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Introduction and Overview

Statistical physics is a field of physics which applies statistical methods to
predict macroscopic properties of physical systems from their microscopic model
of properties and interactions. For example, in solid state systems the properties
in thermal equilibrium are modeled by interactions on the length scale of
atoms and molecules. The size of such many-particle systems, is what enables
these methods but prevents treatment with classical methods at the same time.
A most typical application of statistical physics is the description of properties of
Hamiltonian systems in thermal equilibrium with their environment. However,
also non-Hamiltonian systems, without a properly defined energy, may be treated
by these methods. For example, the stochastic transport processes discussed in
this thesis represent such systems.

Stochastic transport describes movement of a conserved quantity, from one
location in space to another in terms of classical stochastic processes. This
quantity usually is a generic “mass”, such as molecules diffusing in a porous
crystal, sand grains blown by the wind [1], people moving in traffic infrastructures,
i.e. particles performing a stochastic motion on a structure. These processes
may have a form where a current of the generic mass is driven through the
system, in which case one speaks of driven diffusive systems. The drive therefore
may hold such a system in a steady state out of equilibrium.

An interesting feature in driven diffusive systems is that, above a certain
density, mass condensation may be observed. That is, a finite fraction of all
masses accumulates at a certain site. The interpretation depends what the
masses mean: Sand grains are piled up to form dunes [1] or vehicles cause traffic
jams. Other interesting examples are structure formation by self-organization
in crystal growth processes [2], or the dynamics of people (“masses”) surfing
the world wide web.

Besides the diverse meanings of “mass” in these examples, the major difference
is in the structures the processes take place on. Crystals grow differently on
distinct lattice types and traffic jams are more likely on some structures than
on others. Therefore it is an interesting question to ask, what the impact of
structure to condensation is.

As for the effect of structure on processes, it is interesting to study the
properties of complex networks. These are networks that exhibit several structure
properties observed in real-world networks but not common to random graphs.
This opens for example the possibility to study the robustness of specific types
of networks to disappearance of nodes or the evolution of networks in interaction
with a stochastic process on them [3].

In this thesis I will discuss the process of mass condensation in a specific
stochastic transport model with the focus on the scaling of the condensation time.
The condensation transition is first studied in the one dimensional model, using
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numerical methods to estimate properties of the steady state and such describing
the dynamics. From this basis the dynamics on the two dimensional square
lattice is quickly evaluated. However, the step to study the condensation process
on networks with respect to specific structure elements in complex networks is
difficult. It is first necessary to create a means to allow the selective generation
of networks with the desired structure properties. Then the condensation process
may be studied starting with rewired regular lattices as structures.

This diploma thesis is organized as follows:

Chapter 1 gives a brief introduction into statistical physics. The focus lies
on non-equilibrium processes and phase transitions.

Chapter 2 introduces the employed numerical methods that are used to
simulate the dynamics of the transport model as well as its steady state.
It also deals with the methods to determine the numerical errors of the
obtained data and describes a generalization of the Hoshen–Kopelman
cluster identification algorithm that works on connected graphs.

Chapter 3 first discusses a simple transport model without a ranged
interaction that exhibits a condensation transition. On that basis, the
studied stochastic transport model is described and properties in the steady
state of the system are discussed. Then, the specific estimation methods
used for the analysis of the condensation time scale and condensation
process are layed out followed by a discussion o the obtained results. This
is done in detail for the one dimensional system with asymmetric dynamics
followed with an examination of the process on two dimensional lattices
and regular graphs.

Chapter 4 gives a brief introduction to the statistical mechanics of complex
networks up to the definition of statistical ensembles of graphs on the
basis of Erdős–Renyi model of random graphs. Different basic ensembles
are defined and a toolkit for the generation of complex networks out of
these ensembles is presented.

Chapter 5 gives a short summary of the results and an outlook to further
research on the topic.

2



1. Statistical Physics

Statistical physics is a framework providing formalisms and methods to deal
with many particle systems employing statistical methods. These methods
enable the derivation of properties of a macroscopic system from the microscopic
interactions of its components. Each such macroscopic state corresponds to
a set of microstates, i.e. complete descriptions of the state of each microscopic
component, that give the same macroscopic properties.

An important concept basic to the used simulation methods is the Markov
process. As well, stochastic mass transport processes, are also described by
Markov process. A Markov process is a model for the random evolution of
a memoryless system, i.e. the probability of the system to occupy any given state
in the future depends only on its present state. A Markov process with a discrete
state-space, as is the case during this thesis, is often refered to as a Markov
chain. An illustrating example is to draw a number of marbles from an urn
(containing different kinds of marbles) without replacement. The probablities
of different outcomes may be predicted at any time in the process, but depend
only on the current partition of marbles that were drawn, never on the sequence
they were drawn. The use of Markov processes enables the used simulating
techniques and data analysis methods is discussed in the next chapter.

In this chapter I will briefly present the emplyed concepts in statistical physics.
It is divided into the sections about systems in thermal equilibrium and non-
equilibrium. For a more thorough and detailed introduction of statistical physics
the reader may refer to statistical physics textbooks like [4, 5].

1.1. Thermal Equilibrium

A system is said to be in equilibrium with a heat bath, if there is no heat current
from nor to the heat bath. A system in equilibrium is sufficiently described by
its macroscopic properties. As the probability of the system to be in a certain
microstate ~m, given by the Boltzmann distribution

P (~m) =
1

Z
e−βH(~m) , (1.1)

only depends on the macroscopic energy H(~m), all microstates with the same
energy must be equiprobable. Therefore a statistical ensemble can be constructed
with a uniform probability measure that contains all microstates of a certain
energy. This statistical ensemble is called the micro-canonical ensemble. In it,
the expectation value of an observable O takes the form

〈O〉E =
1

Ω(E)

∑
~m

H(~m)=E

O(~m) , (1.2)

3



1. Statistical Physics

where the normalization Ω(E) is the number of microstates with energy E,
namely the density of states. In this picture, the ensemble is a collection of
copies of a system, each occupying a microstate. The evolution of a system
can then be seen as a walk stepping on these copies in a way defined by the
dynamics of the system. If now the dynamics allow to reach any such copy
from another one in finite time, the ergodic hypothesis states that the ensemble
expectation (1.2) can be taken as the expectation of the system evolving in time.
Indeed, the same fundamental reasoning is used to work with any statistical
ensemble in statistical physics.

The energy of a real system that is in equilibrium with a heat bath is not
fixed but fluctuates around its expectation value for the temperature of the
heat bath. Therefore, a statistical ensemble is defined with a fixed temperature,
containing any microstates of the system, that has a fixed size (i.e. number of
particles). The Gibbs–measure then assigns the correct equilibrium probabilities
to the microstates and the expectation of an observable O becomes

〈O〉β =
1

ZN

∑
~m

O(~m)e−βH(~m) =
1

ZN

∑
E

〈O〉Ee−βH(~m) , (1.3)

with the inverse temperature β = 1/(kBT ) and the normalization Z, which is
the canonical partition function

ZN =
∑
~m

e−βH(~m) =
∑
E

Ω(E)e−βE . (1.4)

The evolution of the probabilities of microstates of a system is described by
the Master equation. For a system with discrete states it takes the form

dPα(t)

dt
=
∑
α

(TαβPβ(t)− TβαPα(t)) , (1.5)

with the transition matrix Tαβ. The elements Tαβ = W (α→ β) correspond to
the transition rates of the system from a microstate α to a microstate β. For
a system in equilibrium, the state probabilities are constant ∂tPα(t) = 0, hence
the left hand side becomes zero and the Master equation exhibits balance∑

α

TαβPβ =
∑
α

TβαPα . (1.6)

That is, the probability current out of any configuration is equal to the probability
current into this configuration. When additionally every term of the sum
disappears

PαW (α→ β) = PβW (β → α) , (1.7)

also detailed balance is fulfilled. This condition is usually employed to define
the dynamics of an equilibrium system ad-hoc.

As a remark, note that in the systems studied in this thesis the concepts of
energy and temperature do not apply intiutively. In the stochastic transport
models discussed in Chapter 3 the properties of the system are determined by
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1.2. Non-Equilibrium Processes

the specific dynamics that define the system and the probability measure in
the canonical ensemble is defined using the statistical weights of microstates
which in turn depends on the dynamics. In the generation of complex graphs,
discussed in Chapter 4, similarly statistical weights of configurations are used
to construct the used statistical ensembles.

1.2. Non-Equilibrium Processes

Basically, there are two types of out-of-equilibrium systems: Those relaxing
towards equilibrium (or the steady state) and those held out of equilibrium by
an external field, forcing a current through the system. The systems of the
former type are described by a Master equation with a non-zero left hand side
and may be treated using approaches from linear response theory or by means of
the fluctuation dissipation theorem if the perturbation is small enough. Systems
of the latter type, exhibit a steady state, which is similar to an equilibrium
state in several aspects. This becomes evident, as the Master equation of such
systems becomes zero, i.e. the probabilities of the microstates are stationary.

A nonequilibrium system evolves through its local stochastic dynamics that
do not fulfill detailed balance with respect to the state probabilities. Thus, the
specific dynamics define the properties of the system. This is distinct to an
equilibrium system, where the dynamics are usually defined in a way to give the
proper statistical weights of states using the detailed balance condition.

It is a natural way to construct such a nonequilibrium system with a known
steady state by introducing a current of a conserved quantity to an equilibrium
system with specified dynamics. Thys detailed balance is broken and the
dynamics are asymmetric. This can be accomplished by placing the system in
between of two heat baths with different temperature, creating a heat current or
by defining the dynamics as asymmetric motion of particles, creating a “mass”
current.

The condensation process in the studied model is a combination of the
mentioned type The specific properties of the studied non-equilibrium stochastic
process are discussed in Chapter 3.
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2. Numerical Methods

In this chapter I present the numerical methods used throughout this thesis. In
particular these are methods used for the estimation of dynamic properties of
the PFSS process and the computation of steady state and equilibrium quantitiy
expectations of properties of dynamic systems or complex networks respectively.
The former requires direct simulation of the stochastic process while the latter is
rather accomplished by simulating the corresponding ensemble. In computational
statistical physics these numerical methods have proven worthwile since the
availablity of powerful computing machines and evolved in terms of precision as
well as accuracy and thus effectivity.

The main problem in calculating expectation values of either steady state
or dynamic properties is the vast size of the involved phase space. Every new
site in the dynamic model will add one dimension to the phase space, thus
increasing its size exponentially. Similarly the network configuration space grows
exponentially with the size of the sampled networks.

The first two sections cover basic approaches to numerical computation and
estimation of system properties, followed by a discussion of error estimation
in this context. For a detailed introduction to Monte Carlo techniques in
statistical physics, refer for example to [7]. In a fourth section, a generalization
of the Hoshen–Kopelman cluster identification algorithm is discussed as the
technical basis of several measurements in the estimation of the time scale of
the condensation process.

2.1. Exact Enumeration

A first low-end approach to calculate the expectation of a quantity in a system,
is to exploit the sheer computational power available today and integrate the
configuration space. This can be done by realizing every single configuration
~m of the system in order to calculate the expectation. It is useful to obtain
the density of states Ω with respect to basic observables of the system while
traversing the configuration space. For a Hamiltonian system, the Gibbs measure
is used and the partition function reads

Z =
∑
{~m}

exp [−βE(~m))] =
∑
E

Ω(E) exp [−βE] (2.1)

with the density of states involved. Just as well the canonic expectation calculates
as

〈O〉 =
1

Z

∑
E

〈O〉EΩ(E) exp [−βE] , (2.2)
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2. Numerical Methods

using the microcanonic expectation

〈O〉E =
1

Ω(E)

∑
{~m}

O(~m) δE,E(~m) . (2.3)

Of course, when treating non-Hamiltonian systems, the Boltzmann factor is
replaced by an appropriate statistical weight with respect to the configuration
and the used statistical ensemble. For the PFSS process this leads to expection
values of the form

〈O〉 =
1

ZN (M)

∑
{~m}

∏
i

[
g(mi,mi+1) δ∑

imi,M

]
. (2.4)

Exact enumeration is indeed a feasible approach to compute quantities that
are exact up to numeric errors for very small systems. Nevertheless, this method
is quite useful to validate other methods, which has been done for the graphgen
library discussed in Chapter 4. It is an important note, however trivival, that
the exact enumeration of states or similar approaches do not allow the study
of the dynamic properties of a stochastic process or out-of-equilibrium system.
However, the estimation of such properties is required and will be described in
section 2.2.2 below.

2.2. Monte Carlo Methods

As mentioned, exact enumeration is limited to small systems by the ff exponential
growth of the configuration space. A solution to this is to merely strive for the
computation of approximated property expectations. Introduced in 1949 by
Metropolis and Ulam [8] the Monte Carlo method aimed at numerical integration
of such exponentially growing spaces. It suggests that only a small subset of the
original configuration space which is picked at random is used for the integration,
while assuming that the chosen subset is representative. The benefit of using this
statistical method is that, by the central limit theorem, the errors of estimates
converge with 1/

√
N , where N is the number of samples taken. This is opposed

to other methods, where the rate of convergence highly depends on the dimension
of the studied system and thus is far worse than 1/

√
N for reasonably sized

systems.

In the language of statistical physics this means to construct only a limited
number of random configurations and use these to estimate any desired quantity
of the system by means of statistical estimators. This method is known as
simple sampling, as it provides no means to improve the representativity of the
sampled subset of configurations. In fact, some highly probable configurations
like ground states of the system might not be sampled at all in acceptable
simulation time due to their small volume in state space. To compute accurate
expectations nevertheless, there are two possibilities. Either the number of
sampled configurations is increased to the order of magnitude of those in the
original phase space, Or the method is modified to approximate or establish
representative sampling of configurations. The former is of course out of question
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2.2. Monte Carlo Methods

and for the latter, there are many approaches designed to meet this requirement
and improve convergence in general or specific situations. However, these are
most often based on the Metropolis algorithm.

2.2.1. The Metropolis algorithm

The Metropolis algorithm [9] is such a method of selecting the system configura-
tions to be sampled according to the probability distribution of the statistical
ensemble. The strategy is to perform a random walk in the phase space where a
step to the next configuration is performed by locally modifying the simulated
system. For example, in the PFSS process this is done by moving a particle
to another, arbitrary site in the system. However, it is important, that such a
change of the configuration is not always carried out, but is accepted only with
the probability

Pacc(~m→ ~m′) = min

{
1,
P (~m′)

P (~m)

}
(2.5)

to establish the correct probability distribution. In this equation P (α) is the
probability of a state α and the probability ratio for some Hamiltonian system
reads P (~m′)/P (~m) = exp[−(E(~m)′ − E(~m))/(kBT )].

A local Metropolis update is carried out in two steps:

(1) Propose a random modification to the configuration ~m and determine the
statistical weight of the new configuration ~m′12

(2) Accept and make the proposed change ~m → ~m′ with probability (2.5).
The configuration is unchanged otherwise.3

By iteration of this update rule, a Markovian random walk in the configu-
ration space is generated. From these states, observables O can be measured
and recorded as a time series for later evaluation. The expectations of most
properties then calculate as simple averages of the corresponding time series of
measurements.

