
c

and

mes that
s of Lowe
Computer Physics Communications 153 (2003) 407–423

www.elsevier.com/locate/cp

How would you integrate the equations of motion
in dissipative particle dynamics simulations?

P. Nikunena, M. Karttunena, I. Vattulainenb,∗

a Biophysics and Statistical Mechanics Group, Laboratory of Computational Engineering, Helsinki University of Technology,
P.O. Box 9203, FIN-02015 HUT, Finland

b Laboratory of Physics and Helsinki Institute of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finl

Received 26 September 2002; received in revised form 4 February 2003

Abstract

In this work we assess the quality and performance of several novel dissipative particle dynamics integration sche
have not previously been tested independently. Based on a thorough comparison we identify the respective method
and Shardlow as particularly promising candidates for future studies of large-scale properties of soft matter systems.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The mesoscopic phenomena of so-called “soft m
ter” physics [1–3], embracing a diverse range
systems including liquid crystals, colloids, and b
membranes, generally involve some form of coupl
between different characteristic time- and leng
scales. Computational modeling of such multi-sc
effects requires new methodology applicable bey
the realm of traditional techniques such asab ini-
tio and classical molecular dynamics [4,5] (the me
ods of choice in the microscopic regime), and ph
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field modeling [6] or the lattice-Boltzmann method [
(usually concerned with the macroscopic regime).

Dissipative particle dynamics (DPD) [8–11] is
particularly appealing technique in this regard. T
“particles” of DPD correspond to coarse-grained
tities, representing a collection of molecules or mo
cular groups rather than individual atoms. Coar
graining leads to soft pair potentials allowing the p
ticles to overlap (Forrest and Suter [12]).

Although coarse-graining might also be conside
implicit in Brownian and Langevin dynamics sim
lation, DPD offers the explicit advantage of a prop
description of hydrodynamic modes significant in t
physical approach towards a system’s equilibriu
This is achieved in DPD by implementing a therm
stat in terms of pairwise random and dissipative for
such that the total momentum of the system is c
served. Due to these reasons, DPD has been us
ved.
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studies covering a wide range of aspects in soft ma
systems, including the structure of lipid bilayers [1
14], self-assembly [15], and the formation of polym
surfactant complexes [16].

In practice, the pairwise coupling of particle
through random and dissipative forces makes the
tegration of the equations of motion a nontrivial ta
The main difficulty arises from the dissipative forc
which depends explicitly on the relative velocities
the particles, while the velocities in turn depend on
dissipative forces. An accurate description of the
namics requires a self-consistent solution.

The considerable computational load associa
with this task has motivated the development
schemes [11,17–23] which account for the veloc
dependence of dissipative forces in some approxim
manner, allowing the integration to be carried out
a sufficient degree of computational efficiency. T
search for a satisfactory such integration schem
ongoing, since many of the recent proposal h
been found to exhibit non-physical behavior, such
systematic drift in temperature, and artificial structu
in the radial distribution function [19–21].

In order to overcome these problems, a numbe
new integration schemes for DPD simulations ha
been developed in the past few years. Self-consis
determination schemes exist on the one hand [19–
but these are rather elaborate.

Alternative proposals include (i) a parameterizat
of the integrator based on the specific application
ing modeled by den Otter and Clarke [22], (ii) opera
splitting by Shardlow [23], and (iii) an elegant Mon
Carlo-based approach due to Lowe [24] which co
pletely avoids the problems arising from random a
dissipative forces as it does not use random or diss
tive forces at all.

In this article, we apply these schemes respectiv
to specific model systems, with the objective
assessing their relative performance. To the auth
knowledge, the latter three have yet to be tested
compared independently. The self-consistent appro
has been tested, although not extensively, and
previously tested so-called DPD–VV (DPD versi
of the “velocity-Verlet” scheme) will be used here
a benchmark. By monitoring a number of physic
observables including temperature, radial distribut
function, radius of gyration for polymers, and trac
diffusion, we find that the methods by Lowe [2
and Shardlow [23] give the best overall performan
and are superior also to the integrators tested
previous studies [20,21]. As will be discussed
the last section, a direct comparison between th
two is not straightforward, since they are based
essentially different conceptual views of dissipat
particle dynamics.

The paper is organized as follows. First, we brie
summarize the dissipative particle dynamics met
and introduce the three model systems used her
Section 3 we describe the integration algorithms
the update schemes in detail, and in Section 4
present the results from the tests. Finally, in Sectio
the findings and their relevance are discussed.

2. Methods and models

Below we give a short summary of the dissip
tive particle dynamics method and describe the th
model systems used in this work. For more thorou
accounts on DPD, see, e.g., Refs. [10,11].

2.1. Dissipative particle dynamics

Dissipative particle dynamics describes a sys
in terms ofN particles having massesmi , positions
�ri , and velocities�vi . Interactions are composed
pairwise conservative, dissipative, and random for
exerted on particlei by particlej , respectively, and ar
given by

�FCij = F (c)ij (rij )�eij ,
�FDij =−γωD(rij )(�vij · �eij )�eij , (1)

�FRij = σωR(rij )ξij �eij ,
where �rij ≡ �ri − �rj , rij ≡ |�rij |, �eij ≡ �rij /rij , and
�vij ≡ �vi − �vj . The variablesγ andσ are the strength
of the dissipative and random forces, respectively.
ξij are symmetric Gaussian random variables w
zero mean and unit variance, and are independen
different pairs of particles and different times. T
conditionξij = ξji is employed to ensure momentu
conservation.

The pairwise conservative forceF (c)ij is not spec-
ified by the DPD formulation and it can be chos
to include any forces that are appropriate for a giv
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system, such as van der Waals and electrostatic
teractions. In addition, it is important to notice th
it is completely independent of the random and d
sipative forces. Since one of the main motivations
using DPD is to be able to simulate systems at coa
grained, or mesoscopic, scales, the conservative f
is often chosen to be soft repulsive. Here, we use
“classical” DPD choice, i.e. soft repulsive conserv
tive forces in the cases of model A and model B, a
hard Lennard-Jones interactions combined with h
monic spring forces in the model polymer system.

In contrast to the conservative force, the rand
and dissipative forces are not independent, but are
pled through a fluctuation–dissipation relation. T
coupling is due to the requirement that in thermo
namic equilibrium the system must have canonical
tribution. The necessary conditions were first deriv
by Español and Warren in 1995 using a Fokker–Pla
equation [9].

