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Abstract

In this work we assess the quality and performance of several novel dissipative particle dynamics integration schemes that
have not previously been tested independently. Based on a thorough comparison we identify the respective methods of Lowe
and Shardlow as particularly promising candidates for future studies of large-scale properties of soft matter systems.
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1. Introduction field modeling [6] or the lattice-Boltzmann method [7]
(usually concerned with the macroscopic regime).

Dissipative particle dynamics (DPD) [8-11] is a
particularly appealing technique in this regard. The
“particles” of DPD correspond to coarse-grained en-
tities, representing a collection of molecules or mole-
cular groups rather than individual atoms. Coarse-
graining leads to soft pair potentials allowing the par-
ticles to overlap (Forrest and Suter [12]).

Although coarse-graining might also be considered

The mesoscopic phenomena of so-called “soft mat-
ter” physics [1-3], embracing a diverse range of
systems including liquid crystals, colloids, and bio-
membranes, generally involve some form of coupling
between different characteristic time- and length-
scales. Computational modeling of such multi-scale
effects requires new methodology applicable beyond

the realm Of. traditional techmqugs such as ini- implicit in Brownian and Langevin dynamics simu-
tio and classical molecular dynamics [4,5] (the meth- |4i5, pDpp offers the explicit advantage of a proper
ods of choice in the microscopic regime), and phase yescription of hydrodynamic modes significant in the
physical approach towards a system’s equilibrium.
mgpondmg author This is achieved in DPD by implementing a thermo-
E-mail addressesPetri.Nikunen@hut.fi (P. Nikunen), stat in terms of pairwise random and d|SS|pat|ve_ forces
Mikko.Karttunen@hut.fi (M. Karttunen), llpo.Vattulainen@csc.fi such that the total momentum of the system is con-
(I. Vattulainen). served. Due to these reasons, DPD has been used in
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studies covering a wide range of aspects in soft matter and Shardlow [23] give the best overall performance

systems, including the structure of lipid bilayers [13, and are superior also to the integrators tested in

14], self-assembly [15], and the formation of polymer- previous studies [20,21]. As will be discussed in

surfactant complexes [16]. the last section, a direct comparison between these
In practice, the pairwise coupling of particles two is not straightforward, since they are based on

through random and dissipative forces makes the in- essentially different conceptual views of dissipative

tegration of the equations of motion a nontrivial task. particle dynamics.

The main difficulty arises from the dissipative force, The paper is organized as follows. First, we briefly

which depends explicitly on the relative velocities of summarize the dissipative particle dynamics method

the particles, while the velocities in turn depend on the and introduce the three model systems used here. In

dissipative forces. An accurate description of the dy- Section 3 we describe the integration algorithms and

namics requires a self-consistent solution. the update schemes in detail, and in Section 4 we
The considerable computational load associated present the results from the tests. Finally, in Section 5

with this task has motivated the development of the findings and their relevance are discussed.

schemes [11,17-23] which account for the velocity

dependence of dissipative forces in some approximate

manner, allowing the integration to be carried out to 2. Methodsand models

a sufficient degree of computational efficiency. The

search for a satisfactory such integration scheme is  Below we give a short summary of the dissipa-

ongoing, since many of the recent proposal have tie particle dynamics method and describe the three

been found to exhibit non-physical behavior, such as model systems used in this work. For more thorough
systematic drift in temperature, and artificial structures accounts on DPD, see, e.g., Refs. [10,11].

in the radial distribution function [19-21].

In order to overcome these problems, a number of
new integration schemes for DPD simulations have
been developed in the past few years. Self-consistent
determination schemes exist on the one hand [19-21],
but these are rather elaborate.

Alternative proposals include (i) a parameterization
of the integrator based on the specific application be-
ing modeled by den Otter and Clarke [22], (ii) operator
splitting by Shardlow [23], and (iii) an elegant Monte

2.1. Dissipative particle dynamics

Dissipative particle dynamics describes a system
in terms of N particles having masses;, positions
7;, and velocitiesy;. Interactions are composed of
pairwise conservative, dissipative, and random forces
exerted on particleby particlej, respectively, and are
given by

Carlo-based approach due to Lowe [24] which com- gC _ F< riéii,

pletely avoids the problems arising from random and _"” Y

dissipative forces as it does not use random or dissipa- F;; = —y @ (rij) (Vi - €i)éij. (1)
tive forces at all. ~R

; ; . FR =owR(ri)&ijeij,
In this article, we apply these schemes respectively "/ (rij)&ij€ij

to specific model systems, with the objective of wherer;; =7 — 7;, rij = |Fijl, é;j = Fij/rij, and
assessing their relative performance. To the authors’ v;; = v; — v;. The variables’ ando are the strengths
knowledge, the latter three have yet to be tested and of the dissipative and random forces, respectively. The
compared independently. The self-consistent approaché;; are symmetric Gaussian random variables with
has been tested, although not extensively, and thezero mean and unit variance, and are independent for
previously tested so-called DPD-VV (DPD version different pairs of particles and different times. The
of the “velocity-Verlet” scheme) will be used here as conditioné;; = &j; is employed to ensure momentum
a benchmark. By monitoring a number of physical conservation.

observables including temperature, radial distribution ~ The pairwise conservative foro@(c) is not spec-
function, radius of gyration for polymers, and tracer ified by the DPD formulation and |t can be chosen
diffusion, we find that the methods by Lowe [24] to include any forces that are appropriate for a given
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system, such as van der Waals and electrostatic in-continuous-time version of DPD satisfies detailed
teractions. In addition, it is important to notice that balance and describes the canonical NVT ensemble.
it is completely independent of the random and dis- In practice, however, the time increments in Eq. (3)
sipative forces. Since one of the main motivations for are finite and the equations of motion must be solved

using DPD is to be able to simulate systems at coarse-py some integration procedure. We will return to this
grained, or mesoscopic, scales, the conservative forcejssye in Section 3.

is often chosen to be soft repulsive. Here, we use the

“classical” DPD choice, i.e. soft repulsive conserva-

tive forces in the cases of model A and model B, and 2.2. An alternative approach to DPD
hard Lennard-Jones interactions combined with har-

monic spring forces in the model polymer system. o ) . .