It is important to note several remarks to properly apply this and most related
sampling methods.

A sufficient condition for a Markovian random walk to correctly sample
configurations with respect to their statistical weights is detailed balance (1.7)
with the transition matrix elements Tαβ given by (2.5) for transitions in the
move set and Tαβ = 0 otherwise. However, detailed balance is fulfilled and
trivial to check for the Metropolis algorithm (2.5).

1The modifications proposed to graphs in the generation of networks graphs include the
replacement of edges and are discussed in Chapter 4.

2When simulating Hamiltonian systems, it is sufficient to calculate the energy of the new
configuration.

3This means that changes, that increase the statistical weight of the configuration (or decrease
the energy) are accepted always, while changes lowering the statistical weight (increse
the energy) are accepted with probability W (β)/W (α) < 1 (exp[−β(E(~m′)− E(~m))]) for
Hamiltonian systems).

9



2. Numerical Methods

To perform a correct simulation it is vital that the move set is ergodic. That
is, the limited number of possible modifications considered at each step must
allow the transformation of any configuration into any other by applying a finite
chain of changes. Apparently this condition is fulfilled by the particle movement
update used for the steady state simulation of the discussed particle systems,
since any configuration can be obtained by at most M steps4. The case is more
complicated for the graph updates discussed in Chapter 4, but still easy to
see for most of the suggested updates. Nevertheless, ergodicity does not imply
that every configuration is reached in reasonable time in a simulation. Consider
for an example a system, where in order to reach a configuration a number of
changes with very low acceptance probabilities must be taken. The simulation
might then be trapped, incapable of passing such a region in configuration space.
There are however simulation methods on top of Metropolis or otherwise that
allow to pass such barriers. Examples are global move sets, such as cluster
updates, generalized ensemble methods such as Multicanonic Monte Carlo or
multiple Markov chain approaches such as parallel tempering. However, in the
simulation of a process’s dynamics, the forced passage of barriers is not desired.

Due to the nature of the Markovian random walk, the consecutively sampled
configurations are highly correlated. This results in a reduced number of mea-
surements that migh be estimated by autocorrelation analysis and exploited
for error estimation as discussed in Section 2.3 below. However it is sensible to
reduce the actual frequency of measurements in the simulation by the order of
Neff beforehand.
It is also reasonable to eliminate correlation of measurements to the initial con-
figuration of the simulation by performing several MC steps until the sampling
can be considered distributed as the steady state or equilibrium.
Again, for the explicit simulation of dynamics, the correlation of configurations
is naturally desired and all measurements are recorded.

2.2.2. Dynamic Metropolis updates

Simulating the actual dynamics of a stochastic process of course means obeying
the dynamic rules that define the process in the first place and a priori breaking
detailed balance. So from the set of all possible Metropolis updates at any
configuration, only a subset is allowed for proposal. In driven particle system
like the PFSS process, only updates that move a particle to a neighbor site are
valid. Then, also the acceptance rate for such an update is directly given by the
defined dynamcis. In driven particle systems like the ZRP this is apparently
the properly normalized hopping rate function. It is evaluated at the proposed
departure site with the current configuration to determine whether to move a
particle to any of its neighbors.

The generated time series of system states represents a possible evolution of the
dynamic system in time. This is opposed to the Markov chain of system states
generated by standard Monte Carlo methods, that represents a random walk
in the configuration phase. The correlation of measurements in the individual

4Perform M updates in steps: Take away all particles and put them at their new positions
for the new configuration
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2.3. Error Analysis

time series is used to measure dynamic properties. Expectation values are then
obtained by averaging over many distinct time series.

2.3. Error Analysis

There are several approaches to estimate the statistical errors of quantities
estimated from experimental data or computer simulations. In this section I will
give only a short introduction of some used methods. For a detailed overview
see the introduction by Janke [10].

Due to the nature of the data generation a statistical analysis of errors is
appropriate5. The standard error estimation method for experimental data
employs the central limit theorem. The estimator O of a quantity O is

O =
1

N

N∑
i=1

Oi , (2.6)

with N independent realizations Oi. The error of a gaussian distributed O is
given in terms of the the standard deviation, or 1σ-confidence interval around
the estimate, where σ is the square root of the variance. As the distribution of
O is related to that of O via (2.6), the variance is σ2O = σ2O/N . The latter can
directly be estimated from the series of measurements to

εO =

√
σ2O
N

=

√√√√ 1

N (N − 1)

N∑
i=1

(
Oi −O

)2
. (2.7)

This method of error estimation is sufficient for most of the quantities that
characterize the dynamic behavior of the PFSS process, as the simulation
typically allows only one measurement per individual run of the condensation
process.

Since simulations of the steady state or equilibrium ensembles generate Markov
chains of configurations used to compute properties, consecutive measurements
Oi cannot be independent. This is fixed by estimating the typical time scale τ (in
the time of the Markov process) at which the correlation of two measurements Oi
and Oi+τ vanishes and they can be assumed independent. With this, the number
of effectively independent realizations Neff of the quantity can be calculated and
the error is estimated as

εO =

√
σ2O
Neff

. (2.8)

The time scale τ is obtained by computing the autocorrelation function

A(k) =
〈OiOi+k〉 − 〈O〉2

〈O2〉 − 〈O〉2
(2.9)

5Nevertheless, in some cases it is sensible to have constraints on numeric errors as well.
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and evaluating the series

τ =
1

2
+

N∑
k=1

A(k)

(
1− k

N

)
large N
−−−−−→

1

2
+

N∑
k=1

A(k) . (2.10)

It is typically sufficient to evaluate the series only up to a self-consistent cutoff
condition k > 6τ . However, performing a full autocorrelation analysis to estimate
errors is too elaborate, as more convenient methods are available for estimators.
This is emphasized by the fact, that autocorrelation analysis does not allow easy
application for any indirect measured quantity, that is a non-linear combination
of direct measured properties. Nevertheless it is still a good method to estimate
a useful frequency of measurements for a simulation.

The binning method is an approach to group the time series into (binning)
blocks and apply standard estimation methods to a much shorter time series
whose elements

OB,n =
1

k

k∑
i=1

Ok(n−1)+i , k =
N
NB

(2.11)

are assumed to be independent. This relies on a sufficient block size k and again
on the quantity not being a non-linear function of basic properties. The latter
requirement is easily avoided by using the Jackknife method discussed below.
Inserting this into (2.7), the binning error reads

εO =

√√√√ 1

NB(NB + 1)

NB∑
j=1

(
OB,j −O

)2
. (2.12)

In the similar Jackknife analysis, instead of considering grouping the time
series into blocks of size k = N/NB as above, NB blocks OJ,n are formed, each
nearly as large as the original time series. These Jackknife blocks

OJ,n =
NBO −OB,n

NB − 1
(2.13)

contain the complete series of measurements, each with only a single binning
block removed. The length of the individual blocks is now nearly that of the
original time series. Thus, the bias of quantities, that are calculated as non-linear
combinations of basic properties, becomes comparable to that obtained from
the original data. With a correction of the trivial correlation due to widely
overlapping data blocks the estimated error reads

εJ,O =

√√√√(NB − 1)

NB

NB∑
j=1

(
OJ,j −O

)2
. (2.14)

In the simulation of the PFSS process this form of error analysis is useful
for the measurement of steady state properties. In the condensation, however,
properties are time dependent anyway. As, in the simulation of the condensation
process, quantities are averaged over many independent runs of the process, the
individual measurements are uncorrelated and the error is estimated by variance
of the respective quantity as in (2.7).
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2.4. Cluster Identificaction

2.4. Cluster Identificaction

To numerically study properties of condensates and of their formation, a method
to identify such structures of connected sites with at least m0 ≥ 1 particles each,
is needed . It should apply to regular lattices and graphs as well. A prominent
method used widely in the study of percolation models is known as the Hoshen–
Kopelman (HK) algorithm [11]. It is usually defined and applied to regular
lattices only, with several optimizations exploiting the fixed local structure.
But it can easily be generalized to work on arbitrary graphs. Although graph
theoretical approaches like spanning tree strategies fit the task quite naturally,
they do not provide clear advantages over the Hoshen–Kopelman algorithm in
either ease of application or performance scaling with system sizes6.

A cluster of sites is generally defined as a group of n ≥ 1 sites belonging to
the same equivalance class defined by a given criterion. The equivalence relation
used to identify particle condensates is quite simple: A site is in the same cluster
(condensate) as its neighbor, if both contain at least one particle mi,mj ≥ 1.

A short description of the method employing a disjoint-set formalism is given
below with Figure 2.1 explaining some of the specifics. Refer to [13] for a
more detailed description. Basically, a disjoint-set data structure allows the
representation of a partition of separate, nonoverlapping sets. It defines the
union operations, to merge two sets into a single set, the find operation, to
determine which set a given element is in and the trivial makeset operation,
creating a set with a single element. This formalism allows the formulation of
approaches to several partitioning problems.

To find every cluster in the system, a label Li denotes the cluster to which a
site i, or more general, another cluster with label i belongs. This leads to the
identification of labels with sets of sites which are conditionally joined by the
algorithm:

(1) Initialize the list of labels. Every site is assumed to be a separate cluster
and thus labeled individually Li = i.

(2) For every site, starting at the first site i = i0, repeat steps

(2.1) Find the first neighbor n of i that is bonded to i and has already
been visited (n < i)

(2.2) Find all other visited neighbors nj < i that have bonds with i and
join the sets Ln and Lnj by assigning the label Lnj = Ln

(2.3) Join the sets of nodes n and i and assign the resulting set a cluster
label Li = Ln

(3) Collapse all cluster labels. This is not necessary, if clusters are relabeled
in depth during the find steps of the algorithm. That is, if a sequence
of labels L = (1, 1, 2, 3, . . .) is resolved to L = (1, 1, 1, 1, . . .) immediately,
which also speeds up further find steps.

6For a discussion of this method versus graph theoretical approaches in some detail see [12].
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L = (1, 2, 3, 4, 5, 6, . . .) L = (1, 2, 3, 2, 5, 6, . . .) L = (1, 2, 3, 2, 3, 3, . . .)

5: union(4,2)
9: union(8,6)
9: union(3,6)

4: find(4)→2
5: find(5)→3
6: find(6)→3

Figure 2.1.: Description of the Hoshen–Kopelman algorithm in the formulation
of a disjoint-set data structure for a regular lattice. The procedure
is started with initial labels. Already processed neighbor labels are
unified if appropriate in a first step ((2.1) in the recipe). Then the
common label is assigned to the site processed (step (2.2) in the
recipe). Note that the union and find steps are typically run directly
after another for every site. The step 5: union(4,2) means that being
at site 5 the sets of neighbors 4 and 2 are joined to the set with
label 2. For periodic boundaries, additional steps 3: find(3)→1 and
9: union(3,6) were executed.

After performing the single cluster identification run, while recording clus-
ter masses in parallel, the sequence of labels encodes information on particle
condensates in the system for this configuration.
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3. Mass Condensation
in Stochastic Transport

Stochastic mass transport describes the motion of a conserved generic mass.
What is described in such a process by term “mass” may be manifold: passengers
in public transport systems, macromolecules on the cytoskeleton [14], people
browsing the world wide web or granular flow like sandpile dynamics [1]. In
the following, the “mass” shall be represented by indistinguishable particles of
unit mass. An interesting feature of these processes is that condensation of the
“mass” may occur above a certain density, so that even in the limit of infinitely
many particles a finite fraction of particles piles up as a bulk, although the
dynamics may be fully symmetric.

The stochastic transport process studied in this thesis belongs to a class of
models describing a gas of indistiguishable particles that are localized at sites of
a lattice of network and can only move to their respective neighbor sites. This
class of processes has been proposed by Spitzer [15] to study the properties of
interacting Markov processes. It shall be noted, that these processes generally
lack the usual concepts of temperature and energy, although these may be
defined artificially by means of the statistical weights of the configurations.
Nevertheless, many mappings to physical models have been found such as to
the ones mentioned above, but even to models unrelated to stochastic transport,
as quantum gravity and Bose–Einstein condensation [16].

These transport processes are in general held out of equilibrium by the current
that drives the “mass” through the system. However, they may exhibit a steady
state, that can be treated by methods similar to those used to study equilibrium
systems. Such a transport process is constructed by taking a symmetric equilib-
rium transport process and forcing a current of the conserved “mass” through
it. The result is a driven diffusive system.

I will begin this chapter with a description of a basic stochastic transport
process that has no ranged interaction but nevertheless features the emergence
of a condensate of particles. It is known as the zero-range process and serves as
an introduction to the class of models and to basic estimation methods.

This will be followed by a description of the studied model which is similar to
the above one but has a nearest-neighbor interaction. In the next section I will
discuss the methods used to characterize the condensation process and estimate
its time scale. In the fourth section, I present these results of the numerical
studies.
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3. Mass Condensation in Stochastic Transport

1 2 1 0 0 1 5 2 1

u 1− p
p

i

Figure 3.1.: Consider M particles initially distributed at random on N sites
of a periodic chain. At a time step of the stochastic process, a
random particle leaves a site i with probability u proportional to
the hopping rate u(mi) to the left or right with probabilities p or
1− p respectively.

3.1. A Zero-Range Transport Process

The zero range process (ZRP) is a simple stochastic mass transport process
without ranged interaction.

The ZRP stochastic transport model assumes M particles in the system,
initially placed at random on N sites. In the basic model the sites form a closed
chain. Each site i contains a number mi ≥ 0 of particles up to M . This refered
to as the occupation number of that site. The particles shall be indistinguishable
and have unit mass. As of the basic model, the periodic boundary condition is
mN+1 ≡ m1. The specific dynamics are defined by the hopping rate u(mi). It
gives the rate at which a particle leaves a site and jumps to one of the neighbor
sites. The hopping rate depends only on the number of particles on the same site,
hence the range of interaction is zero. After leaving a site, the particle might
jump to the left with probability p and to the right with probability 1− p. This
asymmetry corresponds to the effect of an external field driving the particles.
An illustration of such a process is given in Figure 3.1 and guides the approach
to simulation: A site i with with occupation mi > 0 is randomly chosen and
one particle is taken away with probability proportional to the hopping rate
u(mi). The particle is then added to one of the neighbor sites. In the symmetric
process this is randomly chosen, but the process can be tuned to the asymmetric
case by introducing a probability p with which the particle goes to the left and
otherwise to the right.