The requirement of canonical distribution sets t
conditions linking the random and dissipative forc
in Eq. (2). The first one couples the weight functio
through ωD(rij ) = [ωR(rij )]2, and the second on
the strengths of the random and dissipative for
via σ 2 = 2γ kBT ∗. The latter condition fixes th
temperature of the systemT ∗ (kB being the Boltzmann
constant) and relates it to the two DPD parameterγ
andσ .

Like classical molecular dynamics (MD) simul
tions, DPD allows studies of dynamical propert
since the time evolution of particles can be descri
by the Newton’s equations of motion

d�ri = �vidt,
(2)

d �vi = 1

mi

( �FCi dt + �FDi dt + �FRi √dt ).
Here �FCi =

∑
i �=j �FCij is the total conservative forc

acting on particlei, and �FDi and �FRi are defined
correspondingly. It is important to notice that t
velocity increment due to the random force in Eq.
has the factor

√
dt instead ofdt . It can be justified

by a Wiener process as in stochastic differen
equations. Here, it suffices to notice that physica
the Wiener process models intrinsic (thermal) no
in the system and provides the simplest approac
modeling Brownian motion using stochastic proces
(see Refs. [9,11] for a detailed discussion). The ab
continuous-time version of DPD satisfies detai
balance and describes the canonical NVT ensem
In practice, however, the time increments in Eq.
are finite and the equations of motion must be sol
by some integration procedure. We will return to th
issue in Section 3.

2.2. An alternative approach to DPD

Dissipative particle dynamics described above
be thought of as a momentum conserving thermo
that allows one to study a system within the NVT e
semble with full hydrodynamics. The key features
therefore momentum and temperature conserva
As discussed above, momentum conservation ar
naturally from pairwise forces. Temperature cons
vation, in turn, arises from the random and dissi
tive forces that are chosen to satisfy the fluctuatio
dissipation theorem.

An alternative approach was formulated by Lo
in 1999 [24]. It does not use dissipative or rand
forces at all, yet provides the same conservation l
and is similar in spirit to DPD as it is aimed fo
studies of coarse-grained models in terms of s
interactions. In Lowe’s method, one first integra
Newton’s equations of motion with a time step�t ,
and then thermalizes the system using the Ande
thermostat [25] for pairs of particles. We will discu
this method in detail in Section 3.5.

Lowe’s approach is appealing for a number
reasons. First of all, since there are no dissipa
forces we can assume that this method does
suffer from the same drawback as DPD: While DP
requires a self-consistent solution of the equation
motion, Lowe’s approach is easier to use and m
likely performs well even with integration schem
that are commonly used in classical MD simulatio
Secondly, the rate of how often the particle velocit
are thermalized may be varied over a wide ran
which implies that the dynamical properties of t
system can be tuned in a controlled fashion. Lo
has demonstrated this idea by showing how so
dimensionless variables (such as the Schmidt num
Sc) can be tuned to match values found in actual flu
[24].
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2.3. Model systems

In this study, we evaluate the performance o
number of novel integration schemes that have b
recently suggested for large-scale DPD simulati
(see Section 3). We test these integrators using t
different model systems. The first two are based
a 3D model fluid system with a fixed number
identical particles. The first of them is aimed to clar
the performance of integration schemes in wea
interacting systems dominated by the random
dissipative forces, while the second model is relev
for systems in which the conservative interactio
are of major importance. Finally, to gain insight in
problems associated with hybrid models in wh
both soft and hard interactions are included,
consider a model of an individual polymer chain in
hydrodynamic solvent.

2.3.1. Model A
Model A describes the case characterized by

absence of conservative forces(F (c)ij = 0). This choice
corresponds to an ideal gas and it is customarily ca
“ideal DPD fluid”. The reason for using this mod
is that it provides us with some exact theoreti
results that can be compared to results from mo
simulations. Here, the dynamics of the system ar
only from thermal noise and dissipative coupli
between pairs of particles. In DPD simulations,
random force strength is chosen to beσ = 3 in units
of kBT ∗, and the strength of the dissipative forceγ is
then determined by the fluctuation–dissipation relat
σ 2= 2γ kBT ∗.

The random and dissipative forces are chosen t
soft-repulsive,

ω(rij )=
{

1− rij /rc for rij < rc;
0 for rij > rc,

(3)

with a cut-off distancerc [11] andωR(rij ) = ω(rij ).
This is the most common choice in DPD simulatio
and it has been used in recent investigations of
tegration schemes [20,21], thus allowing for a co
parison of the present results with those of previ
works. Although Eq. (3) has been used in virtually
published studies using DPD, it should be noted t
the fluctuation–dissipation theorem does not spe
the functional form of the weight function. The simp
form of Eq. (3) simply provides a convenient choice
In our simulations, a 3D simulation box of siz
10× 10× 10 with periodic boundary conditions
used. The length scale is defined by settingrc = 1,
and a particle number density isρ = 4. The energy
scale is defined by setting the desired thermal en
to unity viakBT ∗ = 1. All particles are identical, an
thusmi =m for all i.

2.3.2. Model B
Model B is a simple interacting DPD fluid. Its ma

difference to model A is the presence of a conserva
force, which we choose to be of the formF (c)ij (rij )=
Aω(rij ). The amplitude of the force was chosen
beA = 25. This functional form for the conservativ
force is by far the most common choice in DP
simulations.

2.3.3. Model polymer system
The last model system considered in this work

scribes an individual polymer chain in an explicit h
drodynamic solvent. Our interest in a system of t
kind originates from the fact that various soft mat
systems such as liquid crystals and lipid bilayers
composed of particles which are essentially chain-
molecules. DPD serves well for studies of these s
tems due to the hydrodynamic nature of the solv
which plays an important role in various soft mat
systems. However, while it is often desirable to d
scribe chain-like molecules on a molecular level
hard interactions, complemented with bending and
sional potentials to account for the most relevant
croscopic degrees of freedom, the solvent can ofte
described on a simpler level in terms of soft pair p
tentials. Thus, one possibility for efficiently modelin
polymeric systems is a hybrid approach of chain-l
molecules in a coarse-grained solvent.