In contrast to the conservative force, the random  Dissipative particle dynamics described above can
and dissipative forces are notindependent, but are cou-Pe thought of as a momentum conserving thermostat
pled through a fluctuation—dissipation relation. This that allows one to study a system within the NVT en-
coupling is due to the requirement that in thermody- semble with full hydrodynamics. The key features are
namic equilibrium the system must have canonical dis- therefore momentum and temperature conservation.
tribution. The necessary conditions were first derived As discussed above, momentum conservation arises
by Espafiol and Warren in 1995 using a Fokker—Planck naturally from pairwise forces. Temperature conser-
equation [9]. vation, in turn, arises from the random and dissipa-

The requirement of canonical distribution sets two tive forces that are chosen to satisfy the fluctuation—
conditions linking the random and dissipative forces dissipation theorem.
in Eqg. (2). The first one couples the weight functions  An alternative approach was formulated by Lowe
through ” (r;j) = [w®(r;j)1?, and the second one in 1999 [24]. It does not use dissipative or random
the strengths of the random and dissipative forces forces at all, yet provides the same conservation laws
via o? = 2ykpT*. The latter condition fixes the  and is similar in spirit to DPD as it is aimed for
temperature of the systefit (kp beingthe Boltzmann sy dies of coarse-grained models in terms of soft
constant) and relates it to the two DPD paramefers  jnteractions. In Lowe’s method, one first integrates
ando. _ _ _ Newton’s equations of motion with a time stey,

Like classical molecular dynamics (MD) simula- and then thermalizes the system using the Andersen

tlgns, tﬁp? allowsl ?tud|efs of t.d?/nammatl) p(rjoperftgas q thermostat [25] for pairs of particles. We will discuss
since the time evolution of particles can be described . o4 atail in Section 3.5,

by the Newton’s equations of motion ) : )
Lowe's approach is appealing for a number of

dr; = v;dt, reasons. First of all, since there are no dissipative
1 (2) forces we can assume that this method does not

dv; = _(Ffd; + FPdr + ﬁiRQ/d;), suffer from the same drawback as DPD: While DPD
m;

requires a self-consistent solution of the equations of
Here FC = Y i ﬁijc. is the total conservative force motion, Lowe’s approach is easier to use and most
acting on particlei, and 17",.D and ﬁiR are defined likely performs well ever_l with |r_1tegrat|0n_ schemes
correspondingly. It is important to notice that the thatare commonly used in classical MD simulations.
velocity increment due to the random force in Eq. (3) Secondly, the rate of how often the particle velocities
has the factor/dr instead ofd:. It can be justified ~ are thermalized may be varied over a wide range,
by a Wiener process as in stochastic differential Which implies that the dynamical properties of the
equations. Here, it suffices to notice that physically System can be tuned in a controlled fashion. Lowe
the Wiener process models intrinsic (thermal) noise has demonstrated this idea by showing how some
in the system and provides the simplest approach to dimensionless variables (such as the Schmidt number
modeling Brownian motion using stochastic processes Sg can be tuned to match values found in actual fluids
(see Refs. [9,11] for a detailed discussion). The above [24].
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2.3. Model systems In our simulations, a 3D simulation box of size
10 x 10 x 10 with periodic boundary conditions is

In this study, we evaluate the performance of a used. The length scale is defined by settipg= 1,

number of novel integration schemes that have beenand a particle number density js= 4. The energy

recently suggested for large-scale DPD simulations scale is defined by setting the desired thermal energy

(see Section 3). We test these integrators using threeto unity viakgT* = 1. All particles are identical, and

different model systems. The first two are based on thusm; =m forall i.

a 3D model fluid system with a fixed number of

identical particles. The first of them is aimed to clarify 2.3.2. Model B

the performance of integration schemes in weakly = Model B is a simple interacting DPD fluid. Its main

interacting systems dominated by the random and difference to model A is the presence of a conservative

dissipative forces, while the second model is relevant force, which we choose to be of the forﬁfc) (rij) =

for systems in which the conservative interactions Aw(rij). The amplitude of the force was chosen to

are of major importance. Finally, to gain insight into  be 4 = 25. This functional form for the conservative

problems associated with hybrid models in which force is by far the most common choice in DPD

both soft and hard interactions are included, we sjmulations.

consider a model of an individual polymer chain in a

hydrodynamic solvent. 2.3.3. Model polymer system
The last model system considered in this work de-
2.3.1. Model A scribes an individual polymer chain in an explicit hy-

Model A describes the case characterized by the drodynamic solvent. Our interest in a system of this
absence of conservative forc(ei?s,(c) 0). This choice kind originates from the fact that various soft matter
correspondsto an ideal gas and it is customarily called systems such as liquid crystals and lipid bilayers are
“ideal DPD fluid”. The reason for using this model composed of particles which are essentially chain-like
is that it provides us with some exact theoretical molecules. DPD serves well for studies of these sys-
results that can be compared to results from model tems due to the hydrodynamic nature of the solvent
simulations. Here, the dynamics of the system arises which plays an important role in various soft matter
only from thermal noise and dissipative coupling systems. However, while it is often desirable to de-
between pairs of particles. In DPD simulations, the scribe chain-like molecules on a molecular level by
random force strength is chosen to de= 3 in units hard interactions, complemented with bending and tor-

of kgT*, and the strength of the dissipative forceés sional potentials to account for the most relevant mi-

then determined by the fluctuation—dissipation relation croscopic degrees of freedom, the solvent can often be

02 =2ykpT*. described on a simpler level in terms of soft pair po-

The random and dissipative forces are chosen to betentials. Thus, one possibility for efficiently modeling
soft-repulsive, polymeric systems is a hybrid approach of chain-like
1—rij/re forr <re molecules_in a coa_trse—graine_d solvent. _

w(rij) = {O forr: > r 3 The gain of using a hybrid approach in complex
Vo macromolecular systems is evident. It allows one

with a cut-off distance [11] anda)R(r,-j) = w(rj). to reduce the computational burden of dealing with

This is the most common choice in DPD simulations an explicit solvent, while the molecular description
and it has been used in recent investigations of in- of macromolecules is still accounted for in detail.
tegration schemes [20,21], thus allowing for a com- However, the practical implications of including both
parison of the present results with those of previous hard and soft interactions in a model are not well
works. Although Eq. (3) has been used in virtually all understood. In a previous study for an ensemble of
published studies using DPD, it should be noted that spherical particles described by hard conservative and
the fluctuation—dissipation theorem does not specify softdissipative forces, we found certain features which
the functional form of the weight function. The simple differentiated integration schemes from each other
form of Eq. (3) simply provides a convenient choice. [21]. However, a full study of the performance of
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integration schemes within a true hybrid approach of a was confirmed by studying the scaling behavior of the
macromolecular system has been lacking up till now. radius of gyration.

