
Chapter 4

Small oscillations and normal modes

4.1 Linear oscillations

Discuss a generalization of the harmonic oscillator problem:
oscillations of a system of several degrees of freedom near the position of equilibrium

remember for s = 1

L =
1

2
M(q) q̇2

︸ ︷︷ ︸

T

−V (q) , T > 0 (4.1)

q0 minimum of the potential energy, x = q − q0 displacement
expand V (q) and M(q)

V (q) = V (q0)
︸ ︷︷ ︸

const

+
dV

dq

∣
∣
∣
∣
q=q0

︸ ︷︷ ︸

=0

(q − q0) +
1

2

d2V

dq2

∣
∣
∣
∣
q=q0

︸ ︷︷ ︸

k>0

(q − q0)
2 + . . .

V (q) = const +
1

2
k x2 +O(x3)

if k = 0 non-linear oscillation, higher derivatives important

M(q) = M(q0) +O(x) = m+O(x)

restrict to orders O(x2), O(ẋ2) (in general also O(xẋ)) in L for linear oscillations

L =
1

2
mẋ2 − 1

2
k x2

procedure is called: linearization of the original Lagrangian (4.1)
results: linear differential equation with constant coefficients

mẍ+ k x = 0
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ansatz for the solution

x = A cos(ωt+ ϕ)

algebraic equation

−mω2 + k = 0 ⇒ ω =

√

k

m

m > 0, k > 0: ω2 > 0
A — amplitude, ω — frequency, ωt+ ϕ — phase, ϕ — initial phase

now consider s degrees of freedom

L = T − V (q1, . . . qs) , T =
1

2

∑

i,j

Mij(q) q̇iq̇j

since q̇iq̇j is symmetric relative to i ↔ j, the coefficients Mij can be chosen symmetric

Mij(q) = Mji(q)

denote by qi0, i = 1, . . . , s the point of the minimum for the potential energy V

expand V relative to xi = qi − qi0

V (q) = const +
1

2

∑

i,j

kij xixj +O(x3
k) , kij =

∂2V

∂qi∂qj

∣
∣
∣
∣
qi0

= kji

for xi 6= 0 the potential energy increases with respect to its minimum at xi = 0
quadratic form

∑

i,j

kij xixj ≥ 0

expand Mij(q)

Mij(q) = mij +O(xk) , mij = Mij(qk0) = mji

since T > 0 we have another quadratic form

∑

i,j

mij ẋiẋj ≥ 0

again restrict ourselves to O(xixj), O(ẋiẋj)

L =
1

2

∑

i,j

(mij ẋiẋj − kij xixj)
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Introduce a matrix notation
column vector

x =






x1
...
xs






and the transposed vector (T denotes transposition) as a raw vector

xT = (x1 , . . . , xs)

mass matrix m̂ and matrix of elasticity k̂

m̂ =






m11 . . . m1s
...

...
...

ms1 . . . mss




 k̂ =






k11 . . . k1s
...

...
...

ks1 . . . kss






introduce the scalar product

(x,y) ≡ xT · y =
s∑

i=1

xiyi

form of the Lagrangian

L =
1

2
(ẋ , m̂ ẋ)− 1

2
(x , k̂ x)

with (ẋ , m̂ ẋ) ≥ 0 and (x , k̂ x) ≥ 0
k̂ and m̂ are symmetric matrices:

m̂T = m̂ , k̂T = k̂

equation of motion

d

dt

∂L

∂ẋ
=

∂L

∂x
⇒ m̂ ẍ+ k̂ x = 0

ansatz for the solution

x = A cos(ωt+ ϕ)

⇒ (−ω2 m̂+ k̂)A = 0 eigenvalue equation

non-trivial solutions for

det (−ω2 m̂+ k̂) = 0 characteristic equation
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assume

ω2
1 , . . . , ω

2
s eigenvalues – solutions of the characteristic equation

put the eigenvalues ω2
α into the eigenvalue equation, find the eigenvectors A(α)

(−ω2
α m̂+ k̂)A(α) = 0 (4.2)

if A(α) is a solution, then aA(α) is also a solution

introduce the normal mode vector x(α)(t)

x(α)(t) = A(α) Qα(t) , Qα(t) = aα cos(ωαt+ ϕα)

Qα — normal coordinate, ωα — normal frequency
aα — arbitrary amplitude, ϕα — arbitrary phase

the complete solution

x(t) =
s∑

α=1

x(α)(t) =
s∑

α=1

A(α) Qα(t)

in components

xi(t) =
s∑

α=1

A
(α)
i Qα(t)

the solution contains s arbitrary amplitudes aα and phases ϕα which have to be found from
the initial conditions x(0) and ẋ(0)

In the language of vector algebra the transformation from vector x to Q is a linear trans-
formation

x = Û Q , xi =
∑

α

UiαQα and Uiα ≡ A
(α)
i

with

x =






x1
...
xs




 , Q =






Q1
...
Qs




 , Û =






A
(1)
1 . . . A

(s)
1

...
...