The gain of using a hybrid approach in comp
macromolecular systems is evident. It allows o
to reduce the computational burden of dealing w
an explicit solvent, while the molecular descripti
of macromolecules is still accounted for in deta
However, the practical implications of including bo
hard and soft interactions in a model are not w
understood. In a previous study for an ensemble
spherical particles described by hard conservative
soft dissipative forces, we found certain features wh
differentiated integration schemes from each ot
[21]. However, a full study of the performance
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integration schemes within a true hybrid approach
macromolecular system has been lacking up till no

This model system aims to quantify the effe
of integration schemes under conditions that comb
both soft and hard interactions for a model polym
system. Here, the idea is to optimize the efficiency
the model by using a minimal approach. We thus
scribe the solvent as an ensemble of identical parti
which interact via soft pairwise forces and satisfy m
mentum conservation, while the polymer chain is
scribed on a more microscopic level in terms of (ha
Lennard-Jones interactions and harmonic springs.

The linear polymer chain is described as a ch
of M monomers connected by harmonic bonds wh
potential follows the form

Uharm= k
2
|�ri − �ri−1|2, i = 2,3, . . . ,M, (4)

with a spring constantk = 7. Within the chain,
the conservative monomer–monomer interactions
given by the truncated and shifted Lennard-Jo
potential

ULJ(rij )=
{

4ε
[(

"
rij

)12− (
"
rij

)6+ 1
4

]
, rij � rc,

0, rij > rc,
(5)

such that the potential is purely repulsive and dec
smoothly to zero atrc . We choose" = 2−1/6 and
ε = kBT ∗, and thereforerc = "21/6= 1. The pairwise
conservative force acting on a monomer due to o
monomers in a chain therefore follows directly fro
�FC =−∇(Uharm+ULJ). The dissipative and rando
forces acting on the monomers are chosen to fol
Eqs. (2) and (3) withσ = 3.

The monomer–solvent and solvent–solvent inter
tions are described as in model A withσ = 3 (and
A = 0), i.e. the random and dissipative parts are u
as a momentum conserving thermostat.

The justification for this choice of interaction
lies in a wish to clarify the size of artifacts due
integration schemes in a case, where the polymer c
is described on a molecular level in terms of ha
interactions, while the solvent is coarse-grained
much as possible and is thus described by an i
gas. The coupling between the solvent and the poly
chain comes from the dissipative forces which g
rise to hydrodynamic modes. This eventually resu
in a minimal model of a polymer chain with fu
hydrodynamics under good solvent conditions. T
was confirmed by studying the scaling behavior of
radius of gyration.

We consider polymers of sizeM = 20 and use a
3D box of size 10× 10× 10 with periodic boundary
conditions, where the length scale is defined byrc = 1.
The particle number density is chosen to beρ = 4
while the energy scale is defined by setting the des
thermal energy to unity viakBT ∗ = 1. All particles
are identical, and thusmi = m for both solvent and
monomer particles.

2.3.4. Choice of random numbers
In the present work, uniformly distributed rando

numbersu ∈ U(0,1) are used such thatξij =
√

3(2u−
1). This approach is highly efficient and yields resu
that are indistinguishable from those generated
Gaussian random numbers [11]. However, in the c
of Lowe’s approach, theξ(g)ij used are true Gaussia
random numbers.

3. Integrators

The integration schemes tested in this work h
been chosen from the most recent ones that have
suggested in the literature but not tested and comp
to other methods. They complement each other in
sense that the velocity dependence of the dissipa
forces is accounted for in all cases, but the approa
differ substantially. We feel that all of the integrato
considered here are promising candidates for la
scale simulations of soft matter systems. Howe
due to the lack of comparative studies in which
of these schemes would have been tested on e
footing, their relative performance has remained
open question. Here, we clarify this situation.

3.1. Velocity-Verlet based integration scheme
DPD–VV

In Table 1 we summarize the simplest integra
tested in this study. DPD–VV [20,21] is based
the standard molecular dynamics velocity-Verlet al
rithm [4,26,27] which is a time-reversible and sym
plectic second-order integration scheme. These p
erties can be proven by a straightforward applicat
of the Trotter expansion [4]. The standard veloci
Verlet has been shown to be relatively accurate in ty
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Table 1
Update scheme for DPD–VV and its self-consistent vers
SC–VV. In the case of DPD–VV, steps (4b) and (5) are done o
once during a single time step. For the self-consistent integr
SC–VV, the loop over steps (4b) and (5) is repeated until the
stantaneous temperature has converged to its limiting value

(1) �vi←− �vi + 1
2

1
m

( �FC
i
�t + �FD

i
�t + �FR

i

√
�t

)
(2) �ri←− �ri + �vi�t
(3) Calculate�FC

i
{�rj }, �FDi {�rj , �vj }, �FRi {�rj }

(4a) �v ◦
i
←− �vi + 1

2
1
m

( �FC
i
�t + �FR

i

√
�t

)
(4b) �vi←− �v ◦i + 1

2
1
m
�FDi �t

�

(5) Calculate�FD
i
{�rj , �vj }

(6) Calculate physical quantities

cal MD simulations especially at large time steps [2
The simplicity and good overall performance of t
velocity-Verlet algorithm thus makes it a good starti
point for further development.

We use the acronym DPD–VV for the modifie
velocity-Verlet. DPD–VV differs from the standar
velocity-Verlet scheme in one important respect.
discussed above, the dissipative forces in DPD dep
on the velocities, which in turn are governed by t
dissipative forces [see Eqs. (2) and (3)]. This ma
is not accounted for by the standard velocity-Ve
scheme. The DPD–VV, however, accounts for t
complication in an approximate fashion by updat
the dissipative forces [step (5) in Table 1] for a seco
time at the end of each integration step. This impro
its performance considerably yet keeping it compu
tionally efficient since the additional update of dissip
tive forces is not particularly time-consuming. In pr
vious studies, the DPD–VV scheme has shown g
overall performance [20,21] for which reason we ha
chosen it as the “minimal standard” to which other
tegrators are compared.