This model system aims to quantify the effects We consider polymers of siz& = 20 and use a
of integration schemes under conditions that combine 3D box of size 10« 10 x 10 with periodic boundary
both soft and hard interactions for a model polymer conditions, where the length scale is definedby: 1.
system. Here, the idea is to optimize the efficiency of The particle number density is chosen to be- 4
the model by using a minimal approach. We thus de- while the energy scale is defined by setting the desired
scribe the solvent as an ensemble of identical particles thermal energy to unity vigdpT* = 1. All particles
which interact via soft pairwise forces and satisfy mo- are identical, and thus; = m for both solvent and
mentum conservation, while the polymer chain is de- monomer particles.
scribed on a more microscopic level in terms of (hard)

Lennard-Jones interactions and harmonic springs. 2.3.4. Choice of random numbers

The linear polymer chain is described as a chain  In the present work, uniformly distributed random

of M monomers connected by harmonic bonds whose numbers: € U (0, 1) are used such thgt, = V32u—

potential follows the form 1). This approach is highly efficient and yields results
I that are indistinguishable from those generated by
Unarm= §|ri —ri-1l% i=23,...,M, (4) Gaussian random numbers [11]. However, in the case

of Lowe’s approach, thé;l.(f) used are true Gaussian

with a spring constant = 7. Within the chain, random numbers.

the conservative monomer—monomer interactions are
given by the truncated and shifted Lennard-Jones

potential 3. Integrators

¢\12 £\6 1
Us(rij) = 4el )= o) ral < (5) The integration schemes tested in this work have
been chosen from the most recent ones that have been

such that the potential is purely repulsive and decays suggested in the literature but not tested and compared
smoothly to zero at.. We chooset = 2-1/6¢ and to other methods. They complement each other in the
€ = kpT*, and therefore, = ¢21/6 = 1. The pairwise sense that the velocity dependence of the dissipative
conservative force acting on a monomer due to other forces is accounted for in all cases, but the approaches
monomers in a chain therefore follows directly from differ substantially. We feel that all of the integrators
FC = —V (Uharm+ ULy). The dissipative and random considered here are promising candidates for large-
forces acting on the monomers are chosen to follow scale simulations of soft matter systems. However,
Egs. (2) and (3) witlr = 3. due to the lack of comparative studies in which all

The monomer—solvent and solvent—solvent interac- of these schemes would have been tested on equal
tions are described as in model A with= 3 (and footing, their relative performance has remained an
A =0), i.e. the random and dissipative parts are used open question. Here, we clarify this situation.
as a momentum conserving thermostat.

The justification for this choice of interactions 3.1. Velocity-Verlet based integration scheme
lies in a wish to clarify the size of artifacts due to DPD-VV
integration schemes in a case, where the polymer chain
is described on a molecular level in terms of hard In Table 1 we summarize the simplest integrator
interactions, while the solvent is coarse-grained as tested in this study. DPD-VV [20,21] is based on
much as possible and is thus described by an ideal the standard molecular dynamics velocity-Verlet algo-
gas. The coupling between the solvent and the polymer rithm [4,26,27] which is a time-reversible and sym-
chain comes from the dissipative forces which give plectic second-order integration scheme. These prop-
rise to hydrodynamic modes. This eventually results erties can be proven by a straightforward application
in a minimal model of a polymer chain with full  of the Trotter expansion [4]. The standard velocity-
hydrodynamics under good solvent conditions. This Verlet has been shown to be relatively accurate in typi-

’ rij>r67
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Table 1 Table 2

Update scheme for DPD-VV and its self-consistent version The approach OC by den Otter and Clarke. Initialization: Calculate
SC-VV. In the case of DPD-VV, steps (4b) and (5) are done only averagesF? - v;), (FP - FP) and (FR - FR) either analytically
once during a single time step. For the self-consistent integrator or numerically. Then extractr and g from Eqgs. (6) and (7),
SC-VV, the loop over steps (4b) and (5) is repeated until the in- respectively

stantaneous temperature has converged to its limiting value

- : d [N U «— U +ox (FC A+ FPAr) + B2 FR VAT
(1) b« v + S2(FC At + FP A1+ FRVAT) @
(2) 7,' <« 7,‘ + ﬁl‘ At (3)

;,' <« ;i + 51' At

- ) i CalculateFC (7}, FP{7;,v;), FR (7))
(3) CalculateFC {7}, FP{7;. 9;}, FR(F;} (4) Calculate physical quantities
@a) B2« + 32 (FCAr+ FRVAT)

[ @b) v <2+ 3LFP A

(5) CalculateFP {7}, 3} raga et al. [19], which is the only other published self-
(6) Calculate physical quantities consistent DPD integration scheme in addition to SC—
VV (to the authors’ knowledge). The SC-VV scheme
has the advantage of being very easy to implement
as seen from Table 1. A recent study of the SC-VV
scheme confirmed that it is a promising approach for
interacting DPD systems [21]. That is particularly the
case for the structural properties using long time steps
velocity-Verlet. DPD-VV differs from the standard in dense SYStems' As a drawback, the SC-VV has no
advantage in temperature control as compared to other

velocity-Verlet scheme in one important respect. As . :
discussed above, the dissipative forces in DPD depend.methOdS' For that, there exists a variant of the SC-VV

on the velocities, which in turn are governed by the integrator with a Nosé—Hoover type additional ther-
dissipative forces [see Egs. (2) and (3)]. This matter mostat [20,21].