A most interesting feature of this stochastic process is the emergence of
a condensate even though there is no ranged interaction between particles of
different sites. However, when condensation occurs, the condensate cannot
stretch and is localized at a single site due to the zero-range interaction. above
a critical density ρc

The dynamics of the ZRP is governed by the hopping rate function and the
asymmetry of the hopping. The variety of hopping rate functions and their
effect on the system has been extensively studied in the past. When one choses
the hopping rate, there are three main cases with respect to condensation in the
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3.1. A Zero-Range Transport Process

fluid condensed

ρ
ρc

Figure 3.2.: Phases of the zero-range process. Below the critical density, the
system is in a fluid state. Above the critical density a condensed
phase of particles occupying a single site emerges.

limit of large systems [17]:

u(mi →∞) =


0 always condensed

finite condensate may exist

∞ fluid

. (3.1)

Intuitively this means, that when u(m → ∞) = ∞ there exists an effective
repulsive force that prevents the occupation of a site by many particles. The
particles will therefore be distributed uniformly on the chain. In the opposite
case, where u(m→∞) = 0 there is an effective attractive force towards sites
with many particles: The probability for a particle to leave such a site decreases
the more particels occupy that site. This means that the ciritcal density is
ρc = 0. However, in the case where the hopping rate appraches a positive finite
value u∞, one can show that the critical density becomes finite. This does not
depend on the exact value of u∞, as it is a rate, but on how fast u(m) approaches
it. Therefore u∞ = 1 can be fixed and a common choice for the hopping rate
with tunable asymptotic behavior is used. In the rate

u(m) = 1 +
b

m
, (3.2)

the aysmptotic index b has this role. It is shown for example by Godrèchet [18],
that for b > 2 the system has a finite critical density

ρc =
1

b− 2
(3.3)

where the correlation length diverges. If 0 ≤ b ≤ 2, the attraction between
particles is too low to form a condensate. A phase diagram with the typical
configurations is displayed in Figure 3.2.

Above the critical density, the system is composed of a critical part, also
referred to as the (critical) background and a condensate. The critical background
consists of ρcN particles, whereas the condensate contains the remaining Δ =
M − ρcN particles. It is located at a single site due to the local interactions of
particles.
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3. Mass Condensation in Stochastic Transport

3.1.1. The steady state of the ZRP

To construct the steady state, symmetric dyamics are considered at first in order
to obtain a system in equilibrium. Asymmetric hopping is introduced later
without changing the steady state but with the consequence of a driven current.

Hence, to calculate the steady state probabilities, balance is assumed and the
Master equation has the form

0 =
1

2

N∑
i=1

θ(mi)u(mi)P (m1, . . . ,mi, . . . ,mN ) (3.4)

+
1

2

N∑
i=1

θ(mi)u(mi+1 + 1)P (m1, . . . ,mi − 1,mi+1, . . . ,mN ) ,

where P (m1, . . . ,mi, . . . ,mN ) denotes the steady state probability of the config-
uration ~m = (m1,...,mi,...,mN ) and the Heaviside function heaviside(mi) restricts
the sum to configurations where there is a particle at site i to leave. This
describes the conservation of probability currents due to to the hops out of the
left hand side configurations into the right hand side ones and vice versa is
conserved. Now, with the factorized form

P (~m) =
1

Z(M,N)

N∏
i=1

f(mi) (3.5)

of the steady state probabilities (with a weight function f(m)), the equality (3.4)
for a single site i (with mi presumably) simplifies to

u(mi)f(mi)f(mi+1) = u(m)i+1f(mi−1 − 1)f(mi+1 + 1) (3.6)

by cancelling common weight factors. Rearranging the factors to the constant
form

u(mi)
f(mi)

f(mi − 1)
= u(mi+1 + 1)

f(mi+1 + 1)

f(mi+1)
(3.7)

yields then the relation of the weight factor to the hopping rate function when
setting the proportionality constant to 1. The resulting recursion f(mi) =
f(mi − 1)/u(mi) gives then

f(m) =

m∏
n=1

1

u(n)
, f(0) = 1 . (3.8)

The resulting partition function of the steady state is then

Z(M,N) =
∑
~m

N∏
i=1

f(mi) . (3.9)
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3.1. A Zero-Range Transport Process

3.1.2. Condensation process

In this section I turn to the dynamics of the condensation process and its time
scale in this model. Starting with a random distribution of particles one observes
that the dynamics can be divided into two regimes [19]. In a nucleation regime,
the excess M − ρcN particles accumulate at a finite number of sites until the
density in the domains of sites in between reach the steady state density ρc. This
is followed by a coarsening regime, in which the condensates exchange particles
through the fluid background. This exchange leads to the evaporation of smaller
condensates whose particles are absorbed by larger ones. This process continues
until only a single condensate site remains while the average condensate mass
expectationm grows.

The time scale of the coarsening process, which dominates the condensation
time is calculated by Evans [19] as

τ ∼


L3 in d = 1

L2 lnL in d = 2

L2 in d > 2

(3.10)

for symmetric dynamics and

τ ∼ L2 (3.11)

in the asymmetric process. Besides a mean field approach, these time scales are
predicted using a random walk argument discussed in [18,20].

As a preparation and to test the estimation methods proposed in Section 3.3, I
estimate this scaling behavior using numerical methods confirming the predicted
time scale (3.11). An illustration of the evolution of the mass of the heaviest
condensate and the number of condensates is given in Figure 3.3.

3.1.3. Condensation on imhomogeneous networks

The zero-range-process can easily be adapted to networks. The difference is then,
that the number of neighbors may be different at each site and is not limited
anyhow. This means, for undirected networks, that no direction of movement
is prefered, hence only the symmetric process is easily adopted. To study the
asymmetric process, a preferred direction must be built into the — now directed

— network. However, it has been shown that condensation in the symmetric ZRP
also occurs on networks of different basic types [17, 21], such as star graphs and
regular graphs with a single inhomogeneous site1. Due to the inhomogeneous
structure of these network types, this holds even for the trivial hopping rate

u(m) =

{
0 m = 0

1 m ≥ 0
(3.12)

independant of the occupation at the departure site. This is shown, by calculating
the distribution of occupation numbers in the system.

1i.e. a regular graphs where one specific site is connected to all other sites.
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Figure 3.3.: Test of the scaling estimation method for the ZRP leads to the known
exponent δ = 2±0.1. In (a) the mass of the heaviest condensate and
in (b) the average number of condensates (mi > 3/2

√
M) are plotted

versus rescaled time. The scaling exponent is found by matching
the respective curves for different system sizes with N = M sites
averaged over N = 5000 realizations.
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Figure 3.4.: Exact (solid lines) versus estimated (points) site occupation distri-
bution in the ZRP on three different networks.

The steady state of the zero-range process on a graph reads [17]

Z(M,N) =
∑
{~m}

N∏
i=1

f(mi)q
mi
i δ

[
N∑
i

mi −M

]
, (3.13)

with the site weight

f(m) =
m∏
n=1

1

u(n)
, f(0) = 1 , (3.14)

the degree sequence {qi} of the network and the Kronecker symbol δ[x] = δx,0.
For calculations on the steady state of the process on scale-free networks the
generic recursive form

Z(M,N) =
M∑
mN

f(mN )qmNN Z(N − 1,M −mN ) (3.15)

can be simplified by exploiting the degree sequence. See Appendix 3.1.3 for
further details. Using and evaluating the obtained recursion, the distribution of
site occupation is computed for several small Barabasi–Albert networks with
N = 10, 20 and 50 nodes respectively. The exact distribution is displayed in
Figure 3.4 along with numerical data for comparison.

In [17, 21] it is also shown, that there is a typical time of the condensate
to spontaneously disappear depending on the local structure and scaling with
the condensate mass as a power law. This prediction, generalized to scale-free
networks is confirmed numerically in [22].
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3. Mass Condensation in Stochastic Transport

3.2. Transport with Short Range Interactions
and a Pair Factorized Steady State

The transport process proposed by Evans, Majumdar, and Hanney [23] is
a generalization of the ZRP discussed above. Following them, I will also refer
to this transport model as the pair-factorized steady state (PFSS) process.
This naming is simply due to the fact that the steady state of the system
factorizes over pairs of neighboring sites of the periodic chain. A benefit of this
factorization is, that adaption to lattices or graphs is straight-forward, as bonds
are fundamental building blocks of any structure.

The basic difference of this process to the ZRP is that the hopping rate
function u(mi|mi+1,mi−1) may depend on the number of particles at direct
neighbor sites as well as the occupation of the departure site. Furthermore, it is
assumed that the hopping rate factorizes to the form

u(mi|mi+1,mi−1) = f(mi,mi−1)f(mi,mi+1) (3.16)

with a function f(m,n) ≥ 0 for each nearest neighbor to get the PFSS and allow
for a generalization of the process to networks.

This hopping rate introduces a short range interaction between the particles
to the process. In particualar, it is interesting to ask for the properties of
the condensate and the condensation process when the interaction between
particles tends to flatten out the site occupation profile and therefore that of
the condensate. In the following the steady state of the system is constructed
and it is shown that the weight factor propsed in [23] gives such a hopping rate.

3.2.1. The steady state of the PFSS process

In the following it is shown, that a system with factorized hopping rate (3.16)
has the pair-factorized steady state

P (~m) =
1

Z(M,N)

N∏
i=1

g(mi,mi+1) δM,
∑N
i=1mi

(3.17)

with the normalization Z(M,N) that is similar to the partition function in
equilibrium systems and a symmetric weight function g(m,n) that fulfills

f(m,n) =
g(m− 1, n)

g(m,n)
. (3.18)

The Kronecker symbol δM,
∑N
i=1mi

in (3.17) ensures the correct number of parti-

cles in a configuration. In the following, its shall be abbreviated as δM .

The procedure to show this is similar to that used for the ZRP. The evolution
of the state probabilities P (~m, t) in time are described by the Master equation

dP (~m, t)

dt
=

[∑
~m′

W (~m′ → ~m)P (~m′, t)−W (~→ ~m′)P (~m, t)

]
. (3.19)
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3.2. Transport with Short Range Interaction and PFSS

The system assumes the steady state, when the state probabilities become
stationary P (~m) = P (~m, t → ∞), i.e. the left hand side vanishes and the
balance condition∑

~m′

W (~m′ → ~m)P (~m′) =
∑
~m′

W (~m→ ~m′)P (~m) (3.20)

remains. The transition rates W (~m→ ~m′) are non-zero only if there is a tran-
sition ~m → ~m′ with a single hop, that is either ~m′ = (. . . ,mi−1 + 1,mi − 1)
or ~m′ = (. . .mi − 1,mi+1 + 1, . . .). Then, the transition rate is given by the
hopping rate u(mi|mi−1,mi+1). For a fixed state ~m there are therefore two
possible states ~m′ per site that can be reached and the sums in (3.20) can be
rewritten using the site index as

N∑
i=1

P (~m)u(mi|mi−1,mi+1) = (3.21)

N∑
i=1

[
pP (. . . ,mi − 1,mi+1 + 1, . . .)u(mi+1 + 1|mi − 1,mi+2)

+ (1− p)P (. . . , . . .)u(mi−1 + 1|mi−2,mi − 1)
]
.

The two parts in the right hand side refer to the cases where the configuration
~m is reached by moving a particle to the right with probability 1 − p and to
the left with p respectively. Now, using the assumption (3.16) and the guessed
connection to the weights (3.18), the hopping rate reads

u(mi|mi−1,mi−1) =
g(mi − 1,mi−1)g(mi − 1),mi+1

g(mi,mi−1)g(mi,mi+1)
. (3.22)

The proposed steady state probabilities (3.17) and the obtained hopping rate
can then be inserted into the steady equation (3.21) leading to

N∑
i=1

N∏
j=1

g(mj ,mj+1) δM
g(mi − 1,mi−1)g(mi − 1,mi+1)

g(mi,mi−1)g(mi,mi+1)
= (3.23)

N∑
i=1

[
pP (~m)

g(mi−1,mi − 1)g(mi − 1,mi+1 + 1)g(mi+1 + 1,mi+2)

g(mi−1,mi)g(mi,mi+1)g(mi+1,mi+2)

× g(mi+1,mi − 1)g(mi+1,mi+2)

g(mi+1 + 1,mi − 1)g(mi+1,mi+2)

+ (1− p)P (~m)
g(mi−2,mi−1 + 1)g(mi−1,mi − 1)g(mi − 1,mi+1)

g(mi−2,mi−1)g(mi−1,mi)g(mi,mi+1)

× g(mi−1mi − 1)g(mi−1,mi−2)

g(mi−1,mi − 1)g(mi−1 + 1,mi−2)

]
.

Using the symmetry g(m,n) = g(n,m) to cancel several weight factors and
introducing the abbreviation Ri =

∏
j 6={i−1,i,i+1} g(mj ,mj+1) for the common
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3. Mass Condensation in Stochastic Transport

weight factors, the equality reads

N∑
i=1

= g(mi − 1,mi−1)g(mi − 1,mi+1)g(mi−1,mi)Ri (3.24)

N∑
i=1

[
p g(mi−1,mi − 1)g(mi − 1,mi+1)g(mi+1,mi+2)Ri

+ (1− p) g(mi−1,mi − 1)g(mi − 1,mi+1)g(mi+1,mi+2)Ri

]
.

Both sides are now equal and it is proved that the hopping rate of the form (3.22)
leads to the pair-factorized steady state (3.17). As the steady state factorizes
over bonds of the structure on that the process takes place, the proof can easily
be enhanced to lattices or an arbitrary graph [24]. In this case, the hopping
rate (3.22) assumes the factorized form

u(mi|m〈i,k〉,m〈i,l〉, . . .) =
∏
〈i,j〉

g(mi + 1,mj)

g(mi,mj)
, (3.25)

where the notation 〈i, j〉 denotes that the site j is a direct neighbor of i.
It is convenient to define the hopping rate function in terms of the local weight

function g(m,n) using (3.22). A factorization of the weight

g(m,n) = K (|m− n|)
√
w(m)w(n) (3.26)

into a local interaction factor K(|m− n|) between particles at neighboring sites
and a zero range interaction w(m) is proposed in [25] and indeed useful for the
study of different interactions. The function w(m) is in fact the same as the
weight factor f(m) in steady state of the ZRP and by setting K(|m− n|) = 1
constant it is also the ZRP that is retrieved.

However, in this thesis I stick to the choice of weights proposed by Evans [23]

g(m,n) = exp

[
−J |m− n|+ 1

2
U (δm,0 + δn,0)

]
, (3.27)

that give the functions

K(x) = e−Jx, w(m) = eUδm,0 (3.28)

in the factorized representation (3.26). From the steady state probabilites

P (~m) = exp

[
−J

N∑
i=1

|mi −mi+1|+ U

N∑
i=1

δmi,0

]
(3.29)

one can now see, that differences in the particle occupation at neighboring sites
are exponentially suppressed. This means, that the dynamics prescribed by
the weights (3.28) yield the desired feature, namely the tendency to flatten out
the site occupation profile. Therefore, the parameter J can be interpreted as a
kind of surface stiffness. The second term U

∑N
i=1 δmi,0 gives a repulsive on-site
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mi+1

e2J+U0δmi,1

e−2J+U0δmi,1eU0δmi,1

eU0δmi,1

0 mi mi−1

mi

Figure 3.5.: Values of the hopping rate u(mi|mi−1,mi+1) using the weights
(3.28) for different occupation patterns. Darker grey refers to higher
hopping rates. The axes mi−1 and mi+1 refer to the number of
particles at the left and right neighbor site respectively. Due to the
exponential form of K(x) and the ratio (3.22), there are only the
cases (3.30) split for mi = 1 and mi > 1 respectively. In higher
dimensions or graphs, the values have similar cases.

potential. The larger the parameter U is, the more suppressed are sites occupied
by a single particle. As in the ZRP, it is indeed the zero-range interaction, that
leads to the separation of a liquid and a condensed phase. The effect of this
term can therefore be interpreted as that of a hydrophobic substrate to droplets
of water.