3.2. Self-consistent velocity-Verlet integrator

The update scheme of a self-consistent varian
DPD–VV is presented in Table 1. This SC–VV a
gorithm [20,21] determines the velocities and dis
pative forces self-consistently through functional
eration, and the convergence of the iteration proc
is monitored by the instantaneous temperaturekBT .
This approach is similar in spirit to the self-consiste
leap-frog scheme introduced recently by Pagona
Table 2
The approach OC by den Otter and Clarke. Initialization: Calcu
averages〈 �FDi · �vi 〉, 〈 �FDi · �FDi 〉 and 〈 �FRi · �FRi 〉 either analytically
or numerically. Then extractα and β from Eqs. (6) and (7),
respectively

(1) �vi←− �vi + α 1
m

( �FC
i
�t + �FD

i
�t

)+ β 1
m
�FR
i

√
�t

(2) �ri←− �ri + �vi�t
(3) Calculate�FC

i
{�rj }, �FDi {�rj , �vj }, �FRi {�rj }

(4) Calculate physical quantities

raga et al. [19], which is the only other published se
consistent DPD integration scheme in addition to S
VV (to the authors’ knowledge). The SC–VV schem
has the advantage of being very easy to implem
as seen from Table 1. A recent study of the SC–
scheme confirmed that it is a promising approach
interacting DPD systems [21]. That is particularly t
case for the structural properties using long time st
in dense systems. As a drawback, the SC–VV ha
advantage in temperature control as compared to o
methods. For that, there exists a variant of the SC–
integrator with a Nosé–Hoover type additional th
mostat [20,21].

3.3. Integrator by den Otter and Clarke

In 2001 den Otter and Clarke [22] proposed an
proach which uses a leap-frog algorithm with pre
fined variablesα andβ . The idea in the OC-integrato
as it is called here, is to try to determine these
rameters such that the effects due to the velocity
pendence of dissipative forces are reduced as muc
possible. The OC algorithm [28] is described in T
ble 2, in which the parametersα andβ describe the
relative weight of the random forces with respect
the dissipative and conservative ones. They are d
mined prior to the actual DPD simulation by calcul
ing the averages〈 �FDi · �vi〉, 〈 �FDi · �FDi 〉, and〈 �FRi · �FRi 〉
from an ensemble in which both the kinetic and co
figurational temperature equal the desired tempera
kBT

∗ [22]. Once they have been calculated, one
tainsα andβ with a desired time step�t from the
equations

α = 1

G�t

(
1− e−G�t

)
(6)
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Table 3
The values of parameters used in the OC integrator

Parameter Model A Model B Model polymer syste

〈 �FD
i
· �vi 〉 −7.528088 −4.985245 −7.566508

〈 �FDi · �FDi 〉 38.254933 14.507340 38.532832

〈 �FRi · �FRi 〉 15.072610 9.976453 15.150489

with G=−〈 �FDi · �vi〉/〈�vi · �vi〉, and

β2= −2mα〈 �FDi · �vi〉 − α2�t〈 �FDi · �FDi 〉
〈 �FRi · �FRi 〉

. (7)

Note that bothα andβ depend explicitly on�t . Since
the averages〈 �FDi · �vi〉, 〈 �FDi · �FDi 〉, and〈 �FRi · �FRi 〉 can
be derived analytically only for a limited number
systems, one usually has to calculate them from s
ulation (with a very small time step). This might be
problem in cases where properties such as density
temperature are varied over a wide range, since the
rametersα andβ should (at least in principle) be ca
culated separately for all different conditions. Nev
theless, den Otter and Clarke have shown [22] that
OC algorithm performs well in both the ideal gas a
a softly interacting DPD fluid.

For the three models considered in this work,
determined the parameters〈 �FDi · �vi〉, 〈 �FDi · �FDi 〉, and
〈 �FRi · �FRi 〉 separately for all cases. Their values a
shown in Table 3.

Note that the parameters for the model polym
system in Table 3 have been determined by avera
over all particles in the system. An alternate w
would be to find (M + 1) different values forα
and β by averaging over the solvent and monom
particles separately. However, this would require
major computational study prior to actual simulatio
and is therefore not feasible. Besides, it might
against the usual spirit as integration schemes
typically based on prefactors that are identical for
particles in a system.

3.4. Shardlow’s splitting method

The most recent addition to DPD integrators h
been introduced by Shardlow [23]. He applied ide
commonly used in solving differential equations
the case of integrating the equations of motion
DPD. The key idea is to factorize the integrati
process such that the conservative forces are calcu
separately from the dissipative and random ter
After this splitting the conservative part can be solv
using traditional molecular dynamics methods, wh
the fluctuation–dissipation part is solved separatel
a stochastic differential (Langevin) equation. To t
end, Shardlow suggested two integrators, called
and S2, based on splitting the equations of motion
to first and second order, respectively.

The formal approach involves a first order splitti
using the Trotter expansion [4,29] (integrator S1) an
second order splitting using the Strang expansion
(integrator S2). The mathematical details of the der
tion can be found in Shardlow’s original article [23
It is important to notice that the power of the Tro
ter (Strang) expansion lies in the fact that it provid
a general method for deriving symplectic algorithm
Importantly, the method works for both Hamiltonia
and non-Hamiltonian systems; see Ref. [29] for a
tailed discussion of the Trotter expansion and its
plications.

Based on our simulation studies and the res
presented in Ref. [23] for a system related to the mo
B in the present work, the performance of both of
two splitting methods was found to be excellent w
S2 displaying slightly better overall characteristi
Since the first order method (S1) is more efficient,
have chosen it to be on the spotlight. Here we use
same naming convention and call it S1. The algorit
is presented in Table 4. To the best of our knowled
further tests of S1 have not been reported yet.