is not accounted for by the standard velocity-Verlet

scheme. The DPD-VV, however, accounts for this 3.3. Integrator by den Otter and Clarke
complication in an approximate fashion by updating

t_he dissipative forces [s_tep (5) i_n Table 1] fo_r a second |, 2001 den Otter and Clarke [22] proposed an ap-
fume at the end of eac_h integration step_. Th_|s improves proach which uses a leap-frog algorithm with prede-
its performance considerably yet keeping it computa- finoq yariables andg. The idea in the OC-integrator,

tionally efficient since the additional update of dissipa- as it is called here, is to try to determine these pa-

tive forct:ez_ls n?rt] peE)rIt;c[;JIz\a/r\I}/ tlrrr\]e—conks]umlr;]g. In pre-d rameters such that the effects due to the velocity de-
\él\?;rZIIS uer:‘?)?ﬁar?ce 2 0_2 1 fst;(r: Va:?(; r:Zs?)no\\llvvg k?a?\?e pendence of dissipative forces are reduced as much as
P P » ) .~ possible. The OC algorithm [28] is described in Ta-

chosen it as the “minimal standard” to which other in- . . .

ble 2, in which the parametets and 8 describe the
tegrators are compared. : : .

relative weight of the random forces with respect to
the dissipative and conservative ones. They are deter-
mined prior to the actual DPD simulation by calculat-
ing the average&? - v;), (FP - FP), and(FR - FR)
from an ensemble in which both the kinetic and con-
figurational temperature equal the desired temperature
kpT* [22]. Once they have been calculated, one ob-
tainsa and 8 with a desired time stephr from the

cal MD simulations especially at large time steps [27].
The simplicity and good overall performance of the
velocity-Verlet algorithm thus makes it a good starting
point for further development.

We use the acronym DPD-VV for the modified

3.2. Self-consistent velocity-Verlet integrator

The update scheme of a self-consistent variant of
DPD-VV is presented in Table 1. This SC-VV al-
gorithm [20,21] determines the velocities and dissi-
pative forces self-consistently through functional it-
eration, and the convergence of the iteration process

is monitored by the instantaneous temperatuy&. equations
This approach is similar in spirit to the self-consistent 1
leap-frog scheme introduced recently by Pagonabar- & = ———(1— e~ %47) (6)

GAt
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Table 3 separately from the dissipative and random terms.
The values of parameters used in the OC integrator After this splitting the conservative part can be solved
Parameter Model A Model B Model polymer system  using traditional molecular dynamics methods, while
(ﬁiD - T;) _7528088 —4.985245 _7.566508 the fluctuation—dissipation part is solved Separately as
(FP.FP) 38254933 14607340 38532832 a stochastic differential (Lange\{m) equation. To this
(FR.FR) 15072610 976453 15150489 end, Shardlow sugggsfced two mtegrators, call_ed S1
and S2, based on splitting the equations of motion up
_ to first and second order, respectively.
with G = —(Fl.D -0;)/{¥; - v;), and The formal approach involves a first order splitting
S R using the Trotter expansion [4,29] (integrator S1) and a
2= —2ma(FP . v;) — a?At(FP - FP) . @) second order splitting using the Strang expansion [30]

(EF-EF
Note that bothw andp depend explicitly omz. Since

(integrator S2). The mathematical details of the deriva-
tion can be found in Shardlow’s original article [23].
the average&F” - i), (FP - FP), and(FF - FF) can It is important to notice that the power of the Trot-
be derived analytically only for a limited number of (€ (Strang) expansion lies in the fact that it provides
systems, one usually has to calculate them from sim- @ 9eneral method for deriving symplectic algorithms.
ulation (with a very small time step). This might be a Importantly, the method works for both Hamiltonian
problem in cases where properties such as density and@d non-Hamiltonian systems; see Ref. [29] for a de-
temperature are varied over a wide range, since the pa-tiled discussion of the Trotter expansion and its ap-
rametersy andg should (at least in principle) be cal- ~ Plications. _ _ _

culated separately for all different conditions. Never- ~ Baseéd on our simulation studies and the results
theless, den Otter and Clarke have shown [22] that the Presented in Ref. [23] for a system related to the model
OC algorithm performs well in both the ideal gas and B in the present work, the performance of both of the
a softly interacting DPD fluid. two splitting methods was found to be excellent with

For the three models considered in this work, we S2 displaying slightly better overall characteristics.

-

determined the parameteg” - i), (F” - F”), and

(17",.R - FR) separately for all cases. Their values are

shown in Table 3.

Since the first order method (S1) is more efficient, we
have chosen it to be on the spotlight. Here we use the
same naming convention and call it S1. The algorithm

is presented in Table 4. To the best of our knowledge,
further tests of S1 have not been reported yet.

The curious fact that the algorithm (Table 4) ap-
pears asymmetric for particlesnd; is a result of the

and B8 by averaging over the solvent and monomer use: of t.he fluctuation—disgipatiqn theorem a.nd Ngw-
particles separately. However, this would require a ton's third law. The form In which the algonthm. IS
major computational study prior to actual simulations presented keeps the notation otherwise symmetric.
and is therefore not feasible. Besides, it might be
against the usual spirit as integration schemes are
typically based on prefactors that are identical for all
particles in a system.

Note that the parameters for the model polymer
system in Table 3 have been determined by averaging
over all particles in the system. An alternate way
would be to find (M + 1) different values fora

3.5. Lowe’s approach—Lowe—Andersen method

The approach introduced by Lowe in 1999 [24] is
presented in Table 5, which shows how one first inte-
grates the Newton’s equations of motion with a time
step At, and then thermalizes the system as follows.

The most recent addition to DPD integrators has For all pairs of particles for which;; < r., one de-
been introduced by Shardlow [23]. He applied ideas cides with a probabilityl” Az whether to take a new
commonly used in solving differential equations to relative velocity from a Maxwell distribution. For each
the case of integrating the equations of motion in pair of particles whose velocities are to be thermalized,
DPD. The key idea is to factorize the integration one works on the component of the velocity parallel
process such that the conservative forces are calculatedo the line of centers and generates a relative velocity

3.4. Shardlow’s splitting method
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Table 4
The approach S1 by Shardlow

(1) Forall pairs of particles for whick; < rc
() Ui B — 3yl - &j)éij At + § mow(r)E Dt
(i) T U+ 5yl rij) (@i - 8j)Ej At — 3 mow(ri))Ejjv AL
2
- - 11 P 11 yot(rj)at
(iii) v; ('vi+§ﬁaw(rij)§ijeij‘/A17?Em