With the choice of the weights (3.29) the hopping rate function reduces to
the cases

u(mi|mi−1,mi+1) =


e2J+U0δmi,1 mi > mi±1

e−2J+U0δmi,1 mi ≤ mi±1

eU0δmi,1 otherwise

(3.30)

due to the absolute difference of the particle numbers at neighbor sites. A display
of these cases with the possible configurations is shown in Figure 3.5. This
simplicity of the dynamics allows for a better understanding and greatly reduces
the computational effort needed to simulate the process, as the rates do not
have to be calculated each time.

3.2.2. Properties in the steady state

In order to study the properties of the steady state, the same methods of
statistical physics as for equilibrium systems can be used. The steady state
probability P (~m can be interpreted as the probability of a microstate and the

25
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fluid condensed

ρ
ρc

Figure 3.6.: Phases of the PFSS process with typical configurations. Below the
critical density the system is in a fluid state with single particles or
small droplets driven through the system. At the critical density a
condensed phase emerges while the fluid phase stays critical.

canonical partition function

Z(M,N) =
∑
~m

N∏
i=1

g(mi,mi+1) δM (3.31)

can be defined just as well as the grand-canonical one

ZN (z) =
∑
M

Z(M,N)zN =
∑
~m

z
∑N
i=1mi

N∏
i=1

g(mi,mi+1) , (3.32)

where z is the fugacity determined by

ρ =
1

N
〈
N∑
i=1

〉 =
z

N

∂ lnZN (z)

∂z
. (3.33)

The grand-canonical partition funciton ZN (z) is monotonically increasing with
z as well as the density (3.33). It is shown in [23, 26], that if ZN (z) has an
infinite radius of convergence the site occupation distribution

p(m) =
1

N
〈
N∑
i=1

δm,mi〉 (3.34)

decreases with m and therefore the system is always in a homogeneous fluid
state. Otherwise, if ZN (z) has a finite radius of convergence zc, the density can
either grow to infinity or go to a constant in the limit z → zc. In the latter
case it is shown that a critical density exists above which the grand-canonical
ensemble does not exist, indicating a phase transition from the fluid to the
condensed state. This means, that above the critical density ρc the system
separates into a critical fluid phase with density ρc and a condensate containing
the excess particles Δ = M − ρcN . The Figure 3.6 gives an overview of the
phases with typical states of the system.

In the following, I will give an overview of several properties of the system
in its steady state. For a detailed discussion and derivation of these and other
properties, also for other choices of weights, refer to [23,26].
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Figure 3.7.: Distribution of the site occupation in the steady state of the PFSS
process for several system sizes. The systems up to the size of M =
N = 500 where used to estimate the time scale of the condensation
process. The particle distributions for larger systems (M = N =
1000, M = N = 10000) are added to allow the comparison of finite
size effects to the condensation.

The critical density of the the one-dimensional system with the used weights
is calculcated as ρc ≈ 0.2397. The site occupation distribution (3.34) gives
the probability that a randomly chosen site is occupied by m particles. It
can be evaluated in the steady state using a transfer matrix method, either
by numerical diagonalization or for some choices of weights analytically. This
quantity can be easily measured by recording a histogram of site occupations.
The site occupation distributions of the systems, that were used to study the
condensation time scale are displayed in Figure 3.7 besides the distributions of
some larger systems. From this data it is already visible, that the systems of
sizes that are feasible to simulate still have large finite-size effects that affect
the steady state and likely the condensation process.

The envelope shape of the extended condensate is calculated under the
reasonable assumption, that the zero-range factor in the weights is neglectable.
To accomplish this the expectation of the shape is rewritten to new variables
dk = mk−mk−1 and evaluated by means of a generating function using a saddle
point approximation. The envelope shape reads

h(x) =
w

2v
ln

(
cosh J − cosh vt

cosh J − cosh v

)
, (3.35)

where the rescaled variables

h(x) =
〈mn〉√
M ′

, x =
2n

w
√
M ′

(3.36)

are used. For the weights used in this thesis, the constants are calculated as
v = 0.5413 and w = 2.2005 [25]. From the rescaled variables one can see, that
the width of the condensate scales as the square root of the number of excess
particles in the system. The average condensate for finite systems and the exact
shape are displayed in the Figure 3.8.
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Figure 3.8.: Average envelope shape of condensates in systems with N = 1000
sites and M = 500, 1000, 2000, 3000 particles respectively. The solid
line represents the exact shape in the limit of inifinite systems (3.35).

However, it is shown in [25, 26] that the shape of the condensate is non-
universal and depends on the form of the interaction term K(x) of the statistical

weight. For example, when considering the exponential form K(x) ∼ e−|x|
β

the envelope can be tuned to rectangular shape by lowering the parameter β.
Additionally the width of the condensate might be adjusted from a single site
to the extension of

√
M ′ via the zero range part of the weight.

3.2.3. Dynamics of the condensation

In this section, I will discuss a description of the condensation and propose
several mechanisms that could explain the process and its time scale.

As for the zero-range process, the condensation is observed to occur in several
stages:

1. Initially many small droplets emerge from the homogeneous distribution
of particles, as the background relaxes to its critical fluid state. This is
the first regime in the condensation process.

2. The small droplets evaporate relatively fast and other condensates absorb
the excess particles until only two or three large condensates remain. This
is the the beginning of the coarsening regime.

3. The system with the remaining condensates coarsens further until a single
large condensate that contains all excess particles is left.

These stages can be observed in the provided Figure 3.9 which shows exemplary
time series recorded in with N = 1000 sites and M = 3N = 3000 particles. It is
also observable, that the time scale of each of the stages is much larger than
that of the previous stage. Therefore the condensation time scale of the system
is clearly dominated by the coarsening process.

In the study of this process the following condensation mechanisms were
considered to take place in the coarsening regime:
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Figure 3.9.: Typical evolution of the condensation process on different time
scales for the totally asymmetric (p = 1, particles hop in negative
i direction) model. The displayed time series were recorded in a
system with N = 1000 sites and M = 3000 particles prepared with
a homogeneous distribution of particles. In the plot at the top,
the emergence of a finite number of small droplets is observed in
the early stages of the condensation process, which is refered to
as the first regime. These droplets have a range of widths of 10
to about 50 sites and mass of 20 to 200 particles at the time of
105 MC sweeps. In the middle plot, this situation is seen at the
left before the coarsening process begins. In a first stage droplets
grow to larger condensates due to the fast evaporation of smaller
droplets. However, the coarsening regime is dominated by the last
stage, where only two condensates remain. It is also quite notable,
that an effective long range interaction between large condensates
affecting their movement is observed.
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• Movement of the condensates.

The condensates perform a possibly biased random walk in the system
and eventually collide. In this case, the condensation time scale would
be given by the rate of movement of the condensates, possibly depending
on their size and the first passage time of a (biased) random walk. This
should be directly observable in the time series of the evolving systems.
The rate of movement can then be estimated by the movement of the
center of mass of the condensate.

• Mass-dependent evaporation condensates.

If the current of particles leaving a condensate decreases with growing
mass M ′ of the condensate, then for small condensates the current of
particles escaping it is smaller than the current into the condensate. The
dependence of the estimated current on condensate mass can then be used
to calculate the condensation time scale.

• Fluctuation of the condensate masses.

The mass of the condensates in the coarsening regime is considered to
perform a random walk. The time scale is that of first passage time as in
the random walk argument used in prediction of the condensation time
scale of the ZRP. In this case, the expected time scale is that of the ZRP.

However, the first proposed mechanism of condensation through collision of
condensates can be abandoned right away, as in many observed time series like
Figure 3.9 such events are very rare.

In the next section, after a brief discussion of methods used to estimate
the properties in the steady state I will describe the methods employed to
numerically estimate the time scale independent of the mechanisms and study
properties of the currents out of and between the condensates to find evidence
for the condensation mechanism.

3.3. Estimation methods

3.3.1. Properties of the steady state

The steady state properties are estimated by simulating the steady state with
a standard Metropolis method instead of following the system dynamics.

To calculate properties of the condensate, such as its mass and shape, it is
neccessary to perform a cluster identification before. In this thesis the method
described in Section 2.4 has been used to accomplish this task, but that method
is in general replaceable. With the system separated into a heavy condensate
and a number of small droplets and single particles it is easy to calculate the
condensate mass M ′ and size vc of a condensate just by counting the particles
and sites in the according cluster respectively. It shall be noted, that these
quantities are in principle sensible to the used definition of the condensate
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borders that is used. In this thesis, any particles in a cluster are considered part
of the condensate up to the sites at the borders that contain no particles2.

The critical density of particles in the system can be estimated indirectly
using the average mass of the condensate its size vc. It is defined by the number
of excess particles

Δ = M − ρcN (3.37)

that are contained in the condensate. However, the average mass M ′ is not
identical to the number of excess particles as they build up above the background
to form the condensate. The number of excess particles is therefore estimated
by subtracting the average number of particles in the background below the
condensate from the measured mass M ′ = Δ + ρcvc using the number of sites
vc occupied by the condensate. Inserting this into (3.37), the critical density
becomes

ρc =
M −M ′

N − vc
. (3.38)

The envelope shape of the condensite is estimated by finding the heaviest
condensate in the system and recording its shape to a histogram. Due to
the movement of the condensates, the measured shapes must be translated
according to their respective centers of mass before recording. The obtained
average shapes are displayed in the Figure 3.8. However, this method does not
work to estimate the average condensate shape on graphs since the translation
would be undefined. Also, the condensate shapes would be specific to the
particular graph structures, thus making it difficult to sensibly take an average
over different graph realizations. The related distribution of site occupation
numbers is measured simply by recording a histogram of mi and has been
displayed in Figure 3.7.

The current in the whole system is measured by keeping a histogram of
successful updates and tried updates per site. The obtained average current
measured with this method is j ∼ 0.0544± 9× 10. However, it is clear, that this
method allows the measurement of the current of particles on a per-site basis.
To do such a per-site measurement the properties of the system, like the position
of the condensate, have to be held stable, as the measurement would be blurred
otherwise. This is accomplished by preparing the system very near to the state,
where the measurement is taken and allowing the system to relax for a short
time without measurement. Then, again only for a short time, the system can
be simulated while measuring the per-site currents. This procedure must be
repeated until enough measurements have been taken. The meaning of a “short
time” depends of course on the state of the system in which the measurement
is taken: If the system shall be in its final condensed state, the measurement
may be relatively long, but if the system is prepared with two condensates as
shown in Figure 3.10 only several hundreds MC sweeps (full system updates)
are acceptable before the condensate masses change noticably.

2Another acceptable definition would be to set the borders of a condensate to the sites, where
the occupation drops below or equal to the (critical) density of the background. However,
with the used weights, this is identical to the used distiction.
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Figure 3.10.: The average particle current per site in the steady state is estimated
in a configuration that is prepared with two condensates and critical
background. In the system of size N = 1000 sites two condensates
containing M ′1 = 2000 and M ′2 = 3000 particles respectively with
added critical background are prepared. The total amount of
particles is M = 5000 + ρcN = 5239 particles. To avoid changes
of the properties of the condensates the data is averaged over
N = 1000 independent simulations of very short duration (several
hundreds MC sweeps for bringing the prepared system to the
steady state and for measurement respectively). The current has
several interesting points charcaterizing how particles move into,
over and out of the condensate. The sharp dip and maximum in
the current when the particle reaches the condensate and crosses
its top respectively are understood with a glance at Figure 3.5.
The same goes for the dip at the condensate border when the
particle leaves it. However, the most interesting feature of the
current is at the sites directly after leaving the condensate. The
current performs a steady relaxation back to the average current
in the fluid phase. This is indeed a feature, that is not observed in
the symmetric process and therefore characteristic to the process
being out of equilibrium.
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3.3.2. Estimation of the condensation time scale

I will first describe the numerical methods used to generally estimate the time
scale of the condensation time scale. The basic difference between these methods
is which indicator of the final condensed state is detected. As only a single
time measurement can be taken per complete simulation and per estimator, the
amount of data is expected to be small for acceptable system sizes. Therefore
the usage of different different estimation methods is imminent in order to check
the consistency of the results and allow for a better judgement of the statistical
errors. It is practical to carry out all of the following methods but the last
in the same batch of simulations, as computational costly tasks, like cluster
identification are needed for each of them.

The simplest method is to use a mass threshold mthresh as the indicator.
When the mass of the largest condensate passes this threshold as M ′ > mthresh,
the time is recorded. A good choice for the threshold is the number of excess
particles Δ = ρcN , as the condensate mass is likely to pass it just before reaching
its expected mass and thus the steady state. The simulation is repeated and at
the end the average condensation time is calculated.

The second method also uses the mass of the heaviest condensate as an
indicator. For the largest condensate, the average mass M ′(t) at time t is
calculated in many simulations of the condensation process. As this recorded
time series of masses is a representation of the condensation progress, it evolves
in the same time scale. When this time series is known for different system
sizes, one can plot them versus rescaled time to determine the scaling of the
condensation time.

With an appropriate definition, the number of condensates in the system can
be measured. When the average number of condensates nc is measured at any
time t, the result is a similar indicator to the condensation progress as the time
series M ′(t) discussed above. As a distinction, whether a bulk of particles should
be counted to this number of condensates or not, a mass threshold is proposed.
The choice of this threshold is a tradeoff that affects the signal-to-noise ratio in
the time series. If it is too low, fluctuations in the fluid phase are often counted,
if it is too high the recorded time series is flattened. The mass of the droplets at
the beginning of the coarsening regime, which is in the order of

√
M is a good

starting point to define that threshold. Additionally, the average number of
condensates is recorded with respect to several thresholds a

√
M resulting in one

time series per prefactor a.

Furthermore, in a similar approach as the first method, the first-passage time
to reach a single condensate nc = 1 according to the above definition can be
recorded in a histogram. The average condensation time can then be calculated
directly from the data or obtained by fitting an adequate probability density
function.

Now I turn to the methods used to investigate, which of the proposed mecha-
nism of the coarsening process can be ruled out or confirmed. These are the
measurement of the influence of the condensate mass on the effective current
of particles escaping the condensate and a method to compare the currents
between two condensates of different masses.
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The first of these methods involves keeping account of the condensate masses
present in the system and can be done simultaneously to the methods for the
general estimation of the time scale. Before each MC sweep, a table containing
the masses and positions of the present condensates and their borders is updated.
Then at every succesful update at one of the border sites, i.e. when a particle
hops out of a condensate, this is recorded for the corresponding condensate mass.
This implies the assumption, that the condensate does not move or change
its shape considerably during one MC sweep. After many simulations of the
process, the result is an estimate of the effective current of escaping particles
for every condensate mass. As the coarsening process takes the longest time in
the condensation, it is expected, that the most precise estimates of this current
will be for masses of the order of the total number of particles. To reduce the
computational cost of this measurement and avoid noise, only the two largest
condensates are used in this method. Furthermore, it shall be noted that the
current that is estimated with this method does not compare numerically to
directly estimated currents due to the approach of the measurement. The motion
of the condensate is not corrected and the measurement site is not guaranteed
to be at the border of the condensate at all times. Nevertheless, the methods
will prove to represent the influence of the condensate mass to the rate of its
evaporation well enough.