The curious fact that the algorithm (Table 4) a
pears asymmetric for particlesi andj is a result of the
use of the fluctuation–dissipation theorem and N
ton’s third law. The form in which the algorithm i
presented keeps the notation otherwise symmetric

3.5. Lowe’s approach—Lowe–Andersen method

The approach introduced by Lowe in 1999 [24]
presented in Table 5, which shows how one first in
grates the Newton’s equations of motion with a tim
step�t , and then thermalizes the system as follo
For all pairs of particles for whichrij < rc, one de-
cides with a probabilityΓ�t whether to take a new
relative velocity from a Maxwell distribution. For eac
pair of particles whose velocities are to be thermaliz
one works on the component of the velocity para
to the line of centers and generates a relative velo
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Table 4
The approach S1 by Shardlow

(1) For all pairs of particles for whichrij < rc

(i) �vi←− �vi − 1
2

1
mγω

2(rij )(�vij · �eij )�eij�t + 1
2

1
mσω(rij )ξij �eij

√
�t

(ii) �vj ←− �vj + 1
2

1
mγω

2(rij )(�vij · �eij )�eij�t − 1
2

1
mσω(rij )ξij �eij

√
�t

(iii) �vi←− �vi + 1
2

1
mσω(rij )ξij �eij

√
�t − 1

2
1
m

γω2(rij )�t

1+γω2(rij )�t

[
(�vij · �eij )�eij + σω(rij )ξij �eij

√
�t

]
(iv) �vj ←− �vj − 1

2
1
mσω(rij )ξij �eij

√
�t + 1

2
1
m

γω2(rij )�t

1+γω2(rij )�t

[
(�vij · �eij )�eij + σω(rij )ξij �eij

√
�t

]
(2) �vi←− �vi + 1

2
1
m
�FC
i
�t

(3) �ri←− �ri + �vi�t
(4) Calculate�FC

i
{�rj }

(5) �vi←− �vi + 1
2

1
m
�FC
i
�t

(6) Calculate physical quantities
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Table 5
The approach by Lowe using Gaussian distributed random num

ξ
(g)
ij

from a distributionξ(g)
ij

√
2kBT ∗/m

(1) �vi ←− �vi + 1
2

1
m
�FCi �t

(2) �ri←− �ri + �vi�t
(3) Calculate�FC

i
{�rj }

(4) �vi ←− �vi + 1
2

1
m
�FC
i
�t

(5) For all pairs of particles for whichrij < rc

(i) Generate�v ◦
ij
· �eij from a distribution

ξ
(g)
ij

√
2kBT ∗/m

(ii) 2 ��ij = �eij (�v ◦ij − �vij ) · �eij
(iii) �vi←− �vi + ��ij
(iv) �vj ←− �vj − ��ij

with probabilityΓ�t

(6) Calculate physical quantities

�v0
ij · �eij from a distributionξ(g)ij

√
2kBT ∗/m. Hereξ(g)ij

are Gaussian random numbers with zero mean and
variance. This approach has its origin in the And
sen thermostat [25], hence the name Lowe–Ande
method.

The key factor in Lowe’s method is the parame
Γ which describes the decay time for relative velo
ties. Since the condition 0<Γ�t � 1 is obvious, one
finds that forΓ�t = 1 the particle velocities are the
malized at every time step, while forΓ�t ≈ 0 the
model system is only weakly coupled to the therm
stat. Thus the dynamical properties of the system
be tuned by the choice ofΓ as shown by Lowe [24].
t

Although the present version of the algorithm fo
lows the original one [24] and is based on the veloc
Verlet scheme, it is clear that other approaches s
as the leap-frog are equally useful, if desired. Furth
based on the work by Lowe [24], this approach see
very promising although it has received only little a
tention by far [31].

In the present work for the three model syste
considered here, we setΓ such that the tracer diffusio
properties of the fluid are similar with those of DP
systems with chosenσ in the limit �t → 0. In this
fashion, we end up to a value ofΓ = 0.745 for
model A and to a value ofΓ = 0.44 for model B. In
the model polymer system we used the same valu
in model A since the solvent is described in a sim
fashion in both cases.

4. Performance of integrators

4.1. Physical quantities studied

We characterize the integrators by studying a nu
ber of physical observables. After equilibrating t
system, we first calculate the average kinetic temp
ture

〈kBT 〉 = m

3N − 3

〈
N∑
i=1

�v2
i

〉
, (8)

whose conservation is one of the main conditions
reliable simulations in the canonical ensemble.

Next, in the cases of models A and B, we exam
the radial distribution functiong(r) [32] which is one
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of the most central observables in studies of struct
properties of liquids and solids. For the ideal g
(model A), the radial distribution function provides a
excellent test for the integrators since theng(r) ≡ 1
at the continuum limit. Therefore, any deviation fro
unity has to be interpreted as an artifact due to
integration scheme employed.

In model B, in which conservative interactions a
present, there are no exact theoretical predictions
g(r) that would allow a straightforward compariso
of different integration schemes. A comparison
possible, though, in terms of physical observables s
as the compressibility and the coordination num
that are based on integratingg(r). In the present study
we have chosen to consider the coordination num
defined as

Nc = 4πρ

r1∫
0

dr g(r)r2, (9)

whereρ is the particle number density of the syste
andr1 is the radial distance at whichg(r) has its first
minimum after the leading (first) peak.

The radial distribution function reflects equilibriu
(time-independent) properties of the system. To co
plement the comparison of different integrators,
also consider the tracer diffusion coefficient

DT = lim
t→∞

1

6t

〈[�ri (t)− �ri(0)]2〉
, (10)

which can provide us with information of possib
problems on the dynamics of the system. Here�ri(t)
is the position of a tagged particle in models
and B, and the mean-square displacement is
averaged over all particles in a system to get be
statistics forDT . In the model polymer system,�ri(t)
describes the center-of-mass position of the poly
chain via

�rcm(t)= 1

M

M∑
i=1

�ri (t), (11)

where the index runs over monomers in a chain.
For the model polymer chain, we further calcula

the radius of gyrationRg ≡
√
〈R2
g〉 defined as

〈R2
g〉 ≡

1

M

M∑
i=1

〈[�ri − �rcm]2
〉
, (12)
which shows thatRg is a measure of polymer size. It
actually one of the most central quantities in polym
science and therefore serves as an excellent mea
for our purposes.

In the following, the errors are stated in the figu
captions and given as the magnitude of stand
deviation.