2
. o - - yw(rii) At N - o -

(V) U «—1j— %%(rw(rij)éije,-j«/ Ar+ %%—Z—lerw g---)At [ - €ij)eij + ow(rij&ijéijv/Ar]
ij

2 U<—uv+ %%ﬁicAt

(3) Fi «—Fi+viAt

4) CalculateF € {7}

(B) Y <—v+ %%ﬁicAt

(6) Calculate physical quantities

(@) - €ij)éij +ow(rij&ijéijv/Ar]

Table 5 Although the present version of the algorithm fol-
The approach by Lowe using Gaussian distributed random numbers |ows the original one [24] and is based on the velocity-
&%) from a distributione,¥) /2K T /m Verlet scheme, it is clear that other approaches such
1) B 0 + 3L FCAr as the leap-frog are equally useful, if desired. Further,

based on the work by Lowe [24], this approach seems

) Fi «—Fi + U At o ' ) g
) CalculateFC () very promising although it has received only little at-
IR P tention by far [31].
@ vi vt b A In the present work for the three model systems
®) For all pairs of particles for which; < r considered here, we sEtsuch that the tracer diffusion
() Generatey; - ¢;; from a distribution properties of the fluid are similar with those of DPD
&9 JoHkFT m systems with chosea in the limit Az — 0. In this
(i) 24 =& (05— Uij) - &;j fashion, we end up to a value df = 0.745 for
(i) T+ A model A and to a value of" = 0.44 for model B. In
V) B4y the model polymer system we used the same value as
with probability I" At in model A since the solvent is described in a similar
(6) Calculate physical quantities fashion in both cases.

4. Performanceof integrators

), -&; from a distributiont, ' 25 T+/m. Here&' 41, physical quantities studied

are Gaussian random numbers with zero mean and unit

variance. This approach has its origin in the Ander-  We characterize the integrators by studying a num-

sen thermostat [25], hence the name Lowe—Andersenber of physical observables. After equilibrating the

method. system, we first calculate the average kinetic tempera-
The key factor in Lowe’s method is the parameter ture

I" which describes the decay time for relative veloci- m N

ties. Since the condition @ I'Ar < 1 is obvious,one  (kgT) = 3N — 3<Z 1712> (8)

finds that forI” At = 1 the particle velocities are ther- i=1

malized at every time step, while far Ar =~ 0 the whose conservation is one of the main conditions for

model system is only weakly coupled to the thermo- reliable simulations in the canonical ensemble.

stat. Thus the dynamical properties of the system can  Next, in the cases of models A and B, we examine

be tuned by the choice df as shown by Lowe [24]. the radial distribution functiog(r) [32] which is one
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of the most central observables in studies of structural
properties of liquids and solids. For the ideal gas
(model A), the radial distribution function provides an
excellent test for the integrators since the@m) = 1

at the continuum limit. Therefore, any deviation from
unity has to be interpreted as an artifact due to the
integration scheme employed.

In model B, in which conservative interactions are
present, there are no exact theoretical predictions for
g(r) that would allow a straightforward comparison
of different integration schemes. A comparison is
possible, though, in terms of physical observables such
as the compressibility and the coordination humber
that are based on integratigg). In the present study,
we have chosen to consider the coordination number
defined as

r1
Nc:4np/}hgvy% 9)
0

wherep is the particle number density of the system
andry is the radial distance at whigh(r) has its first
minimum after the leading (first) peak.

The radial distribution function reflects equilibrium
(time-independent) properties of the system. To com-
plement the comparison of different integrators, we
also consider the tracer diffusion coefficient
Dr = im <{[7:() ~ A O, (10)
which can provide us with information of possible
problems on the dynamics of the system. Hg&ie)
is the position of a tagged particle in models A
and B, and the mean-square displacement is then
averaged over all particles in a system to get better
statistics forD7. In the model polymer systeni; (r)
describes the center-of-mass position of the polymer
chain via

1 M
Fom(®) = = 7i(0),

i=1

(11)

where the index runs over monomers in a chain.
For the model polymer chain, we further calculate

the radius of gyratiom, = ,/(R2) defined as

(12)
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which shows thar, is a measure of polymer size. Itis
actually one of the most central quantities in polymer
science and therefore serves as an excellent measure
for our purposes.

In the following, the errors are stated in the figure
captions and given as the magnitude of standard
deviation.

4.2. Results for model A

As discussed above, model A is characterized by
the absence of conservative forces, and thus any
artifacts arising from the velocity-dependent forces
are expected to be pronounced in this model. To
study this possibility, we first discuss the deviations
of the observed kinetic temperatufles 7') from the
desired temperaturég7T*. The results for(kgT)
shown in Fig. 1 indicate that DPD-VV and SC-VV are
reasonably good at small time increments, but larger
time steps lead to major deviations from the desired
temperature. For OGkpT) decreases monotonically
with Ar for Ar < 0.15, after which the temperature
increases rapidly. Nevertheless, the deviation is greater
than in the case of DPD-VV but considerably smaller
than for SC-VV. The Shardlow S1 integrator, however,
has very good temperature control and the deviations
remain less than 0.5% up ta: = 0.2. The best
temperature control is found for the method by Lowe,
however, yielding(kpT) = kpT* for all time steps
At. In this case, we have extended the studies further

Fig. 1. Results for the deviations of the observed temperdty &)
from the desired temperatukg T* = 1 vs. the size of the time step
At inmodel A. The error inkg T) is of the order of 104,
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Fig. 2. Radial distribution functiong(r) with several values of time stefer in model A: (a)Ar = 0.01, (b) Az =0.05, and (c)Ar =0.1. The
error ing(r) is greatest at = 0.01, where it takes the value of(l.

Fig. 3. Results for the tracer diffusion coefficiedy (Ar)/
D7 (0.01) vs. the time stepAr in model A. The error in
Dy (Ar)/D7(0.0)) is of the order of @01.

and tested the behavior ¢tz T) with various values
of F between 0.1 and 10, but the conclusions remain

110 ———r I P —
i 112 |
,S\ 1.05 110 :
g'g 1.00 L8|
S 095 :°° Lo
5 Z o4 |
E 0.90 162 |

1.00
0.85 0.98 N

the same.