To compare the currents between condensates of different sizes, the method to
estimate per-site currents from the last section is used. Therefore this estimation
method stands separated from the above. The system is prepared with two
condensates of the desired mass and a critical fluid background and shortly
simulated for “equilibration” before a short measurement of the currents at two
sites in between. This is repeated many times to obtain precise estimates. It is
useful to observe the occupation profile of the system to be able to repeat the
measurement if the shape and mass of the condensates change considerable. In
this case the measurement time has to be decreases further.

3.3.3. Remarks for the simulation on lattices and graphs

Most of the methods discussed above can just be used to estimate the prop-
erties of the PFSS process on two-dimensional lattices or arbitrary graphs as
well. However, the measurement of the effective current of escaping particles
becomes much more complicated because the borders now consist of many sites.
Additionally, the assumption of slowly changing borders is less likely to hold.
Currents between condensates may be estimated by extending the measurement
of per-site currents to measure the amount of particles passing “membranes”
between condensates.

Also, the consistent formulation of asymmetric dynamics is a nontrivial task
at least for networks. A reasonable approach is to use directed graphs. When
a particle hops, it chooses a leaving edge of its departure node and follows it to
occupy the target node.

However, as the time to study the condensation process on networks was
limited, I restricted myself to a brief investigation of the symmetric process
on two-dimensional lattices and k = 4 regular graphs. These graphs were
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generated using the graphgen–toolkit, that was created for that purpose and will
be discussed in Chapter 4. Specifically this means, that starting with a square
lattice the edges were rewired to generate random regular graphs. The lattices
used for simulation as well as the initial square lattice graphs have periodic
boundaries.

3.4. Results

3.4.1. Condensation on the periodic chain

In the following I will discuss the data and estimates of the condensation time
obtained by the methods described in the last section. Most of this data was
obtained for the asymmetric PFSS process, for several different system sizes and
a constant particle density of ρ = 1. However, the estimates have been compared
with data generated in simulations of systems with density ρ = 3. Table 3.1
gives an overview of the used system sizes and the number of condensation
processes simulated for that system size.

Table 3.1.: Simulation effort for different system parameters of the one dimen-
sional systems. The columns are the number of sites N , length of
individual runs tmax in MC sweeps and number of individual runs N .

N tmax N

50 1 × 105 5 × 105

75 1 × 105 6 × 105

100 2 × 105 5 × 105

125 2 × 105 1 × 105

150 2 × 105 1 × 105

200 1 × 106 5 × 104

225 1 × 106 5 × 104

250 1.5× 106 1 × 105

275 1.5× 106 1 × 104

300 2 × 106 2 × 104

325 2 × 106 1 × 104

350 2 × 106 2 × 104

375 3 × 106 1 × 104

400 3 × 106 2 × 104

500 5 × 106 1 × 104

(a) ρ = 1

N tmax N

50 1 × 106 1 × 104

75 1 × 106 1 × 104

100 1 × 106 1 × 104

125 1 × 106 1 × 104

150 4 × 106 1 × 104

175 4 × 106 1 × 104

300 5 × 106 2 × 103

350 5 × 106 4 × 103

400 5 × 106 2 × 103

(b) ρ = 3

The average first passage times of the largest condensate mass passing a
threshold are displayed in 3.11 for several system sizes along with the same
property measured for the ZRP. The observed condensation times roughly follow
the power law

τ ∝M δ (3.39)
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Figure 3.11.: Average first passage time of the heaviest condensate’s mass ex-
ceeding the mass threshold M ′thresh = Δ = M − ρcN for the ZRP
and PFSS process respectively. The solid lines represent the scaling
obtained by other methods.

with the scaling exponent δ ∼ 2, which gives the same scaling as for the zero-
range process. In the following, this will be confirmed by the other estimation
methods which also prove to give much more precise estimates for the scaling
exponent δ.

Both methods of recording the time series of the largest condensate mass and
the number of condensates are analyzed in a very similar way. The time series
for different system sizes are drawn in one plot versus rescaled time according
to the presumed scaling law (3.39). The scaling exponent δ is then estimated by
finding a value for which the curves of different system sizes collapse. To proper
collapse the curves and estimate the correct scaling exponent, the emphasis lies
in the behavior near to the point where the steady state is reached. That is,
while approaching the final condensate mass and a condensate count of one
respectively. In the case of the time series of condensate masses, also the values
M ′(t) have to be rescaled to M ′(t)/M ′(t→∞) using the mass of the condensate
M ′(t→∞) in the steady state. The resulting plot resulting from this procedure
is displayed in Figure 3.12. This rescaling is apparently not needed for the
time series of the average number of condensates, as the systems approach the
steady state with nc(t → ∞) = 1, if the mass threshold used for condensate
counting is just high enough. However, in order to get usable results, the mass
threshold has to be chosen lower, resulting in nc(t) approaching a finite value
nc(t→∞) > 1 as bulks of particles always emerge and melt in the background
due to fluctuations. Otherwise the resulting time series become very flat, which
makes collapsing the curves hard and unprecise. The resulting rescaled time
series of the average number of condensates for several system sizes and different
mass thresholds a

√
M ′ are shown in the Figures 3.13 and 3.14.

The scaling exponents estimated using this method of collapsing the rescaled
time series according to the presumed scaling law confirm the rough estimation
from above and consistently provide boundaries for it. The estimated scaling
exponents are the following:
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Figure 3.12.: Time scale analysis of the condensation process with respect to
the average mass of the heaviest condensate at the time t. The
curves of the condensate mass for different system sizes N = M
are matched by rescaling time according to the presumed scaling
law (3.39). The mass is rescaled to the final mass of the condensate
M ′(t→∞) and time is rescaled to t/M δ, giving an estimation of
the scaling exponent δ = 2.1± 0.2.

Largest condensate mass δ = 2.1± 0.2
Number of condensates, ρ = 1 δ = 2.0± 0.2
Number of condensates, ρ = 3 δ = 2.0± 0.1

Using the rescaled time series of the condensate mass, also the scaling exponent
of the symmetric process is estimated as δ = 2.9± 0.2. Again, this is similar to
the scaling exponent δ = 3 of the symmetric ZRP.

Additionally to estimates of the scaling exponent, these rescaling methods
also give a good impression of the evolution of the measured quantities in the
coarsening process. In both time series, there seems to be condensed state
at the beginning of the simulations. This is in fact an artefact caused by the
homogeneous distribution of particles at the beginning: Very broad, but flat (in
terms of occupation numbers) clusters are identified before the coarsening regime
of the condensation process. However, when the coarsening regime begins, the
growth of the mass of the largest condensate approaches the curve 1−exp(−t/τ).

The validity of these rescaling methods has been tested for the ZRP giving the
correct scaling exponents. The rescaled time series of the condensate mass and
number of condensates obtained in these tests are displayed in the Figures 3.3a
and 3.3b respectively.

By the next method, the number of condensates measured in every simulation
sweep was used to measure the first passage time, when this number becomes
nc = 1 in that individual condensation process. The formation of small conden-
sates in the background can be neglected in this approach, as the time scale on
which this happens is very small in comparison to the coarsening time scale.
The obtained distributions of first passage times for several system sizes are
shown in Figure 3.15. The shape of the normalized histograms suggests that the
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Figure 3.13.: Time scale analysis of the PFSS process using the number of con-
densates nc with mass M ′ greater than a fixed threshold mass
M ′thresh. The time is rescaled to t/M δ to match curves and deter-
mine the scaling exponent δ ≈ 2. From top to bottom, the mass
threshold is increased from 3/2

√
M (a) to 3

√
M (d). The system

sizes are N = 100, 150, 200, 225, 250, 275, 300, 325, 350, 375, 400 and
N = 500, from bottom to top at the left of each graph respectively.
The number of particles is M = N for all curves. To estimate
δ = 2.0±0.2, the curves are rescaled until they match in the region
where they fall into the horizontal. However, the uncertainty of
the determination of δ by this method is considerable, especially
since the curves cannot be collapsed exactly due to different final
values of nc(t→∞).
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Figure 3.14.: Time scale analysis of the PFSS process using the number of
condensates nc with mass mc greater than a fixed threshold mass
mthresh as in Figure 3.13. However, these plots represent data from
systems with a higher density ρ = 3. The same scaling exponent
δ = 2± 0.1 is obtained. Note, that the data presented in this plots
is accumulated in only several thousand condensation runs due to
the fast growth of the condensation time and therefore simulation
time.

first passage times are distributed according to an extreme value distribution.
Indeed, the data fits well with a Gumbel–type extreme value distribution

f(x) =
ze−z

β
, z = exp

[
−x− µ

β

]
(3.40)

where µ is the central peak position, and β is the width parameter. The average
condensation time can now be easily estimated by fitting the distribution and
calculating its mean value τ = µ + βγ, where γ ≈ 0.57721566 is the Euler–
Mascheroni constant. The obtained mean condensation times are now plotted
in Figure 3.16, again confirming the presumed scaling law (3.39) and giving
a more precise estimation of the scaling exponent

First passage time to single condensate δ = 2.04± 0.07.

To summarize, the presumed scaling law (3.39) is confirmed by different
approaches to estimate the condensation time scale and the scaling exponent is
estimated to be δ = 2.04± 0.7, δ ≈ 2 within good approximation. This is the
same scaling of the condensation time as that of the ZRP and the similarity of
the scaling could also be confirmed for the symmetric PFSS process and ZRP
exhibiting a scaling exponent of δ = 3. It should be noted, that for the system
sizes that were feasible for computer simulation still strong finite size effects
exist. However, from the obtained data it can be seen, that in the range of
studied system sizes of N = M = 50 to N = M = 500 the rescaled curves of
measured properties tend to approach their generic form. For example, from
Figure 3.7 and comparison to the shape of the exact distribution [26] one can
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Figure 3.15.: Distribution of first passage times for the condition nc = 1, for
a mass threshold of 5/2

√
M . That is, when the number of con-

densates first drops to 1. The solid curves represent the fitted
Gumbel–type extreme value distribution (3.40).
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Figure 3.16.: Using the distributions of first passage times in Figure 3.15, the
scaling exponent of the first passage time for nc = 1 is estimated
as δ = 2.04± 0.07.
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see, that the distribution does not assume this shape until a system size of
N = 1000.

In the following I will discuss the results obtained by the measurement of
the currents in the system. In the assumed mechanism of the longest lasting
stage of condensation, only two large condensates are left in the system. As
there is no merging of condensates in real space observed, I will start with the
discussion of the second proposed mechanism: mass dependent evaporation of
the condensates.

The effective current of particles escaping a condensate of mass M ′ has been
measured for several system sizes by the discussed method and is plotted in
Figure 3.17 versus the rescaled condensate mass M ′/M . It can be observed,
that the current decreases relatively fast with the mass for small condensates
M ′ < 0.3M and then decreases more slowly until a shallow minimum is reached
for the expected mass of the condensate in the steady state. For high masses of
the condensate, the number of events is very small resulting in large errors of
the estimated current. Although the measured current cannot necessarily be
numerically compared to the real current of particles escaping the condensate,
the existence of the minimum in the measured current shows that it represents
the features of that current and its dependence on the condensate mass well
enough.

Now to the question whether the time scale of the coarsening process can
be explained by the measured currents. In the last regime of the coarsening
process which dominates the time scale, two condensates remain in the system.
The assumed evaporation leads to two currents je(M

′
1) and je(M

′
2) of particles

between the condensates with mass M ′1 and M ′2. In the asymmetric process the
particles cross the fluid background between the condensates in a time that is of
the order of the number of sites N and is therefore small in comparison to the
condensation time scale. As also the escaping particles current depends only
weakly on the condensate masses, this time can be neglected and the current
between the condensates is conserved. That is, the rate equation

dM ′1
dt

(t) = −je(M ′1(t)) + je(Δ−M ′1(t)) (3.41)

should describe the growth of the condensate M ′1. To determine the typical
time scale of this process, one can rescale the time to the condensation time
scale t′ = Δδt and the condensate mass to units of total excess particles giving
M ′1 = Δx and M ′2 = Δ(1− x). The rescaled rate equation reads then

1

Δδ−1
dx

dt′
(t′) = −je(Δx) + je(Δ(1− x)) . (3.42)

A solution to this rate equation must make it dimensionless and therefore have
a factor 1/Δδ−1 itself. Note, that although here τ ∝ Δδ is used as the time
scale, this is different to the presumed scaling law (3.39) just by a constant
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Figure 3.17.: Escape flow rate je plotted versus the size M ′ of the condensate
a particle escapes. The particle density in (a) is M = N and
M = 3N in (b), while the latter is provided as a supplement (as
the data base is rather poor). However, the minimum of the escape
flow at M ′/M = 1− ρcL/M supports the fact of the existence of a
single condensate with a steady mass of M − ρcN . The solid line
in (a) is the approximated current (3.43).
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factor (1− ρc)δ. The equation (3.42) means in order to reproduce the observed
time scale with the estimated scaling exponent δ = 2, the current has the form

je(M
′) = j0 +

b

Δ
f

(
M ′

Δ

)
, (3.43)

with a constant current j0, an arbitrary function f(x) of the fraction of excess
mass in the condensate to approximate the form of the estimated current and
the factor 1/Δ making (3.42) dimensionless. b is a parameter to fit the proposed
current to the measured one.

The function f(x) is determined by guessing a polynomial to fit the rescaled
current. The choice

f(x) = 1 + c

(
x8 − 3

4
x4
)

(3.44)

has been found to fit very well with similar parameter sets for different system
sizes. These parameters are

j0 ≈ 0.154 , b ≈ 0.8 , c ≈ 9 .

This fit is also shown in Figure 3.17 with the estimated currents for comparison.
However, to see if the form (3.43) can be used in principle, one can rescale the
estimated currents to the shape function

f

(
M ′

Δ

)
=

Δ

b

(
j(M ′)− j0

)
. (3.45)

This should collapse the estimated curves to the shape f(x) independent of the
system size. Figure 3.18 shows that this is not fulfilled. This means, that it is
not likely that this approach can explain the coarsening process and its time
scale alone. However, it must be stressed that the estimated current je(M

′)
is too noisy to make a definitive decision. This may be answered by further
research using better data. Nevertheless, since already the time scale of the
condensation has been observed to be the same as in the ZRP, it is a likely
approach to translate the random walk argument to the PFSS process.