4.2. Results for model A

As discussed above, model A is characterized
the absence of conservative forces, and thus
artifacts arising from the velocity-dependent forc
are expected to be pronounced in this model.
study this possibility, we first discuss the deviatio
of the observed kinetic temperature〈kBT 〉 from the
desired temperaturekBT ∗. The results for〈kBT 〉
shown in Fig. 1 indicate that DPD–VV and SC–VV a
reasonably good at small time increments, but lar
time steps lead to major deviations from the desi
temperature. For OC,〈kBT 〉 decreases monotonical
with �t for �t � 0.15, after which the temperatu
increases rapidly. Nevertheless, the deviation is gre
than in the case of DPD–VV but considerably sma
than for SC–VV. The Shardlow S1 integrator, howev
has very good temperature control and the deviat
remain less than 0.5% up to�t = 0.2. The best
temperature control is found for the method by Low
however, yielding〈kBT 〉 = kBT ∗ for all time steps
�t . In this case, we have extended the studies fur

Fig. 1. Results for the deviations of the observed temperature〈kBT 〉
from the desired temperaturekBT

∗ ≡ 1 vs. the size of the time ste
�t in model A. The error in〈kBT 〉 is of the order of 10−4.
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Fig. 2. Radial distribution functionsg(r) with several values of time step�t in model A: (a)�t = 0.01, (b)�t = 0.05, and (c)�t = 0.1. The
error ing(r) is greatest atr = 0.01, where it takes the value of 0.01.
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Fig. 3. Results for the tracer diffusion coefficientDT (�t)/
DT (0.01) vs. the time step�t in model A. The error in
DT (�t)/DT (0.01) is of the order of 0.001.

and tested the behavior of〈kBT 〉 with various values
of F between 0.1 and 10, but the conclusions rem
the same.

Results forg(r) are shown in Fig. 2. We find tha
the deviations from the ideal gas limitg(r) = 1 are
pronounced for OC, indicating that even for small tim
steps this integration scheme gives rise to unph
cal correlations. The performance of DPD–VV is co
siderably better, although artificial structures are
rather pronounced, while SC–VV and S1 lead to
radial distribution function that is close to the the
retically predicted one. Completely structurelessg(r)

is found only for the integrator by Lowe, howeve
Again, in this case, we have tested the behavior ofg(r)

with various values ofΓ , but the results remain th
Fig. 4. Results for the deviations of the observed temperature〈kBT 〉
from the desired temperaturekBT ∗ ≡ 1 vs. the size of the time ste
�t in model B. The error in〈kBT 〉 is of the order of 10−4.

same. This confirms the expectation thatΓ does not
influence the equilibrium properties of the system.

The results for the diffusion coefficientDT in Fig. 3
are essentially consistent with the conclusions ab
The integrator OC is not very useful in a system
the present kind, since it seems to lead to substa
deviations from the expected behavior. The SC–
and the integrator by Lowe perform much better, wh
the integrators S1 and DPD–VV are most stable in
case.

4.3. Results for model B

Results shown in Fig. 4 for the observed kine
temperature〈kBT 〉 reveal that the differences betwe
the integration schemes deviations are weake
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model B than in model A. As it turns out below
this conclusion is generic and holds for all quantit
studied here.

The deviations of〈kBT 〉 from the desired tempera
ture kBT ∗ are very minor for all integrators at sma
time steps�t � 0.01. Differences between the in
tegrators become evident only at larger time ste
We first find how the temperature in SC–VV fir
decreases, then has a pronounced minimum aro
�t ≈ 0.05, after which〈kBT 〉 increases very rapidl
and the integrator eventually becomes unstable.
temperature conservation of OC is also relatively p
at time steps beyond�t = 0.025. Best performanc
in this respect is found for the remaining integrati
schemes DPD–VV, S1, and Lowe, whose behavio
quite similar and comparable to each other.

Demonstrative results for the radial distributi
functions in model B are shown in Fig. 5. It is cle
that large time steps lead to major problems with
gard to pair correlations. This is particularly clear
small distances(r < 0.2). To quantify these change
we calculated the coordination number [see Eq. (
The results shown in Table 6 highlight the fact th
all integration schemes converge to the same resu
ll
s. The error
Fig. 5. Radial distribution functionsg(r) with time steps�t = 0.01 (on the left) and�t = 0.1 (on the right) in model B. In addition to the fu
curves, two sets of the same data on an expanded scale are also given to clarify the deviations between different integration scheme
in g(r) is greatest atr = 0.01, where it takes the value of 0.001.
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Table 6
Results for the coordination numberNc in model B. Error bars are about±0.05

Integrator �t = 0.005 �t = 0.010 �t = 0.050 �t = 0.075 �t = 0.100

DPD–VV 25.36 25.37 25.74 26.72 28.98
SC–VV 25.43 25.54 25.62 26.78 28.57
OC 25.46 25.51 25.71 26.69 28.74
S1 25.53 25.41 25.73 26.71 28.44
Lowe 25.35 25.42 25.59 26.95 29.12
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Fig. 6. Results for the tracer diffusion coefficie
DT (�t)/DT (0.005) vs. the time step�t in model B. The
error inDT (�t)/DT (0.005) is of the order of 0.001.

small time steps�t � 0.05, while for larger time step
there are significant deviations from the correct beh
ior found in the limit�t→ 0. However, it is somewha
surprising that the coordination numbers obtained
different integration schemes are essentially sim
within error limits, while based ong(r)’s there are no-
ticeable differences between the pair correlation pr
erties of different integrators. This is a consequenc
the fact that due to the integration in Eq. (9), the
viations ing(r) toward too small and too large valu
compensate each other. A similar effect has been
served recently in compressibility [21], which is al
defined as an integral overg(r).

Tracer diffusion data shown in Fig. 6 is consiste
with the conclusions above. For small time steps
results of all integration schemes are compara
while for large time steps we can find how t
differences become more and more pronounced.
scatter in the data does not allow us to make conclu
statements of the relative merits of the integrato
however.
4.4. Results for the model polymer system

Before we consider the results for the model po
mer system, we would like to emphasize certain si
larities it has with model A. Namely, in both cases t
solvent is an ideal gas governed by dissipative and
dom forces only. Further, the model polymer system
dilute (more than 99.5% of the particles in a syst
are solvent particles) and there are no conservativ
teractions between the monomers and the solvent
ticles. This suggests that the artifacts due to integ
tion schemes in the model polymer system would
essentially similar to those found in model A. It tur
out below, however, that this is not the case.

Results shown in Fig. 7(a) indicate that the o
served kinetic temperature〈kBT 〉 only rather weakly
depends on the integration scheme. Results for
Lowe, and DPD–VV are all within one percent up
�t ≈ 0.02 above which the integration schemes
come unstable. The OC integrator is somewhat
reliable in this case, as it leads to a monotonous
crease of〈kBT 〉, thus differing rather clearly from th
results of other integration schemes.