Results forg(r) are shown in Fig. 2. We find that
the deviations from the ideal gas limgtr) = 1 are

0.01
At

Fig. 4. Results for the deviations of the observed temperdty )
from the desired temperatukg T* = 1 vs. the size of the time step
At in model B. The error inkgT) is of the order of 104.

same. This confirms the expectation thatdoes not
influence the equilibrium properties of the system.

The results for the diffusion coefficiedty in Fig. 3
are essentially consistent with the conclusions above.
The integrator OC is not very useful in a system of
the present kind, since it seems to lead to substantial

pronounced for OC, indicating that even for smalltime  geyiations from the expected behavior. The SC-VV
steps this integration scheme gives rise to unphysi- and the integrator by Lowe perform much better, while
cal correlations. The performance of DPD-VV is con-  the integrators S1 and DPD-VV are most stable in this
siderably better, although artificial structures are yet ¢age.

rather pronounced, while SC-VV and S1 lead to a

radial distribution function that is close to the theo- 4.3. Results for model B

retically predicted one. Completely structurelgss)

is found only for the integrator by Lowe, however.
Again, in this case, we have tested the behavigi(of
with various values ofl", but the results remain the

Results shown in Fig. 4 for the observed kinetic
temperaturékp T) reveal that the differences between
the integration schemes deviations are weaker in
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model B than in model A. As it turns out below, at time steps beyondr = 0.025. Best performance
this conclusion is generic and holds for all quantities in this respect is found for the remaining integration

studied here. schemes DPD-VV, S1, and Lowe, whose behavior is
The deviations ofkg T') from the desired tempera-  quite similar and comparable to each other.
ture kpT* are very minor for all integrators at small Demonstrative results for the radial distribution

time stepsAt < 0.01. Differences between the in- functions in model B are shown in Fig. 5. It is clear
tegrators become evident only at larger time steps. that large time steps lead to major problems with re-
We first find how the temperature in SC-VV first gard to pair correlations. This is particularly clear at
decreases, then has a pronounced minimum aroundsmall distance$r < 0.2). To quantify these changes,
At ~ 0.05, after which(kgT) increases very rapidly  we calculated the coordination number [see Eq. (9)].
and the integrator eventually becomes unstable. The The results shown in Table 6 highlight the fact that
temperature conservation of OC is also relatively poor all integration schemes converge to the same result at

L7 T T T
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0.80 I- At=0.010 ]
0.60 -
Lowe —=

040 - DPD-VV —
A ocC
0.20 SL e
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0.00 Mt b L
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0.30 —T .
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0.05
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1.08 r
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Fig. 5. Radial distribution functiong(r) with time stepsAr = 0.01 (on the left) and\¢r = 0.1 (on the right) in model B. In addition to the full

curves, two sets of the same data on an expanded scale are also given to clarify the deviations between different integration schemes. The error
in g(r) is greatest at = 0.01, where it takes the value of0D1.
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Table 6
Results for the coordination numbat. in model B. Error bars are abott0.05

Integrator At =0.005 At =0.010 At =0.050 At =0.075 At =0.100

DPD-VV 25.36 25.37 25.74 26.72 28.98
SC-vwV 25.43 25.54 25.62 26.78 28.57
ocC 25.46 25.51 25.71 26.69 28.74
S1 25.53 25.41 25.73 26.71 28.44
Lowe 25.35 25.42 25.59 26.95 29.12

1.40
1.35
1.30
1.25
1.20
1.15
1.10
1.05
1.00

4.4, Results for the model polymer system

Before we consider the results for the model poly-
mer system, we would like to emphasize certain simi-
larities it has with model A. Namely, in both cases the
solventis an ideal gas governed by dissipative and ran-
dom forces only. Further, the model polymer system is
dilute (more than 99.5% of the particles in a system
are solvent particles) and there are no conservative in-
teractions between the monomers and the solvent par-
ticles. This suggests that the artifacts due to integra-

0.01 0.1 tion schemes in the model polymer system would be
At essentially similar to those found in model A. It turns
Fig. 6. Results for the tracer diffusion coefficient out below, however_, tha.t this is n.Ot Fhe case.
Dy (Af)/Dy (0005 vs. the time stepAr in model B. The Resul;s s_hown in Fig. 7(a) indicate that the ob-
error in Dy (Ar)/ D7 (0.005) is of the order of 0.001. served kinetic temperaturéz7) only rather weakly
depends on the integration scheme. Results for S1,
Lowe, and DPD-VV are all within one percent up to
small time stepg\s < 0.05, while for larger time steps A ~ 0.02 above which the integration schemes be-
there are significant deviations from the correct behav- come unstable. The OC integrator is somewhat less
ior found in the limitAr — 0. However, itis somewhat  reliable in this case, as it leads to a monotonous in-

surprising that the coordination numbers obtained by crease ofkzT), thus differing rather clearly from the
different integration schemes are essentially similar results of other integration schemes.
within error limits, while based og(r)’s there are no- A comparison of Figs. 1 and 7(a) provides one with
ticeable differences between the pair correlation prop- an intriguing view of effects that arise from the hybrid
erties of differentintegrators. This is a consequence of approach. We first note that Lowe’s approach as well
the fact that due to the integration in Eg. (9), the de- as S1 are equally good, in agreement with the conclu-
viations ing(r) toward too small and too large values sions made in model A. However, in model A the in-
compensate each other. A similar effect has been ob-tegration schemes were found to be stable up to very
served recently in compressibility [21], which is also large time steps on the order aft ~ 0.4, while in
defined as an integral overr). the model polymer system the largest time steps pos-
Tracer diffusion data shown in Fig. 6 is consistent sible are about 0.02. This is due to the hard conserva-
with the conclusions above. For small time steps the tive monomer—monomer interactions used in describ-
results of all integration schemes are comparable, ing the polymer chain, for which reason the size of
while for large time steps we can find how the the time step has to be reduced considerably as com-
differences become more and more pronounced. Thepared to model A. This suggests that, for practical pur-
scatter in the data does not allow us to make conclusive poses in hybrid models, one should seriously consider
statements of the relative merits of the integrators, integration schemes with two different time steps, one
however. for the solvent and another for the polymer degrees

Dy{(A1)/D4(0.005)




P. Nikunen et al. / Computer Physics Communications 153 (2003) 407-423

of freedom. Another interesting feature concerns the
behavior of(kgT) in the case of OC. In model A, the
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to suggest that the artifacts due to integration schemes
in DPD are predominated hifie interactions that dic-

observed kinetic temperature decreased monotonouslytate the size of the time step.

down to timestepar ~ 0.15, while in the model poly-
mer system the trend is the opposite. This is consistent
with our results for model B, and suggests that the ar-
tifacts due to integration schemes depend significantly
on the interactions chosen for the system.