...

A
(1)
s . . . A

(s)
s






for that transformation both quadratic forms for T and V become diagonal:

L =
s∑

α=1

Lα , Lα =
1

2
MαQ̇

2
α − 1

2
KαQ

2
α (4.3)

Mα =
(
A(α) , m̂A(α)

)
, Kα =

(

A(α) , k̂A(α)
)
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the Lagrangian has the form of s non-interacting oscillations
we get the one-dimensional equations of motion for s independent normal coordinates Qα

Mα Q̈α +Kα Qα = 0 , α = 1, . . . , s

Note that normal frequencies are real:

ω2
α =

Kα

Mα

=
(A(α) , m̂A(α))

(A(α) , k̂A(α))
≥ 0

So, each normal coordinate Qα corresponds to an oscillation with one frequency ωα:

Q̈α + ω2
α Qα = 0

the oscillation is called normal mode
The solution in the original variables xi is a linear superposition of oscillations with different
frequencies
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4.2 Orthogonality of normal modes

Assume two eigenvectors A(α),A(β) are given with ωα 6= ωβ

the corresponding normal mode vectors are x(α) = A(α) Qα and x(β) = A(β) Qβ

there is no reason that the scalar products of two eigenvectors or normal mode vectors
have to vanish:

(
A(β) , A(α)

)
6= 0 ,

(
x(β) , x(α)

)
6= 0

Consider the eigenvector equations [see (4.2)]

⇒ ω2
α,β m̂A(α,β) = k̂A(α,β)

multiply from the left with A(β,α)

ω2
α

(
A(β) , m̂A(α)

)
=

(

A(β) , k̂A(α)
)

(4.4)

ω2
β

(
A(α) , m̂A(β)

)
=

(

A(α) , k̂A(β)
)

and subtract

ω2
α

(
A(β) , m̂A(α)

)
− ω2

β

(
A(α) , m̂A(β)

)
=
(

A(β) , k̂A(α)
)

−
(

A(α) , k̂A(β)
)

it is known that for each real matrix n̂:

(A, n̂B) = (n̂T A,B)

in our case k̂ and m̂ are real and symmetric

k̂T = k̂ , m̂T = m̂

using (A,B) = (B,A) the difference vanishes

⇒ ω2
α

(
A(β) , m̂A(α)

)
− ω2

β

(
m̂A(α) , A(β)

)
=
(

A(β) , k̂A(α)
)

−
(

k̂A(α) , A(β)
)

≡ 0

we get

(ω2
α − ω2

β)
(
A(β) , m̂A(α)

)
= 0

Therefore:

(
A(β) , m̂A(α)

)
= 0 and [see (4.4)]

(

A(β) , k̂A(α)
)

= 0
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Conclusions:
The normal mode vectors x(α) and x(β) with ωα 6= ωβ are orthogonal to each other, if their

scalar product is defined using the so called metric tensors m̂ or k̂

⇒ x(α) and x(β) are orthogonal in the metric of mass or elasticity

(
x(β) , m̂x(α)

)
= 0 ,

(

x(β) , k̂ x(α)
)

= 0

In case of degenerate frequencies:
e.g. the normal mode vectors x(1) and x(2) with ω1 = ω2

the linear combination ax(1) + bx(2) is also a solution with the same frequency
⇒ the space of solution is the plane given by the vectors x(1) and x(2)

choose a pair of independent vectors which satisfy the orthogonality condition in the mass
metric
together with all other normal mode vectors with non-degenerate frequencies they build the
basis for the normal coordinates leading to the diagonal Lagrangian of decoupled oscillators
(4.3)
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4.3 The double pendulum in the field of constant grav-

ity – an example

s = 2, use as generalized coordinates θ1 and θ2
for the notations, see the figure

Cartesian coordinates and the generalized coordinates are related via

x1 = l1 sin θ1 , x2 = l1 sin θ1 + l2 sin θ2

z1 = l1 cos θ1 , z2 = l1 cos θ1 + l2 cos θ2

the Lagrangian can be found as follows (see Landau/Lifshitz, §5, problem 1)

L =
1

2
(m1 +m2) l

2
1 θ̇

2
1 +

1

2
m2 l

2
2 θ̇

2
2 +m2 l1l2 θ̇1θ̇2 cos(θ1 − θ2)

+(m1 +m2) g l1 cos θ1 +m2 g l2 cos θ2

Consider the special case m1 = m2 = m, l1 = 2 l , l2 = l

L = 4ml2 θ̇21 +
1

2
ml2 θ̇22 + 2ml2 θ̇1θ̇2 cos(θ1 − θ2) + 4mg l cos θ1 +mg l cos θ2

linearize the Lagrangian (|θi| ≪ 1)