A comparison of Figs. 1 and 7(a) provides one w
an intriguing view of effects that arise from the hybr
approach. We first note that Lowe’s approach as w
as S1 are equally good, in agreement with the con
sions made in model A. However, in model A the
tegration schemes were found to be stable up to v
large time steps on the order of�t ≈ 0.4, while in
the model polymer system the largest time steps p
sible are about 0.02. This is due to the hard conse
tive monomer–monomer interactions used in desc
ing the polymer chain, for which reason the size
the time step has to be reduced considerably as c
pared to model A. This suggests that, for practical p
poses in hybrid models, one should seriously cons
integration schemes with two different time steps, o
for the solvent and another for the polymer degr
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of freedom. Another interesting feature concerns
behavior of〈kBT 〉 in the case of OC. In model A, th
observed kinetic temperature decreased monotono
down to timesteps�t ≈ 0.15, while in the model poly-
mer system the trend is the opposite. This is consis
with our results for model B, and suggests that the
tifacts due to integration schemes depend significa
on the interactions chosen for the system.

To gain further insight into the performance of t
integration schemes in a hybrid approach, we stud
a number of physical quantities that specifically ch
acterize the properties of the polymer chain. First,
studied the observed kinetic temperature of thepoly-
mer,defined as

〈kBT 〉chain= m

3M

〈
M∑
i=1

�v2
i

〉
. (13)

This quantity characterizes the thermal fluctuatio
of the polymer chain, and therefore if there are a
serious problems due to the integration schemes,
we expect that they are manifested in the behavio
〈kBT 〉chain.

We find that the results in Fig. 7(b) are whol
consistent with those presented in Fig. 7(a). Ess
tially, this implies that the temperature deviations
the whole systemarise from the hard interparticle in
teractions used to describethe soluteeven though the
system is dilute. We think that this finding is of gene
nature and applies to both hybrid models and ot
DPD simulations in which all interactions are appro
imately of equal magnitude. In particular, it allows
to suggest that the artifacts due to integration sche
in DPD are predominated bythe interactions that dic
tate the size of the time step.

In systems with hard conservative interactions
time step must be small. Otherwise, gradients in for
become too large and the system becomes unst
Consequently, if the conservative force is stronger t
the dissipative and random forces the artifacts
to integration schemes are driven by the conserva
forces just like in classical molecular dynamics si
ulations. Naturally, the velocity-dependent dissipat
forces are still playing a role but their effect is n
as important as the influence of conservative inte
tions. From a practical point of view, this means th
there is no particular reason to use an integrator wh
accounts for the velocity dependence of dissipa
forces.

On the other hand, if all interactions are soft,
if the conservative forces are weak compared to
dissipative forces, then it is plausible that the veloc
dependence of dissipative forces is the underly
reason for artifacts due to the integration proced
This is the case when the time step is determi
by the dissipative force rather than the hard-core
the conservative potential. In this situation the qua
of the integration scheme is very important, and
velocity dependence of the dissipative forces has t
accounted for by the integration scheme. It is clear
this matter warrants attention and should be accou
for in all subsequent studies by DPD.
e polymer

Fig. 7. Results for the deviations of the observed temperature〈kBT 〉 from the desired temperaturekBT ∗ ≡ 1 vs. the size of the time step�t
in the model polymer system. In (a) we show the observed temperature of the whole system, while the results in (b) correspond to th
chain only (see text for details). For the whole system, the error is of the order of 10−4, while for the polymer chain the error is 0.004.
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Further studies of the radius of gyration and
diffusion coefficient of the polymer chain revealed t
expected and undesired fact that computational stu
of a dilute polymer system in an explicit solvent a
very time consuming, and therefore the error b
remained rather large despite major computatio
efforts. Consequently, we found that the results
Rg andDT of different integrators were essentia
equal within error limits (data not shown). It is like
that more extensive calculations would have expres
deviations between different integration schemes,
we concluded that such studies were not worthwhi

4.5. Computational efficiency

Besides the strength of the artifacts, we have p
attention to the computational efficiency of the in
gration schemes by calculating the CPU time nee
for a single time step�t . Although this depends o
various practical matters such as the computer ar
tecture, the implementation of the algorithms, and
size of Verlet neighbor tables, we think this approa
can provide one with the essential information of
relative speed of the integrators tested in this work

The tests for efficiency have been carried out
a Compaq Alpha Station XP1000 with a 667 MH
processor. To this end, we used model B (with 40
particles at a density ofρ = 4) with standard Verle
neighbor tables [27] and a time step of�t = 0.05.

We calculated the CPU time needed for the in
gration of a single time step (averaged over 1000 c
secutive steps). The times needed to update the V
neighbor tables (or to calculate any physical qua
ties) are not included in these results. Thus the DP
VV and SC–VV schemes were considered over st
(1)–(5) in Table 1, the OC approach over steps (
(3) in Table 2, Shardlow’s approach over steps (1)–
in Table 4, and Lowe’s integration scheme over st
(1)–(5) in Table 5. In the case of SC–VV, steps (4
and (5) were repeated six times which guaranteed
consistency in this case. Note that Lowe’s approac
based on normally distributed random numbers w
other integration schemes use uniformly distribu
ones. Since there are various methods available fo
generation of normally distributed random numbe
this may affect the efficiency of Lowe’s approach
some extent [33].
t

Table 7
Results for the computational efficiency of the integration schem
Shown here are results for integrating the equations of mo
over one time step of size�t = 0.05, although the results hav
been averaged over 1 000 consecutive steps. For the purpo
comparison, the time needed to update the Verlet neighbor lis
also been given; the time shown here corresponds to its minim
value when the list is small since it is updated after every time
(simulation parameters:kBT = 1,A= 25,σ = 3, andρ = 4)

Integrator Cpu time (seconds)

DPD–VV 0.0363± 0.0005
SC–VV 0.1010± 0.0009
OC 0.0251± 0.0005
S1 0.0256± 0.0005
Lowe 0.0143± 0.0005

Verlet list 0.0293± 0.0003

The results shown in Table 7 indicate that Low
method is substantially faster than OC and S1, wh
in turn are clearly faster than DPD–VV. Finally, th
result that SC–VV is considerably slower than DP
VV is not surprising due to the iteration process for
velocities and dissipative forces.