To gain further insight into the performance of the
integration schemes in a hybrid approach, we studied
a number of physical quantities that specifically char-
acterize the properties of the polymer chain. First, we
studied the observed kinetic temperature of plogy-

mer,defined as
M
(27)
i=1

This quantity characterizes the thermal fluctuations
of the polymer chain, and therefore if there are any
serious problems due to the integration schemes, then
we expect that they are manifested in the behavior of
(kg T )chain

We find that the results in Fig. 7(b) are wholly
consistent with those presented in Fig. 7(a). Essen-
tially, this implies that the temperature deviations in
the whole systerarise from the hard interparticle in-
teractions used to descriliee soluteeven though the

(kpT)chain= (13)

m
M

In systems with hard conservative interactions the
time step must be small. Otherwise, gradients in forces
become too large and the system becomes unstable.
Consequently, if the conservative force is stronger than
the dissipative and random forces the artifacts due
to integration schemes are driven by the conservative
forces just like in classical molecular dynamics sim-
ulations. Naturally, the velocity-dependent dissipative
forces are still playing a role but their effect is not
as important as the influence of conservative interac-
tions. From a practical point of view, this means that
there is no particular reason to use an integrator which
accounts for the velocity dependence of dissipative
forces.

On the other hand, if all interactions are soft, or
if the conservative forces are weak compared to the
dissipative forces, then it is plausible that the velocity-
dependence of dissipative forces is the underlying
reason for artifacts due to the integration procedure.
This is the case when the time step is determined
by the dissipative force rather than the hard-core of
the conservative potential. In this situation the quality
of the integration scheme is very important, and the

system is dilute. We think that this finding is of generic  velocity dependence of the dissipative forces has to be
nature and applies to both hybrid models and other accounted for by the integration scheme. Itis clear that
DPD simulations in which all interactions are approx- this matter warrants attention and should be accounted
imately of equal magnitude. In particular, it allows us for in all subsequent studies by DPD.
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106 | 19 0C 2 - 1.06 | s
- Lowe . -
1.05 F .o s x.' - s 1.05 F x'., -
-~ 1.04 - & DPD-VY' (a) -1 5 1.04 |- "’ (b) -
R L03 = 4 & 103 F P i
> 102k 4 L1002k . .
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Fig. 7. Results for the deviations of the observed temperdtyy&) from the desired temperatukg; T* = 1 vs. the size of the time stepr

in the model polymer system. In (a) we show the observed temperature of the whole system, while the results in (b) correspond to the polymer

chain only (see text for details). For the whole system, the error is of the order8f aile for the polymer chain the error is 0.004.
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Further studies of the radius of gyration and the Table 7
diffusion coefficient of the polymer chain revealed the Results for the computational efficiency of the integration schemes.

expected and undesired fact that computational StudieSShown here are results_ for integrating the equations of motion
over one time step of sizar = 0.05, although the results have

of a d|_|Ute polymer. system in an eXp|ICIt solvent are been averaged over 1000 consecutive steps. For the purpose of
very time consuming, and therefore the error bars comparison, the time needed to update the Verlet neighbor list has
remained rather large despite major computational also been given; the time shown here corresponds to its minimum

efforts. Consequently, we found that the results for value when the list is small since it is updated after every time step

R, and Dy of different integrators were essentially (simulation parameter& T =1, A= 25,0 =3, andp = 4)

equal within error limits (data not shown). It is likely Integrator Cpu time (seconds)
that more extensive calculations would have expressed = DPD-VV 0.0363= 0.0005
deviations between different integration schemes, but ~ SG-VV 01010+ 0.0009
we concluded that such studies were not worthwhile. oc 00251+ 0.0005
Ss1 Q02564+ 0.0005
Lowe 00143+ 0.0005
4.5. Computational efficiency Verlet list 00293+ 0.0003

Besides the strength of the artifacts, we have paid  te yesults shown in Table 7 indicate that Lowe's
attention to the computational efficiency of the inte- 1 athod is substantially faster than OC and S1, which
gration schemes by calculating the CPU time needed i, 1 are clearly faster than DPD-VV. Finally, the
for a single time step\r. Although this depends on  reqyit that SC-VV is considerably slower than DPD—

various practical matters such as the computer archi- v is not surprising due to the iteration process for the
tecture, the implementation of the algorithms, and the ,g|ocities and dissipative forces.

size of Verlet neighbor tables, we think this approach  \ypen these times are compared to each other, one
can provide one with the essential information of the ghouid also keep in mind that DPD-VV, S1, and
relative speed of the integrators tested in thiswork. | gwe's method are significantly easier to deal with
The tests for efficiency have been carried out on compared to SC-VV and OC. In SC-VV, one needs
a Compaq Alpha Station XP1000 with a 667 MHz 5 find the sufficient number of iterations prior to
processor. To this end, we used model B (with 4000 actual simulations to guarantee self-consistency. In
particles at a density gb = 4) with standard Verlet o, the preliminary work required prior to simulations
neighbor tables [27] and a time stepsf = 0.05. is even more extensive, as one has to determine the
We calculated the CPU time needed for the inte- parameters andﬁ for a gi\/en system under desired

gration of a single time step (averaged over 1000 con- thermodynamic conditions. This task may indeed take
secutive steps). The times needed to update the Verletsome time.

neighbor tables (or to calculate any physical quanti-

ties) are not included in these results. Thus the DPD—

VV and SC-VV schemes were considered over steps 5. Discussion and conclusions

(1)—(5) in Table 1, the OC approach over steps (1)—

(3) in Table 2, Shardlow’s approach over steps (1)-(5)  In this work, we have tested several novel schemes
in Table 4, and Lowe’s integration scheme over steps on an equal footing through DPD simulations of three
(1)—(5) in Table 5. In the case of SC-VV, steps (4b) different model systems. The first of the models corre-
and (5) were repeated six times which guaranteed self- sponds to a case where conservative interactions play
consistency in this case. Note that Lowe’s approach is no role, while the second model describes fluid-like
based on normally distributed random numbers while systems with relatively strong but soft conservative po-
other integration schemes use uniformly distributed tentials. Finally, the third model aims to characterize
ones. Since there are various methods available for thethe quality of integration schemes in a hybrid approach
generation of normally distributed random numbers, for a dilute polymer system.