L =
1

2
ml2 (8 θ̇21 + 4 θ̇1θ̇2 + θ̇22)−

1

2
mg l (4 θ21 + θ22)

identify the matrices of mass and elasticity

m̂ = ml2
(

8 2
2 1

)

, k̂ = mg l

(
4 0
0 1

)

the equations of motion

8 θ̈1 + 2 θ̈2 + 4ω2
0 θ1 = 0 , 2 θ̈1 + θ̈2 + ω2

0 θ2 = 0 , ω0 =

√
g

l
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Search the solution in the form

x =

(
θ1
θ2

)

= A cos(ωt+ ϕ) =

(
A1

A2

)

cos(ωt+ ϕ)

the eigenvalue equation (−ω2 m̂+ k̂)A = 0

[

−ml2 ω2

(
8 2
2 1

)

+mg l

(
4 0
0 1

)] (
A1

A2

)

= 0

divide the matrix equation by ml2 and introduce ω2
0 =

g

l
[

−ω2

(
8 2
2 1

)

+ ω2
0

(
4 0
0 1

)] (
A1

A2

)

= 0

⇒
(

−8ω2 + 4ω2
0 −2ω2

−2ω2 −ω2 + ω2
0

) (
A1

A2

)

= 0

solve the characteristic equation

det

(
−8ω2 + 4ω2

0 −2ω2

−2ω2 −ω2 + ω2
0

)

= 0 ⇒ ω1,2 =

√

3∓
√
5

2
ω0

determine the eigenvectors A(1) and A(2) from

(
−8ω2

i + 4ω2
0 −2ω2

i

−2ω2
i −ω2

i + ω2
0

) (

A
(i)
1

A
(i)
2

)

= 0

the A(i) are defined up to a normalization
for A(1) we get the two equations

(−8ω2
1 + 4ω2

0)A
(1)
1 − 2ω2

1 A
(1)
2 = 0 , −2ω2

1 A
(1)
1 + (−ω2

1 + ω2
0)A

(1)
2 = 0

from the second equation we obtain (same result from the first equation)

A
(1)
2 =

2ω2
1

ω2
0 − ω2

1

A
(1)
1 = (

√
5− 1)A

(1)
1

choose A
(1)
1 = 1

⇒ A(1) =

(
1√
5− 1

)

, analogously A(2) =

(
−1√
5 + 1

)

the normal mode vectors

x(1,2) = A(1,2) Q1,2 =

(
±1√
5∓ 1

)

a1,2 cos(ω1,2t+ ϕ1,2) =

(
±1√
5∓ 1

)

Q1,2
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complete solution

x = x(1) + x(2) =

(
Q1 −Q2

(
√
5− 1)Q1 + (

√
5 + 1)Q2

)

≡
(

θ1
θ2

)

with the angles

θ1(t) = a1 cos(ω1t+ ϕ1)− a2 cos(ω2t+ ϕ2)

θ2(t) = (
√
5− 1) a1 cos(ω1t+ ϕ1) + (

√
5 + 1) a2 cos(ω2t+ ϕ2)

the constants a1, a2, ϕ1, ϕ2 are found from the initial conditions

Let us also check that the Lagrangian becomes diagonal using the normal coordinates Qα

L =
2∑

α=1

(
1

2
MαQ̇

2
α − 1

2
KαQ

2
α

)

and ω2
α =

Kα

Mα

we find

mg l (4 θ21 + θ22) = 2
√
5
[

(
√
5− 1)Q2

1 + (
√
5 + 1)Q2

2

]

mg l

m l2 (8 θ̇21 + 4 θ̇1θ̇2 + θ̇22) = 2
√
5
[

(
√
5 + 1) Q̇2

1 + (
√
5− 1) Q̇2

2

]

ml2

identify

M1,2 = 2
√
5 (

√
5± 1)ml2 , K1,2 = 2

√
5 (

√
5∓ 1)mg l

ω2
1,2 =

√
5∓ 1√
5± 1

g

l
=

(
√
5∓ 1)2

4

g

l
=

3∓
√
5

2
ω2
0

M1,2 and K1,2 can be found also from Mα =
(
A(α) , m̂A(α)

)
, Kα =

(

A(α) , k̂A(α)
)

In a plane with orthogonal axes θ1, θ2 the eigenvectors A
(1) and A(2) give the directions of

the new axes of normal coordinates Q1 and Q2

the axes Q1 and Q2 are not orthogonal to each other

(A(1),A(2)) = (1,
√
5− 1)

(
−1√
5 + 1

)

= 3 6= 0

but the vectors A(1) and A(2) are orthogonal in the metric of mass or elasticity

(

A(1) ,
k̂

m g l
A(2)

)

= (1,
√
5− 1)

(
4 0
0 1

) (
−1√
5 + 1

)

= (1,
√
5− 1)

(
−4√
5 + 1

)

= 0
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