In this approach, the fluctuations of the condensate mass are considered to
be stronger than the currents je. In the coarsening process, the masses of the
condensates then perform a biased random walk in the interval 0, . . . ,M . This
bias to the fluctuation of the mass is given by the current je. The first passage
time of the random walk to reach M ′ = Δ then gives the condensation time
scale. This in turn depends on the strength of the bias, which is studied by
estimating the difference of the currents between two condensates of different
mass as discussed in the last section. The obtained differences of these currents
for condensate pairs of different masses are shown in Figure 3.19. They are not
not only too small to cause a significiant bias and thus the coarsening in the
prepared systems but are also scattered around zero within acceptable range of
error. This means that the bias is indeed negligible and the time scale is that of
a random walk, namely δ = 2.
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Figure 3.18.: The rescaled shape of the current of particles escaping a condensate
of a given mass (according to (3.44)) depends on the parameters
of the system. Therefore this approach can only partially explain
the coarsening process and its time scale.
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Figure 3.19.: Estimation of the difference of background currents j1−j2 between
tow condensates of moderate masses M ′1 and M ′2 = Δ−M ′1 respec-
tively. Apparently, as the differences of the currents are scattered
around zero within the error of the estimation, the hypothesis of
condensation through mass dependent currents does not hold for
comparable masses of the remaining condensates.
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Figure 3.20.: Shape of a condensate on a two dimensional lattice of size 50× 50
sites with M = N = 2500 balls.

3.4.2. Condensation on Regular and Disordered Lattices

The condensation process and time scale in the one-dimensional process has been
shown to be very similar to the ZRP. If this also holds for the two-dimensional
case, a scaling exponent of δ = 2 is expected for the symmetric and asymmetric
process as well.

The critical density in the PFSS process on the square lattice is much lower
than in one dimension. It is estimated as ρc = 0.00317± 0.00005 in a simulation
of the steady state. The distribution of particles p(m = mi) is very similar to
that observed for the system in one dimension. The profile of the shape of the
condensate, shown in Figure 3.20, is comparable to that of the one-dimensional
process and can be approximated as a simple power law of fourth order.

The condensation time scale has been estimated by rescaling the time series
of the largest condensate mass and the number of condensates with the resulting
plots shown in Figures 3.21 and 3.21b respectively. The scaling exponent is
estimated as

Largest condensate mass δ = 2.0± 0.1
Number of condensates δ = 1.9± 0.1

confirming the exponent predicted for the ZRP. The available data was insuf-
ficient to estimate the scaling exponent with greater precision using the first
passage times to reach a single condensate state.

The study of the PFSS process on graphs has been limited to a brief survey
for regular graphs. These were generated using the graphgen toolkit and for each
graph the condensation process has been simulated once in order to average over
different disordered regular graphs. Before the estimation of the condensation
time scale, the critical density was measured to learn whether condensation
occurs and if so what the quantity of excess particles in the following simulations
will be. The critical density was estimated employing the steady state simulation
of the process on N = 1000 regular graphs (with k = 4 nearest neighbors per
site) with the result ρc = 0.14± 0.02.

When estimating the condensation time scale of the PFSS process by rescaling
the time series as shown in Figure 3.22 one finds, that there seems to be no
scaling of the condensation time with the size of the system at all. The rescaled
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Figure 3.21.: Estimation of the condensation time scale for the symmetric PFSS
process on a two-dimensional lattice with periodic boundaries.
(a) The collapsing rescaled curves of the heaviest condensate mass
yield a scaling exponent of δ = 2± 0.1. (b) Rescaling the number
of condensates nc(t) gives a scaling exponent of δ = 1.9± 0.1.
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Figure 3.22.: Time evolution of the mass of the heaviest condensate on regular
graphs. The averaged is computed over a sample of N = 10000
q = 4 regular graphs. Note, that time is not rescaled in this plot,
no scaling of condensation time can be seen here. However, the
heaviest condensate mass grows over at least two plateaus of slower
evolution. Although the condensation process is not completely
recorded, the displayed cut-out shows most of it. Error bars
have been omitted to provide an unobstructed view without plot
symbols, however the biggest errors are in the order of 8× 10−3 in
regimes of stronger growth.

time series of the largest condensate mass rather exhibits plateaus of slower
growth which are at similar times for all studied system sizes.

Another difference is that the condensate size, i.e. the number of sites it
occupies is relatively small compared to the size of the condensate on a square
lattice. After t = 105 MC sweeps the following average condensate sizes were
observed:

N sites M condensate size

14× 14 49 3.4
16× 16 64 3.8
18× 18 81 4.1
20× 20 100 4.6

This might either indicate just that the condensate occupies only few sites or
that the condensate further shrinks and occupies only a single site in the steady
state. With the available data this cannot be finally decided in this thesis.
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4. Monte Carlo Generation
of Complex Networks

To numerically study the behavior of the described transport processes on
arbitrary structures such as complex networks being able to sample graphs
with a given set of prescribed structural properties is essential. As the sam-
pling of graphs with such specific structural properties is interesting for many
applications, the approach and procedure is covered in detail in this chapter.
From the set of all graphs, such with desired properties will be sampled by
means of Markov chain Monte Carlo methods while providing a sensible means
of statistical weight calculation. At the end of the chapter stands an object
oriented toolkit to perform Monte Carlo generation of equilibrated complex
graphs and an estimation of diverse structural properties. It is used in this
thesis as well as it is intended for further general use.

The science of complex networks is a relatively new field of research developing
at the interface of physics, biology, social and computer sciences. It strives
for a better understanding of the dynamics and general laws of creation and
growth of networks as well as how processes on network topologies are affected
by structure. There are numerous obvious, everyday examples of networks, such
as traffic infrastructure, social contacts of persons, neuronal networks in nervous
systems, communication networks or the worldwide web. Also many more
kinds of networks that can be constructed from relationships or associations
of things show properties of complex networks. Examples for such networks
include science collaboration networks, where authors are connected if they have
at least one shared publication [27], networks of protein conformations, with
conformations being connected if they can be transformed into each other by
a move from a given elementary move set [28] or in linguistics, networks of words
with synonyms being connected. Some interesting problems involving networks
as underlying structure include the spread of epidemics on social networks,
the emergence of complex network properties due to growth and evolution of
networks like the worldwide web or spread of opinions including interaction with
networks in the form of rewiring of social contacts.

The basis of the theory of complex networks was established when Erdős
and Rényi discovered the importance of probabilistic methods in the study of
graphs [29,30]. Analysis of the structure of many existing networks led to the
discovery of several properties that complex graphs frequently show. The most
important and well known concepts are clustering, small worlds and scale-free
behavior. Small worlds, for example, describe the existence of rather short
paths between any two nodes of a graph as famously shown by Milgram [31].
Due to such features which will be partially discussed in Section 4.2, that are
not found in random graphs, complex networks establish an important class of
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random graphs. Several overviews of the topic with varying perspective have
been published for example by Dorogovtsev et. al [3, 32], Albert et. al [33] and
Wac law [34].

This chapter is divided into five sections. After this introduction several
definitions covering networks and graph elements are given, followed by a section
on the typical structural quantities observed in real-world complex networks.
A fourth section is dedicated to the description of statistical ensembles of
networks and in the fifth section this is translated and applied to draw samples
from such statistical ensembles employing Monte Carlo techniques. This is
followed by the presentation of three examples of graph ensembles, that were
tuned to specific properties and the corresponding simulated data. In the
last section, a brief outlook is given. With the fundamentals provided in
this chapter, the technical documentation of the toolkit is provided in the
library package available from http://www.physik.uni-leipzig.de/~nagel/

graphgen. Finally, a diagram of the workings of the provided modular toolkit
and a minimal example simulation program is provided in the appendix B.

4.1. Definitions in the Context of Graphs

As the natural representation of real-world networks are graphs, a rather general
definition shall be given to start with. A directed graph is a pair G(V,E)
consisting of a set of vertices V and a set of (directed) edges E, ordered pairs
〈u, v〉 ∈ E, u, v ∈ V connecting the vertex u to v, but not in the opposite
direction. The number of vertices and edges in a graph is denoted by N and L
respectively. The term node is commonly used as a synonym for vertex and the
same goes for link and edge accordingly.

Additionally, there are undirected graphs consisting of nodes connected by
undirected, symmetric edges. This can be achieved by different different def-
initions, where the most common differs from the undirected graph only in
constituting the set of edges E to be a set of unordered pairs 〈u, v〉. However
a more constructive definition seems more adequate in this context: A directed
graph that contains an inverse directed edge 〈v, u〉 ∈ E for every edge 〈u, v〉 ∈ E
is called undirected graph. This reproduces the representation of undirected
graphs that will be used later on.

A useful generalization of each of the two graph concepts is the pseudograph,
also called multigraph or degenerate graph. It is constructed from these by
replacing the set of edges with a corresponding multiset of edges, thus allowing
multiple identical edges. If a pair of nodes is connected by more than a single
edge 〈i, j〉, the number of edges with the same endpoints shall be denoted as mij

and called connectivity of the corresponding nodes. Edges 〈i, i〉 that connect to
the same node as both endpoints are possible and referred to as unit loops. For
distinction to pseudographs, graphs without multiple edges and unit loops are
commonly called simple graphs. A simple graph can at most have N(N − 1)/2
edges, then being a complete graph.

Any directed graph or pseudograph and therefore network can be fully de-
scribed by its adjacency matrix A, with entries Aij yielding the number of edges
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〈i, j〉. From the above definition follows, that Aij = Aji for undirected graphs.
However, only such shall be considered here. There is also a number of prop-
erties that can directly be calculated from the adjacency matrix A. Although
the exact node labels of a graph representation do not matter to the shape
of a network, some distinction of the detail level of representation is useful.
A graph represented with assigned node labels, as by its adjacency matrix, shall
be called labeled graph and one with unique assigned edge labels a fully labeled
graph. The latter, however, cannot be identified with its adjacency matrix and
will be used only at the implementation of the sampling method. The network
described by a representation is of course obtained by dropping any labels.

Starting with the most important local quantity, the degree qi of a node
characterizes the local structure just like coordination numbers do for periodic
lattices. It is defined as the the number of edges incident with the corresponding
node qi =

∑
j Aij . Hence, for a simple undirected graph the degree of a node is

just the number of nearest neighbors. The average degree q of a graph is then
q = 1/N

∑
i qi = 2L/N because every edge adds to two nodes degrees. With

this, the degree distribution

Π(q) =
1

N

N∑
i

δqi,q (4.1)

is defined as the probability to draw a node with degree q randomly from the
graph.

A path on a graph can be defined along a series of edges, each pair sharing
one endpoint1 and all intermediate nodes being distinct. A closed path, is called
a cycle of order n if there are n intermediate edges along the path. If for every
two nodes in a graph there exists a path between them, the graph is called
connected. If it is not, it can be split into connected subgraphs consisting of
distinct subsets of V and E as in Figs. 4.2(a) and (d). The number of cycles of
order n can easily be obtained as the trace 1/2 Tr An, as this matrix has the
number of paths i→ j in its elements (i, j). The factor 1/2 is a correction for
undirected graphs to avoid double counting.

4.2. Characteristics of Complex Graphs

The features of complex networks mostly have been discovered in the empirical
study of real world networks due to the vast availability of data including
topological information of real networks. Important attributes are as stated,
the scale-free behavior or power law degree distributions, small worlds and
clustering. Interesting related properties are also degree-degree correlations,
maximal degrees or the number of cycles in a graph which will be discussed in
the following. It is instructive to compare complex networks to random graphs
in terms of these quantities. When mentioning random graphs in the following,
this refers to the Erdős-Renyi-model [29] which will be described in the next
section and has been studied thoroughly since its introduction (1959). The

1or the endpoint and origin respectively for directed graphs
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quantities discussed below and the estimates of the corresponding ensemble
averages can be calculated directly using the library provided.

The degree distribution Π(q) is, as defined above, the probability of drawing
a random node with degree q, therefore having exactly q nearest neighbors. As
defined in (4.1) it is normalized

∑
q Π(q) = 1 and its mean value is therefore the

average degree q =
∑

q Π(q). Studies of the properties of real-world networks
discovered that the degree distributions of many of them follow a power-law

Π(q) ∝ q−γ (4.2)

for an interval of intermediate degrees 1 � q � N and typical exponents
2 < γ < 4. At small degrees and at at the cutoff of the degree distribution,
characteristic behavior of specific network types is observed. This form of the
degree distribution alone has been surprising as it is quite distinct from the ex-
pected form for random graphs, which is a binomial distribution with parameters
N − 1 and the probability p that two nodes are connected. A related quantity
is the degree-degree correlation function ε(k, q) which yields the probability
to randomly draw an edge connecting nodes with degrees k, q. The resulting
matrix is symmetric for undirected graphs, its upper triangle is normalized∑

k<q ε(k, q) = 1 and it incorporates the degree distribution of the graph by

Π(q) =
q

q

∑
k

ε(k, q) =
q

q

∑
kε(q, k) . (4.3)

A more convenient definition of the same quantity is average neighbor degree

knn(q) =

∑
〈i,j〉
qj=q

qi

qj
∑
〈i,j〉
qj=q

, (4.4)

which gives the average degree of neighbors of nodes with the given degree q. It
can also be calculated from the degree-degree-correlation function

knn(q) =
q

qΠ(q)

∑
k

kε(k, q) (4.5)

similar to the degree distribution. There is a related quantity describing the
growth of the average neighbor degree with node degree called assortativity.
A graph is assortative, if the average neighbor degree grows with node degree,
and disassortative if it decreases. Assortativity can be expressed as a simple
coefficient

A =
Tr ε− Tr εr
1− Tr εr


< 0 disassortative

= 0 uncorrelated

> 0 assortative

, (4.6)

by subtracting the factorized degree-degree probability of a graph with uncorre-
lated degrees but identical degree distribution

εr(k, q) =
1

k
2kΠ(k)qΠ(q) (4.7)
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and normalizing the result. It was found that most social networks, like science
collaboration graphs or networks of aquaintances are assortative. Disassorta-
tive degree-degree-correlations are common for real-world networks created for
a specific purpose, like the internet or power grids [35]. In comparison, random
graphs show uncorrelated degrees.

To understand the property of small worlds it is useful to look at paths
between the nodes of a graph first. When two nodes i, j are connected, then
there is at least one shortest path between them, the length of which is the
distance d(i, j) between them. The diameter of a graph is then the maximal
distance of any two nodes in the graph

diamG = max
i,j∈V

d(i, j) . (4.8)

If a graph is not connected, the diameter would strictly be infinite but is
often defined as the maximum diameter of its connected components. An
interesting related quantity is the average distance of any two nodes in the
graphs. Networks exhibiting small average distances or small diameter with
respect to their number of nodes are then called small worlds. In the experiment
mentioned above, Milgram found a typical distance of 6 in the network of
aquaintances among the approximately 300 million people in the USA. After
a more specific definition, a network is a small world if the typical distance or
diameter grows with the logarithm of the system. However, it was shown that
complex networks share this property with random graphs.
Clustering describes the existence of groups of nodes where every member

is connected with all other members. In terms of social networks, a cluster is
a group of persons where two people are friends and if they have friends in
common and vice versa. This means triangle constellations are common, giving
a means to measure the clustering coefficient as the fraction of triangles in the
number of connected triples

C =
n4

ntriples
, (4.9)

where every three nodes that are connected by at least two edges are connected
triples. A complete simple graph has then a clustering coefficient C = 1 due
to every triple also being a triangle. Another measure is common to estimate
the clustering coefficient locally at a given node i. This is again, the fraction of
triangles that share that node in the number of triples that are there. However,
the number of triples can be calculated more conveniently from the degree qi
giving

Ci =
ei

qi(qi − 1)/2
. (4.10)

The number of triangles is expressed by the number of edges ei between the
nearest neighbors of i. Both definitions are qualitatively and roughly numerical
consistent when the average of Ci is taken for all nodes. The number of triangles
may be calculated as

ei =
1

2

(
a3
)
ii

(4.11)
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using the adjacency matrix. Clustering coefficients of real-world networks are
in the order of C ∼ 0.6 for science collaboration graphs for several different
studied networks with sizes of 1× 104 to 1.5× 106 authors [27]. An example of
a real-world network with relatively weak clustering of c = 0.08 is the power
grid of the western united states with about n ∼ 5000 nodes [36]. The clustering
coefficient of random graphs is crand ∼ k/n and quite distinct to most real-world
networks.