When these times are compared to each other,
should also keep in mind that DPD–VV, S1, a
Lowe’s method are significantly easier to deal w
compared to SC–VV and OC. In SC–VV, one nee
to find the sufficient number of iterations prior
actual simulations to guarantee self-consistency
OC, the preliminary work required prior to simulatio
is even more extensive, as one has to determine
parametersα andβ for a given system under desire
thermodynamic conditions. This task may indeed t
some time.

5. Discussion and conclusions

In this work, we have tested several novel schem
on an equal footing through DPD simulations of thr
different model systems. The first of the models co
sponds to a case where conservative interactions
no role, while the second model describes fluid-l
systems with relatively strong but soft conservative
tentials. Finally, the third model aims to character
the quality of integration schemes in a hybrid appro
for a dilute polymer system.

Of the integration schemes considered here, DP
VV and SC–VV have recently been examined
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Refs. [20,21]. The results of the present study
consistent with previous findings: DPD–VV exhib
good overall performance, indicating that it presen
relatively accurate means to integrate the equation
motion at a reasonable computational cost.

Of the previously untested methods the den Ott
Clarke (OC) method [22] is fast, performing esp
cially well in interacting systems in which conserv
tive forces are important. A drawback is that the pa
metersα andβ need to be determined prior to actu
simulations through time-consuming precursory sim
lations with a very small time step. We note, howev
that the properties of the OC scheme are in fact r
tively insensitive to slight changes inα andβ . Thus,
for example, studies of the model polymer system
ing specifically determinedα andβ values yielded re
sults almost identical with studies based on the p
meters of model A.

The Shardlow S1 integrator [23] is possibly t
brightest star in this work. It performed very well
all models, and it is fast and rather easy to implem
We feel that it presents the best choice of integra
schemes within the “usual” conceptual framework
DPD.

Interestingly, however, we have also found that
elegant and conceptually distinct method of Lowe [2
performed excellently and is easy to implement. F
thermore, and what is important when Lowe’s meth
is compared to Shardlow’s integration scheme, it p
vides analternativeand a very attractive descriptio
of dissipative particle dynamics. Thus, a direct co
parison of S1 and Lowe’s method is not meaning
Instead, we discuss the pros and cons of these two
proaches.

The usual DPD description is based on the id
that soft matter systems can be described in term
softly interacting particles with some of the degre
of freedom coarse grained out and replaced with r
dom noise coupled to dissipation. Temperature con
vation is achieved through the fluctuation–dissipat
theorem and the correct hydrodynamic behavio
guaranteed by momentum conservation [9]. Vario
studies have extended these ideas further. For exam
Flekkøy et al. developed a DPD framework start
from a microscopic description [34,35]. Español a
coworkers, in turn, studied the dependence of trans
properties of DPD fluids on the length and time sca
[36] and a generalization of DPD to energy conse
-

,

ing systems [37]. DPD has recently been used toge
with molecular dynamics to coarse grain aqueous
solutions [38] in which the effective interactions us
in DPD simulations were obtained from MD simul
tions by the inverse Monte Carlo procedure [39]. T
last ten years have been very successful on both th
alytical and the computational fronts—the theoreti
basis of DPD is now well established, and the num
of applications has increased at a steady pace.

Lowe’s [24] approach is a very recent inception a
thus far has received limited attention. Although
theoretical foundations of Lowe’s method have ye
be fully worked out, it offers promising aspects th
are not obvious in the traditional DPD descriptio
To clarify these aspects, let us first remind oursel
that Lowe’s method does not include dissipation
the usual sense. Rather, it is based on a therm
that thermalizes the velocities of pairs of particles
a rate which depends on the dynamical parameteΓ .
This parameter tunes the dynamical properties of
system. Lowe pointed out that the soft interactio
used in DPD lead to a situation where the ratio
the kinematic viscosity and the diffusion coefficient
solvent particles (known as the Schmidt numberSc)
is of the order of one. This value corresponds t
situation often found in gases, while in fluidsSc∼ 103

or even larger. To get closer to more realistic val
for Sc, one can reduce the diffusion rate by usi
harder interparticle interactions, but this is against
philosophy of DPD and would reduce some of t
benefits of the DPD approach.

Lowe’s approach is very different in this respect
allows one to adjust the viscosity of the system t
desired value by varying the dynamical parameteΓ
while the diffusive properties are not considerably
fected since the conservative interparticle interacti
remain soft. As a result, the Schmidt number can
tain values as large as 107 [24]. When compared to th
usual DPD description, this implies that Lowe’s a
proach may be more feasible for describing hydro
namic systems in which one needs to worry about
time scales of momentum diffusion and mass tran
with respect to the size of the colloidal particle.

There still remains the issue of the practical v
bility of Lowe’s approach, since we are not aware
any applications where the method by Lowe has b
used. However, we are positive that this approach
promising technique. For example, we have rece
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applied Lowe’s method to microphase separation
block copolymers in the spirit of Groot and Madd
[40], and it turned out that Lowe’s method was ab
to reproduce their results. Finally, in Figs. 8 and
we show how the velocity autocorrelation function d
pends on the choice ofΓ for models A and B (Fig. 8)
and how it is affected whenΓ is varied but keeping th
productΓ�t constant in the case of model B (Fig. 9
As discussed above, it is clear that large values oΓ
lead to faster decay. However, the qualitative beha
of the velocity autocorrelation function is not see
ingly affected, as illustrated by Fig. 9, and the eff
of Γ on the diffusion coefficient was found not to b
important for the studied combinations ofΓ and�t .
To conclude, we have studied the performa
of various novel integration schemes that have b
designed specifically for DPD simulations. We ha
tested these integration schemes in three diffe
model systems by varying the nature of interactio
and found that the artifacts due to the integrat
scheme are essentially driven by the interactions
dictate the size of the time step. Thus, the artifacts
the performance of integrators are model depend
Overall, we have found that there are two approac
whose performance is above the others. Of th
Shardlow’s integration scheme is based on splitting
equations of motion and can be applied to the us
DPD picture, while the approach by Lowe is distinc
of
Fig. 8. (a) Velocity autocorrelation function for model A in Lowe’s method. The error is of the order of 10−4. (b) Velocity autocorrelation
function for model B in Lowe’s method. The error is of the order of 10−4.

Fig. 9. Velocity autocorrelation function for model B in Lowe’s method with the productΓ�t fixed to (a) 0.005 and (b) 0.025. The error is
the order of 10−4.
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different in nature and is related to the classical w
by Andersen.
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