first equation)

2 w?
AP = 2440 (Fo A
Wy — Wi

choose Agl) =1

1 —1
1) — (2) —
= A ( \/5 1 ) ) analogously A < \/3 1 )

the normal mode vectors

+1 +1
x(12) = A(12) Qi = ( VEF1 ) arz cos(wi ot + p12) = < NGES ) Q12
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complete solution

_ () @) _ Q1 — Q2 _ 01)
XxmxmAx _((\/3—1)Q1+(\/3+1)Q2)_(92
with the angles

01(t) = a1 cos(wit + ¢1) — ay cos(wat + p2)
O5(t) = (\/5 — 1) a; cos(wit+ ¢1) + (\/5 + 1) as cos(wat + ¢2)
the constants ay, as, ¢1, o are found from the initial conditions

Let us also check that the Lagrangian becomes diagonal using the normal coordinates (),

L:;(%MaQi—%KaQZ) and wizﬁ—z
we find
mgl(163+03) = 2V5[(VE- 1)@+ (V5 +1)@Q3] myl
m 6+ 40,05+ 6) = 25 [(VE+ 1) Q3+ (V5 - 1) Q3] m?
identify

Mo =2V5(V5+1)mi?, Kio=2V5(V5F1)mgl

s, _VBFlg (V5T 1)’y

VLT TRl 4 l

M; 5 and K 5 can be found also from M, = (A@  mA@) | K, = (A(O‘) , /%A(O‘))

In a plane with orthogonal axes 6;, 6, the eigenvectors A1) and A give the directions of
the new axes of normal coordinates ()1 and )9
the axes 1 and ()5 are not orthogonal to each other

(AW, A®) = (1,v/5 - 1) ( \/5_41r1 > =340

3FV5
= 2 wo

but the vectors A and A® are orthogonal in the metric of mass or elasticity

Qy\ 6,
Q,

0,

(A“h%A@)):(L\/ﬁ—U(é (1)) (\/S_il)z(L\/S—n(\/g—il):o
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