this may affect the efficiency of Lowe’s approach to Of the integration schemes considered here, DPD—-
some extent [33]. VV and SC-VV have recently been examined in
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Refs. [20,21]. The results of the present study are
consistent with previous findings: DPD-VV exhibits
good overall performance, indicating that it presents a
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ing systems [37]. DPD has recently been used together
with molecular dynamics to coarse grain agueous salt
solutions [38] in which the effective interactions used

relatively accurate means to integrate the equations ofin DPD simulations were obtained from MD simula-

motion at a reasonable computational cost.

Of the previously untested methods the den Otter—
Clarke (OC) method [22] is fast, performing espe-
cially well in interacting systems in which conserva-
tive forces are important. A drawback is that the para-
metersa and 8 need to be determined prior to actual
simulations through time-consuming precursory simu-
lations with a very small time step. We note, however,
that the properties of the OC scheme are in fact rela-
tively insensitive to slight changes imand . Thus,
for example, studies of the model polymer system us-
ing specifically determined andg values yielded re-
sults almost identical with studies based on the para-
meters of model A.

The Shardlow S1 integrator [23] is possibly the
brightest star in this work. It performed very well in
all models, and it is fast and rather easy to implement.
We feel that it presents the best choice of integration
schemes within the “usual” conceptual framework of
DPD.

Interestingly, however, we have also found that the
elegant and conceptually distinct method of Lowe [24]
performed excellently and is easy to implement. Fur-
thermore, and what is important when Lowe’s method
is compared to Shardlow’s integration scheme, it pro-
vides analternativeand a very attractive description
of dissipative particle dynamics. Thus, a direct com-
parison of S1 and Lowe’s method is not meaningful.

tions by the inverse Monte Carlo procedure [39]. The
last ten years have been very successful on both the an-
alytical and the computational fronts—the theoretical
basis of DPD is now well established, and the number
of applications has increased at a steady pace.

Lowe’s [24] approach is a very recent inception and
thus far has received limited attention. Although the
theoretical foundations of Lowe’s method have yet to
be fully worked out, it offers promising aspects that
are not obvious in the traditional DPD description.
To clarify these aspects, let us first remind ourselves
that Lowe’s method does not include dissipation in
the usual sense. Rather, it is based on a thermostat
that thermalizes the velocities of pairs of particles at
a rate which depends on the dynamical paramEter
This parameter tunes the dynamical properties of the
system. Lowe pointed out that the soft interactions
used in DPD lead to a situation where the ratio of
the kinematic viscosity and the diffusion coefficient of
solvent particles (known as the Schmidt numBer
is of the order of one. This value corresponds to a
situation often found in gases, while in fluis~ 10°
or even larger. To get closer to more realistic values
for Sg one can reduce the diffusion rate by using
harder interparticle interactions, but this is against the
philosophy of DPD and would reduce some of the
benefits of the DPD approach.

Lowe’s approach is very different in this respect. It

Instead, we discuss the pros and cons of these two ap-allows one to adjust the viscosity of the system to a

proaches.

desired value by varying the dynamical parameter

The usual DPD description is based on the idea while the diffusive properties are not considerably af-

that soft matter systems can be described in terms of fected since the conservative interparticle interactions
softly interacting particles with some of the degrees remain soft. As a result, the Schmidt number can ob-
of freedom coarse grained out and replaced with ran- tain values as large as 1[24]. When compared to the
dom noise coupled to dissipation. Temperature conser-usual DPD description, this implies that Lowe’s ap-
vation is achieved through the fluctuation—dissipation proach may be more feasible for describing hydrody-
theorem and the correct hydrodynamic behavior is namic systems in which one needs to worry about the
guaranteed by momentum conservation [9]. Various time scales of momentum diffusion and mass transfer
studies have extended these ideas further. For examplewith respect to the size of the colloidal particle.
Flekkgy et al. developed a DPD framework starting There still remains the issue of the practical via-
from a microscopic description [34,35]. Espafiol and bility of Lowe’s approach, since we are not aware of
coworkers, in turn, studied the dependence of transportany applications where the method by Lowe has been
properties of DPD fluids on the length and time scales used. However, we are positive that this approach is a
[36] and a generalization of DPD to energy conserv- promising technique. For example, we have recently
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applied Lowe’s method to microphase separation of  To conclude, we have studied the performance
block copolymers in the spirit of Groot and Madden of various novel integration schemes that have been
[40], and it turned out that Lowe’s method was able designed specifically for DPD simulations. We have

to reproduce their results. Finally, in Figs. 8 and 9 tested these integration schemes in three different
we show how the velocity autocorrelation function de- model systems by varying the nature of interactions
pends on the choice df for models A and B (Fig. 8), and found that the artifacts due to the integration

and how it is affected whef is varied but keepingthe  scheme are essentially driven by the interactions that
product/” At constant in the case of model B (Fig. 9). dictate the size of the time step. Thus, the artifacts and
As discussed above, it is clear that large valueg’ of  the performance of integrators are model dependent.
lead to faster decay. However, the qualitative behavior Overall, we have found that there are two approaches
of the velocity autocorrelation function is not seem- whose performance is above the others. Of these,
ingly affected, as illustrated by Fig. 9, and the effect Shardlow’s integration scheme is based on splitting the
of I on the diffusion coefficient was found not to be equations of motion and can be applied to the usual

important for the studied combinations Bfand At. DPD picture, while the approach by Lowe is distinctly
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Fig. 8. (a) Velocity autocorrelation function for model A in Lowe’s method. The error is of the orderdt. B) Velocity autocorrelation
function for model B in Lowe’s method. The error is of the order of 40
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Fig. 9. Velocity autocorrelation function for model B in Lowe’s method with the produat fixed to (a) 0.005 and (b) 0.025. The error is of
the order of 104.
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different in nature and is related to the classical work
by Andersen.
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