
Monte Carlo Generation of
Equilibrated Graphs

Hannes Nagel1, Piotr Białas2, Bartłomiej Wacław1 and Wolfhard Janke1
1Institut für Theoretische Physik, Universität Leipzig, Germany

2Institute of Computer Science, Jagellonian University Kraków, Poland
C

Q T

Abstract
We propose a C++ library for generating and handling
random graphs with given statistical weights. The modular
and extendable set of functions allows the user to easily
create a program that generates complex networks with
prescribed node-degree distribution, node-node correlations
and assumed global structure (trees, simple graphs or
degenerated graphs), with no a-priori limitation on the size
of graph. The library also contains functions to perform
statistical estimations on graphs or to export the graphs for
further external processing or visualization.

Introduction
Random networks can be described in the framework of
statistical physics by introducing an ensemble of random
graphs. This approach allows one to use standard methods,
e.g., to calculate various observables as ensemble averages.
The space of graph shapes is the same as in the Erdősz-
Rényi model of random graphs, but in addition every graph
in the ensemble has a certain statistical weight W (α) which
tells what is the probability of its occurence.
The weight W (α) enhances the probability of some graphs,
for example those with some special properties. As a result,
“typical” graphs may have a power-law degree distribution,
desired degree-degree correlations, small diameter, large
number of triangles or any other desired feature.
In the simplest case, the weight W (α) is a product of local
graph properties, as node degrees:

W (α) =
L∏
i=1

p(ki),

which gives the possibility of tuning the degree distribution by
adjusting the function p(k) appropriately.
A more generic but still local weight

W (α) =
∏
〈i,j〉

p(ki, kj),

allows one to introduce degree-degree correlations between
adjacent nodes.

Method

• Propose a local modification

graph α→ graph β

The type of modification proposed depends on which
global property (simple, multi- or tree graph) or
conservation law (conservation of links or degree
sequence) is assumed.

• Metropolis: Accept β with probability Pacc or reject:

Pacc = min
{

1,
W (β)
W (α)

}

• Calculate quantities of interest as ensemble averages from
the sampled graphs

Local modifications conserving global graph properties

α β

number of vertices conserved

number of edges conserved

degree sequence conserved

Examples

• Equilibrated network with Barabási-Albert degree
distribution

ΠBA =
4

k(k + 1)(k + 2)

shows disassortativity in knn(k). The weight

p(q) =
q!

q(q + 1)(q + 2)

gives the desired degree distribution and low degree-
degree correlations (see lower left).

1× 10−09

1× 10−06

0.001

1

1 10 100 1000

Π
(k

)
k

ΠBA(k)

0 75 150 225 300

1× 10−09

1× 10−06

0.001

1

ε k
q

0.1

1

10

100

1 10 100 1000

〈k
n
n
〉(
k
)

k

• Introduction of explicit degree-degree correlations

p(k, q) = |q − k|2 ,

which prefer links that connect high degree sites to low
degree sites

1× 10−06

0.001

1

1 10 100

Π
(k

)

k

0 250 500 750 1000

0.0001

0.01

1

ε k
q

1

10

100

1 10

〈k
n
n
〉(
k
)

k

Degree correlations are much stronger now: Links
connecting low degree sites with high degree sites are far
more probable than others.

• Correlations with preference for connections of sites with
similar degree

p(k, q) =
1

|q − k|2 + 1

1× 10−06

0.001

1

1 10 100

Π
(k

)

k

0 25 50
0.01

0.1

1

ε k
q

0.1

1

10

1 10

〈k
n
n
〉(
k
)

k

Simulations: simple graphs with N,L = 1000. Pictures of graphs: N = 100, L = 100

Minimal Example

#include <fstream >
#include " graphgen . hpp "

double p (unsigned i n t q) {
i f (q>0) return q∗ (1 .0+q) / (q + 3 . 0) ; else return 1e20 ;

}

using namespace graphgen ;
typedef undirected_graph Graph ;
typedef ver tex_weight <value_type : : r a t i o > Weight ;
typedef canonical <Weight , shape : : simple > Ensemble ;

const i n t NV=1000;

i n t main () {
Graph graph (NV) ;
graph . gen_BarabasiAlber t (1) ;

Weight weight (p) ;
Ensemble E(graph , weight) ;
degreed is t Deg(2∗NV) ;

for (i n t n=0; n<1000000; n++) {
E . sweep (NV) ;
Deg . measure (graph) ;

}

s td : : ofstream degdstr (" degree ") ;
degdstr <<Deg ;
s td : : ofstream gstream (" graphs ") ;
gstream<<graphgen : : graphv iz (graph)<< std : : endl ;

}

Method Scheme

pick shape weightensemble

run

sampling
propose accept/reject

graph

results estimate
interesting
quantities

output for
further

processing

Extendability

The modularity of the program and the usage of C++ template
classes allows one to extend the code easily, in order to
simulate more complicated graph ensembles, for instance:

• non local functional weights

• other classes of functional weights (e.g. not necessarily
degree-dependant)

• sampling of graphs with special global shapes

• “your demand here”

References

General Complex Networks

• S. N. Dorogovtsev, J. F. F. Mendes, A. N. Samukhin,
Principles of statistical mechanics of random networks,
Nucl. Phys. B 666 (2003) 396.

Graph Ensemble Sampling

• L. Bogacz, Z. Burda, and B. Wacław, Homogeneous
complex networks, Physica A 366 (2006), 587.

• L. Bogacz, W. Janke, and B. Wacław, A program
generating random graphswith given weights, Comp. Phys.
Comm. 173 (2005) 162.

GraphGen Package

• Documentation and download http://www.physik.
uni-leipzig.de/~nagel/graphgen.

Gedruckt im Universitätsrechenzentrum Leipzig