4.3. Statistical Ensembles of Graphs

There are two intuitive approaches to describe and simulate the formation of
networks: growing networks and equilibrated networks. In the former, the
time evolution of the developing network is studied in terms of the influence
of mechanisms creating the graph. In the latter approach — onto which this
chapter is focused — one constructs a statistical ensemble of graphs and employs
methods of statistical mechanics to study the characteristics of typical graphs.

The statistical ensemble is one of the most basic concepts in statistical physics.
It is usually constructed from the phase space of a Hamiltonian system combined
with the Gibbs measure identifying the probabilities of system states. The
phase space is easily identified with the set of possible graphs but as networks
are not Hamiltonian systems a statistical weight must be defined to obtain a
corresponding probability measure.

At first the Erdős–Renyi model for random graphs is visited to construct an
ensemble of equiprobable graphs. The Erdős–Renyi–model for random graphs
G(N, p) describes a method to construct simple graphs instead of randomly
drawing such graphs from the set of all simple graphs with N nodes [29]. Starting
with an empty graph containing only N nodes, every edge 〈i, j〉 possible in the
graph is considered and added with fixed probability p independently of any
other added edges. The related G(N,L) model was introduced in the same
publication and describes the construction of random networks with a fixed
number of edges: A Pair of nodes is randomly chosen as endpoints for a new
edge. It is added if the nodes are not linked with an edge, otherwise rejected.
This is repeated until the graph contains L edges.

An equivalent of the latter method is to enumerate every possible N × N
adjacency matrix A with elements aij ∈ {0, 1}, diagonal elements aii = 0 and
the given number of edges L =

∑
i>j ai,j and pick one at random. Hence,

with this method every possible labeled graph is constructed with the same
probability. Figure 4.1 shows the possible labeled graphs for N = 4 nodes and
L = 2 edges representing two network shapes. The probabilities of the networks
is then pA = 4/5 and pB = 1/5 respectively. Evidently different networks are
not equiprobably constructed, only graphs are. Because the statistical weights
w(A), w(B) of the networks A and B are proportional to the probabilities of
their appearance pA, pB, only the proportionality constant, being the weight
of a single labeled graph remains unset. For convenience this is chosen 1/N !,
which compensates the factor from permutations of node labels.

The partition function Z(N,L) for networks constructed from the Erdős–Renyi

54



4.3. Statistical Ensembles of Graphs

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4




1 2

3 4

1 2

3 4

1 2

3 4





A1 A2 A3 A4

A5 A6

A7 A8

A9

A10 A11

A12

B1 B2

B3

Figure 4.1.: All possible simple labeled graphs with N = 4 nodes and L = 2
edges are shown. There are only two distinct networks A and B
possible represented by the labeled graphs in the upper or lower
brackets. The networks A and B have nA = 12 and nB = 3 different
represenatations as labeled graphs. One could also label edges, and
thus use fully labeled graphs as network representations. This does
not change adjacency matrices and thus only adds a factor 1/L! to
the statistical weight of each graph.
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ensemble is then

Z(N,L) =
∑

α′∈G′(N,K)

=
∑

α∈G(N,L)

w(α) , (4.12)

with the set of labeled graphs G′(N,L), the statistical weight w(α) = nα/N !,
where nα is the number of labeled graphs α′ for the network α. The expectation
value of a given property O is then defined as usual per

〈O〉 =
1

Z(N,L)

∑
α∈G(N,L)

w(α)O(α). (4.13)

Thus the properties of the “typical” network in a given ensemble can be
studied. However, to study more interesting ensembles of graphs, where typical
graphs have different features of real-world networks, the defined fundamental
weight 1/N ! for labeled graphs is not sufficient. This can be accomplished by
introducing an additional functional weight which in general is different for each
network. By adjusting this functional weight, the properties of typical networks
can be tuned towards the desired features.

In principle the form of the weight is arbitrary and can depend on any
topological information a graph offers. However, some general factorizing forms
are convenient end efficient especially for Monte Carlo sampling. The most
simple form is the node degree weight

w(α) =
∏
i

g(qi) , (4.14)

with a function g(q) of the nodes degree giving the local weight factor. This
approach is already usable and for example an ensemble of graphs with

g(q) =
4q!

q(q + 1)(q + 2)
(4.15)

reproduces the degree distribution of Barabási–Albert graphs [33] quite well.
To introduce degree-degree correlations between nodes, a two-point function
g(qi, qj) of degrees of endpoints of an edge 〈i, j〉 is used to define the edge weight

W (α) =
∏
〈i,j〉

g(ki, kj). (4.16)

Again, the local weight function g(·, ·) defining the statistical weight of graphs
may be chosen arbitrarily. Of course there are many ways of defining functional
weights which might be appropriate for some cases, but these are not the scope
of this chapter. Also, when applying Markov chain sampling to these ensembles
it is a major advantage to employ products of local weight functions as statistical
weights, as otherwise the total graph weight had to be computed at every step
anew.

Until now, only ensembles of graphs with fixed size and number of edges were
considered. In the following, similar ensembles are described briefly, for a detailed
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introduction refer to [34]. For a distinction of these, an ensemble with fixed
N,L will be referred to as a canonical ensemble in analogy to the conservation
of particles in the canonical ensemble of particles in a thermodynamic system.
The grandcanonical ensemble refers to ensembles of graphs with fixed size N
but varying number of edges. Without a functional weight this is equivalent to
the ensemble constructed from the G(N, p) model. The partition function is

Z(N,µ) =
∑
L

exp(−µL)Z(N,L) , (4.17)

with fugacity p/(1− p) = exp(−µ) in the corresponding Erdős–Renyi ensemble.
The weight is then w(α) = exp(−µL(µ))/N ! where µ tunes the potential to add
or remove edges similar to the chemical potential in Hamiltonian systems.

Additionally in analogy to the concept of equiprobable microstates with
identical energy in Hamiltonian systems, a microcanonical ensemble can be
defined. In the case of a node degree weight type functional weight (4.14), this
is accomplished by fixing the sequence of node degrees (q1, q2, . . . , qN ) and the
canonical ensemble is constructed by taking the sum over all degree sequences
with fixed number of edges. However the analogy of equiprobable microstates
is broken as soon as introducing a less local weight function such as the edge
weight (4.16). Nevertheless it is useful to compute properties of a graph ensemble
with fixed degree sequence for example to obtain disordered networks or lattices.

4.4. Monte Carlo Generation of Equilibrated Networks

This section specifically covers the generation of complex graphs using the
ensembles discussed above and also including some technical discussion of the
choices in realization of the library.

First of all the former graphgen library [37] must be credited as the basis of
this implementation. It offered graph representation, generation of equilibrated
graphs using vertex weights and the calculation of some graph properties like
the clustering coefficient and degree distributions. Also a similar rewrite of the
library has been started by P. Bia las, co-author of the original graphgen2. The
main goals for the successor library were the ability to sample edge weighed
graphs as well as vertex weighed graphs and sampling from adjustably restricted
graph subsets in a modular, object oriented approach to ease extensibility. It
can be obtained from http://physik.uni-leipzig.de/~nagel/graphgen/.

It is useful to be able to restrict the shapes of sampled networks in several
ways. The following classes in the sense of subensembles will be considered:

(i) Trees, which are graphs without any closed path along edges,

(ii) simple graphs contain only single undirected edges and no unit loops,

(iii) pseudographs without unit loops may contain multiple edges between pairs
of nodes

2At the state of the library I continued this task it was mostly the basis of graph representation
code.
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Figure 4.2.: Examples of undirected graphs to illustrate the distinction of graph
classes. (a) tree graph, (b) simple graph, (c) pseudo graph without
unit loops, (d) pseudo graph with unit loops. The graphs in (a) and
(d) are disconnected as they contain separate subgraphs.

(iv) and of course arbitrary undirected pseudographs without any other restric-
tions.

Figure 4.2 is provided for a visual distinction of these graph classes.

4.4.1. Graph representation

Although labeled graphs are identified by their adjacency matrices, this is not
necessarily the best choice of representation in the process of graph generation
or calculation of quantities. The adjacency list representation scheme will be
described followed by a brief discussion of advantages and disadvantages both
schemes yield.

As mentioned, the N×N adjacency matrix uniquely describes a labeled graph
by the number of directed edges 〈i, j as elements aij . As an example, the graph
in Figure 4.3 corresponds to

A =


0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 2

 .
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1 2

34

1,2

3,4
5,6 7,8

9,10

Figure 4.3.: An example of an undirected graph as an illustration to different
representation methods discussed in Section 4.4.1. Nodes and pairs
of edges are fully labeled for convenience and reference in the
representations.

It yields advantages in fast lookup and modification of edges connecting node
pairs which are O(1) operation. Enumeration of neighbors, needed to calculate
local edge weights or non-local quantities like the clustering coefficient instead is
O(N), as a complete column of the adjacency matrix must be evaluated. Another
disadvantage is the square growth with the number of sites when generating
sparse graphs.

The adjacency list scheme represents the graph structure as lists of emerging
directed edges for every node along with their destination. Table Tab. 4.1
explains the used representation of the graph in Figure 4.3. In this representation,
operations like modifying and looking up edge connectivity as well as finding a
node’s neighbors roughly scale with the average degree as a node’s list of edges is
evaluated. For sparse graphs the amount of memory needed only scales linearly
and thus it is possible to generate larger networks than with using adjacency
matrices.

4.4.2. Local updates and transition rates

The Metropolis algorithm is used with a local update set to sample graphs. The
probability accepting a proposed update

P (α→ β) = min

{
1,

w(β)

w(α)

}
according to (2.5) depends now only on the chosen ensemble and functional
weight. Along with a description of the used local updates the rates will be
calculated in the following sections. An overview of the updates is given in
Figure 4.4. To realize the sampling of a specific graph class, such as simple
graphs, only updates that comply with the given restriction are proposed. For
example, to sample only simple graphs, one must check if the new configuration
creates a unit loop or multiple links. A detailed overview of the rules for update
proposal is given in Table 4.2.

When calculating the acceptance rates for ensembles with functional weights
constructed from local degree or edge weights the ratios

r(q) =
g(q + 1

g(q)
and r(qi, qj) =

g(qi + 1, qj)

g(qi, qj)
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4. Monte Carlo Generation of Complex Networks

Table 4.1.: Adjacency list representation of the graph in Fig. 4.3. The adajcency
lists are encoded on the right hand side of the table as follows. The
first edge leaving column refers to the first element of the adjacency
list of each node, while the next edge column links list items. The
target node refers to the endpoint of each edge in the list. To speed
up calculation of update probabilities, the degree of each node is also
stored.

node index degree first edge

1 2 3
2 3 7
3 3 8
4 2 9

(a) nodes

edge index next edge target node

1 - 2
2 - 1
3 1 3
4 - 1
5 2 3
6 4 2
7 5 3
8 6 2
9 10 4
10 - 4

(b) edges

α α

number of vertices
conserved

number of edges
conserved

degree sequence
conserved

β β

Figure 4.4.: Overview of the fundamental local graph update mechanisms. From
left to right the update mechanisms are less generic, thus conserving
more properties and yielding smaller network ensembles.
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Table 4.2.: Details of update proposition for implemented combinations of graph
shapes as in Figure 4.2 and graph ensembles. The generation of trees
using the grandcanonic ensemble is not implemented as connected
trees are split up. Note that the constraint 〈i, j〉 6= 〈h, l〉 means that
endpoint nodes are mutually distinct.

microcanonic ensemble canonic ensemble grandcanonic ensemble

connected trees

draw two leaf nodes h 6=
k with qh = 1 = qk at
random without replace-
ment, their single leav-
ing edges are then 〈h, j〉
and 〈k, l〉 respectively

draw a leaf node h with
qh=1 at random, its sin-
gle leaving edge is 〈h, k〉
draw target vertex l 6=
k, h at random

this combination breaks
up connected trees

simple graphs

draw two edges 〈h, j〉 6=
〈k, l〉 with j 6= k, h 6= l
and mhl = 0 = mjk at
random without replace-
ment

draw an edge 〈h, k〉 at
random, draw a random
target node l 6= h, k,
mhl = 0

draw an edge 〈h, k〉 at
random for removal or
draw two nodes h 6= k
withmhk = 0 at random
without replacement to
connect

pseudegraphs, no unit loops

draw two edges 〈h, j〉,
〈k, l〉, j 6= k, h 6= l with-
out replacement

draw an edge 〈h, k〉 and
a node l 6= h, l at ran-
dom

draw an edge 〈h, k〉 at
random to delete or
draw two nodes h 6= k
to connect at random

pseudographs

draw two edges 〈h, j〉 6=
〈k, l〉 at random without
replacement

draw an edge 〈h, k〉 and
a node l 6= k at random

draw an edge 〈h, k〉 to
delete or two nodes h, k
to connect at random
with replacement
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mkl

mjk
mhk mjl

mhh mjj

mkk mll

Figure 4.5.: Connectivity details for the micro-canonical update mechanism.
Thick edges are cross switched as indicated. Dashed edges are
not subject to connectivity changes during update, so their weight
remains.

are useful to shorten notation. Because only undirected graphs are sampled
the local edge weight function is symmetric g(qi, qj) = g(qj , qi). The product
over any undirected edge 〈i, j〉 is indicated by

∏
〈i,j〉, while

∏
h,i〉 stands for the

product over all directed edges emerging a given node h with endpoints i being
neighbors of h. The number of edges 〈i, j〉 in pseudographs is labeled mij . For
a shorter notation of total graph weight ratios, W (γ) shall denote the total
weight of the biggest subgraph unaffected by the proposed update.

4.4.3. The micro-canonical network ensemble

In the micro-canonical network ensemble the update process must conserve the
degrees of every node in the graph. As shown in Figure 4.5 this is achieved by
“crossing” a pair of links. In detail, two directed links are picked at random from
the graph. If the update is accepted, their targets are swapped as well as the
origin nodes of their inverse links. It is easy to figure that node degrees are also
conserved in the special cases where the selected links share one or two nodes
as endpoints. As a result only the degree-degree-pairing of the links changes the
graphs structure. I start with the common vertex weight method.

To show the ergodicity of this update the following strategy is used to construct
any graph configuration from a given graph by consecutive updates. First, reduce
as much edges per node as possible to unit loops, by crossing edges. The result
is that only nodes with odd degree (qi = 2n+ 1) will have a remaining outbound
edge to another such node. These remaining edges may then be rearranged
followed by the reconnection of the edges reduced to unit loops to meet the new
configuraton. However, this argument apparently works only for pseudo graphs
with unit loops.

Vertex weighed graphs

The micro-canonical ensemble is designed to consist of equiprobable graphs
when the graph weight is constructed using local degree weights as in (4.14).
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Figure 4.6.: Details for the canonical update mechanism. The thick edge is
switched from k to l as indicated. As before, the endpoint connec-
tivity of dashed edges is not changed.

Updates are accepted always as is

W (β)

W (α)
= 1 . (4.18)

Edge weighed graphs

The situation of equiprobable graphs changes when going to edge weights
defining the total weight of sampled graphs. From Figure 4.5 it can be seen
that the only changes in connectivity are mkl → mkl − 1,mhj → mhj − 1 and
mhl → mhl + 1,mkj → mkj + 1 for a given proposed update. For convenience
the weight of the unaffected part of the graph is separated as W (γ). With this,
the partial weight representing only edges with changing connectivity is written
as W (α)/W (γ) or W (β)/W (γ) respectively after the proposed update. With

W (α)

W (γ)
= g(qh, qj)

mhjg(qk, ql)
mklg(qh, ql)

mhlg(qk, qj)
mkj (4.19)

and

W (β)

W (γ)
= g(qh, qj)

mhj−1g(qk, ql)
mkl−1g(qh, ql)

mhl+1g(qk, qj)
mkj+1 , (4.20)

the weight ratio reads

W (β)

W (α)
=
g(qh, ql)g(qk, qj)

g(qh, qj)g(qk, ql)
. (4.21)

It should be noted that — different to the canonical and grand-canonical
ensembles — this weight ratio also holds for special cases with pseudographs
like multiple edges and unit loops.

4.4.4. The canonical network ensemble

In this graph ensemble the number of links must be conserved. This is achieved
by picking a random link from the graph and replacing one of its ending points
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with a randomly selected node as indicated in Figure 4.6. This changes the
degree of the endpoint node’s before (k) and after (l) the proposed update. To
understand that this updates is ergodic, one can figure, that any edge 〈h, k〉 can
be moved to two distinct endpoints 〈m, l〉 by two updates via the intermediate
step 〈h, l〉.

Vertex weighed graphs

With the weight of the unaffected subgraph

W (γ) =
∏
〈i,j〉

i,j /∈{k,j}

g(qi, qj)

the weight of the changed subgraph is given by the two nodes with changing
degree and reads before the update W (α)/W (γ) = g(qk)g(ql) and after the
update it is W (β)/W (γ) = g(qk − 1)g(ql + 1) because the edge no longer
connects to k but to l now and degrees change. The resulting acceptance rate
reads then

W (β)

W (α)
=
g(qk − 1)g(ql + 1)

g(qk)g(ql)
=

r(ql)

r(qk − 1)
. (4.22)

Edge weighed graphs

The local part of the total graph weight can be calculated as a product over all
edges emerging from the affected vertices h, k and l respectively. Because edges
shared between two of these involved nodes are counted twice in this scheme,
the corresponding squared weight factors must be canceled by correction factors.
Correction factors also appear in special cases, when the selected edge is or
is proposed to become a unit loop. In the calculation, the following cases are
considered

(a) h, k, l distinct, the most common case and also the only possibility for the
sampling of simple graphs,

(b) h = k, h 6= l, the selected edge is an unit 〈h, h〉 and becomes an edge 〈h, l〉,

(c) h 6= k, h = l, the link 〈h, k〉 becomes a unit loop 〈h, h〉,

(d) k = l is a pathologic case as the proposed update would be just an identity
operation and can therefore always be accepted and is not considered.

In the following h, k, l are assumed to be distinct if not stated otherwise. The
weight of the unaffected subgraph is

W (γ) =
∏
〈i,j〉

i,j /∈{h,k,l}

g(qi, qj) .
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With this and Figure 4.6 the needed correction factors for the weight ratio before
the update can be written as(

W (α)

W (γ)

)
=

∏
k,j〉 g(qk, qj)

∏
l,j〉 g(ql, qj)

g(qk, qk)mkk/2g(qk, ql)mklg(ql, ql)mll/2
. (4.23)

The correction factor 1/g(qk, qk)mkk/2 for example cancels the additional weight
factors that might result from counting both directed edges of unit loops 〈k, k〉.
Similarly the weights of edges 〈k, l〉 and possible unit loops 〈l, l〉 are canceled
out.

The local weight part after the update needs correction factors as above and
additional corrections because the products over neighbors are not aware the
update changed the connectivity. With h, k, l distinct the local weight part is(

W (β)

W (γ)

)
=
∏
k,j〉

g(qk − 1, qj)
∏
l,j〉

g(ql + 1, qj)

[
g(qh, ql + 1)

g(qh, qk − 1)

]

·
[
g(qk − 1, qk − 1)

g(qk − 1, qk)2

]mkk/2 [g(ql + 1, ql + 1)

g(ql + 1, ql)2

]mll/2
·
[

g(qk − 1, ql + 1)

g(qk − 1, ql)g(ql + 1, qk)

]mkl
, (4.24a)

where the third term cancels the factor from the edge 〈h, k〉, and adds that
for the switched edge 〈h, l〉. The fourth and fifth term correct factors with
invalid endpoint degrees from unit loops 〈k, k〉 and 〈l, l〉 and finally the last term
corrects weight factors with wrong node degrees for edges 〈k, l〉.

With similar corrections the weight parts in the second and third cases read(
W (β)

W (γ)

)
(h=k)

=
∏
h,j〉

g(qh − 1, qj)
∏
l,j〉

g(ql + 1, qj)

[
g(qh − 1, ql + 1

g(qh − 1, qh − 1)

]

·
[
g(qh − 1, qh − 1)

g(qh − 1, qh)2

]mhh/2 [g(ql + 1, ql + 1)

g(ql + 1, ql)2

]mll/2
·
[

g(ql + 1, qh − 2)

g(qh − 1, ql)g(ql + 1, qh)

]mhl
(4.24b)

and (
W (β)

W (γ)

)
(h=l)

=
∏
h,j〉

g(qh + 1, qj)
∏
k,j〉

g(qk − 1, qj)

[
g(qk + 1, qh + 1)

g(qk − 1, qh + 1)

]

·
[
g(qh + 1, qh + 1)

g(qh + 1, qh)2

]mhh/2 [g(qk − 1, qk − 1)

g(qk − 1, qk)2

]mkk/2
·
[

g(qk − 1, qk + 1)

g(qk − 1, qh)g(qh + 1, qk)

]mhk
. (4.24c)

By comparing the structure of the calculated weight parts after the suggested
update a general form

W (β

W (γ)
= PNN PSL Ploop Pmultiple (4.25)
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Figure 4.7.: Connectivity details for the grand-canonical update mechanism.
The thick edge is either removed or added. As before the endpoint
connectivity of dashed edges is not changed in the update.

can be written, where PNN equals the two edge weight products for the nodes k
and l, Pmultiple is a correction for multiple edges 〈k, l〉 in pseudographs, Ploop

corrects double counted unit loops and finally PSL replaces the weight of the
removed edge 〈h, k〉 with that of the now switched link 〈h, l〉. The considered
special cases differ now only in the term PSL which is

PSL =


g(qh,ql+1)
g(qh,qk−1) (h 6= k 6= l)

g(qh−1,ql+1)
g(qh−1,qh−1) (h = k)

g(qh+1,qh+1)
g(qk−1,qh+1) (h = l)

. (4.26)

The general form of the weight ratio for the canonical ensemble then calculates

W (β)

W (α)
=

∏
l,j〉 r(ql, qj)∏

k,j〉 r(qk − 1, qj)
PSL

[
r(qk − 1, ql)

r(qk − 1, ql + 1)

]mkl
(4.27)

·
[

r(qk − 1, qk)

r(qk − 1, qk − 1)

]mkk/2 [r(ql, ql + 1)

r(ql, ql)

]mll/2
.

The structure of the calculated acceptance rate has the advantage of being
simplified easily in cases where unit loops or multiple edges are forbidden.

4.4.5. The grand-canonical network ensemble

In this ensemble, two complementary updates are needed to sample the configu-
ration space: addition and removal of edges, for details, see Figure 4.7. Hence,
acceptance rates are calculated for either of them in this section. Also, as the
number of links fluctuates, the fundamental weight of labeled graphs cannot be
abandoned to calculate acceptance rates. It is shown in [38] that the acceptance
rate for adding an edge is then

Pacc, add(α→ β) = min

{
1,

exp(−µ)N2

2(L+ 1)

(
W (β)

W (α)

)+
}
, (4.28)

while the rate for removing a link reads

Pacc, remove(α→ β) = min

{
1,

exp(µ)2L

N2

(
W (β)

W (α)

)−}
, (4.29)
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4.4. Monte Carlo Generation of Equilibrated Networks

where N and L refer to the number of nodes and links before the update occurs.
It is easy to see, that this update is ergodic, as any configuration in N +N ′ can
be reached by removing all N existing links and adding N ′ links to reach the
new configuration.

Vertex weighed graphs

The weight ratios corresponding to edge addition and removal are calculated to
be inserted in the form (4.28) and (4.29) respectively and as before a special
case can emerge, when a unit loop is added or removed from the graph. The
graph weight ratios for adding a link read(

W (β)

W (α)

)+

=
g(qk + 1)g(ql + 1)

g(qk)g(ql)
= r(qk)r(ql) (4.30a)

and (
W (β

W (α)

)+

k=l

=
g(q + 2)

g(q)
(4.30b)

respectively. Quite similar, the ratios for link removal are(
W (β)

W (α)

)−
=

1

r(qk − 1)r(ql − 1)
(4.31a)

and (
W (β)

W (α)

)−
k=l

=
g(q − 2)

g(q)
(4.31b)

respectively.

Edge weighed graphs

The structure of the acceptance rates (4.28) and (4.29) is correct in this ensemble
too and only the weight ratios remain. The calculation is similar to that in the
canonical ensemble, with similar correction factors for edges count twice and
a special case for adding or removing a unit loop from the graph. With

W (α)

W (γ)
=

∏
k,j〉 g(qk, qj)

∏
l,j〉 g(ql, qj)

g(qk, qk)mkk/2g(qk, ql)mklg(ql, ql)mll/2
(4.32)

and

W (β)

W (γ)
=
∏
k,j〉

g(qk + 1, qj)
g(qk + 1, qk + 1)mkk/2

g(qk + 1, qk)mkk
(4.33)

·
∏
l,j〉

g(ql + 1, qj)
g(ql + 1, ql + 1)mll/2

g(ql + 1, ql)mll

·
[

g(qk + 1, ql + 1)

g(ql + 1, qk)g(qk+1, ql)

]mkl
g(qk + 1, ql + 1) ,
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4. Monte Carlo Generation of Complex Networks

where factors for multiple, already existing edges 〈k, l〉 and unit loops 〈k, k〉, 〈l, l〉
are canceled and the last term accounts for the new link, the weight ratio is
calculated as(

W (β)

W (α)

)+

=
∏
k,j〉

r(qk, qj)
∏
l,j〉

r(ql, qj) · g(qk + 1, ql + 1) (4.34a)

·
[
r(qk, ql + 1)

r(qk, ql)

]mkl [r(qk, qk + 1)

r(qk, qk)

]mkk/2 [r(ql, ql + 1)

r(ql, ql)

]mll/2
,

joining correction factors and using the symmetry of the local weight g(·, ·) to
shorten notation. In the case of an added unit loop where qk + 1 is replaced by
qk + 2 and k = l the ratio simplifies to(

W (β)

W (α)

)+

k=l

=
∏
k,j〉

g(qk + 2, qj)

g(qk, qj)

[
g(qk + 2, qk + 2)g(qk, qk)

g(qk + 2, qk)2

]mkk/2
(4.34b)

· g(qk + 2, qk + 2) ,

The ratio for link removal is calculated similar and reads in reads(
W (β)

W (α)

)−
=
∏
k,j〉

1

r(qk − 1, qj

∏
l,j〉

1

r(ql − 1, qj)

1

g(qk − 1, ql − 1)
(4.35a)

·
[
g(qk − 1, ql − 1)g(qk, ql)

g(qk − 1, ql)g(ql − 1, qk)

]mkl
·
[

r(qk − 1, qk)

r(qk − 1, qk − 1)

]mkk/2 [ r(ql − 1, ql)

g(ql − 1, ql − 1)

]mll/2
in the case of k 6= l. As for link addition, the corresponding weight ratio to
removing a unit loop calculates to(

W (β)

W (α)

)−
k=l

=
∏
k,j〉

g(qk − 2, qj)

g(qk, qj)

[
g(qk − 2, qk − 2)g(qk, qk)

g(qk − 2, qk)2

]mkk/2
(4.35b)

· g(qk − 2, qk − 2) .

4.5. Exemplary Graph Ensembles and Properties

In this section I shall give three examples of graph ensembles with the cor-
responding properties estimated by the application of the discussed sampling
methods. The ensemble in the first example is chosen to reproduce the degree
distribution of the well-known Barabási–Albert model [33] of growing networks.
This can be accomplished by using the local node degree function (4.15). Some
of its properties are displayed in Figure 4.8.

In the second example edges between nodes of high and such of low degree
shall be favored to produce mostly disassortative networks. A possible realization
is the construction of a functional weight of form (4.16) using the local edge
weight

g(k, q) = |q − k|2 . (4.36)
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4.6. Further Remarks

The estimated properties displayed in Figure 4.9 clearly show that the typical
networks have the shape of star graphs.

A third example ensemble is defined to prefer graphs with edges connecting
nodes that have approximately the same degree. The local edge weight

g(k, q) =
1

1 + |q − k|2
(4.37)

is used to define the functional weight and the corresponding ensemble. A typical
sample featuring the desired shape and estimated properties is displayed in
Figure 4.10.

4.6. Further Remarks

The discussed methods to sample different types of networks employing statistical
ensembles of graphs are provided in the created toolkit as well as methods
for estimation of ensemble averages of the discussed quantities. Due to its
the modular design, it is quite extensible. It is possible to supplement more
general functional weights, sampling methods or define desired graph types
by adding methods generating update propositions accordingly. For example
a functional weight constructed of factors that are calculated from the whole
neighborhood of every single node might be interesting. In principle it is
even possible to use a functional weight, that is not factorized of local graph
elements. However, depending on the specific weight, this would probably
slow down the graph generation enormously. Another option is to implement
more sophisticated simulation techniques by adding a module accordingly. For
example multicanonical methods can be used to sample graphs [39], and might
be supplemented. A rough graphical description of the modular structure of the
toolkit and a brief example of using it is given in Appendix B.
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Figure 4.8.: Ensemble of scale-free equilibrated networks featuring the degree
distribution known from Barabási–Albert graphs. To further approx-
imate the Barabási–Albert model of growing networks the sampling
might be restricted to tree graphs. The local node weight function
used to define the ensemble is given in (4.15). The following quan-
tities are obtained from a sample of N = 50× 106 simple graphs
with L = N = 1000 nodes and sitex respectively: (a) the degree
distribution in comparison to the exact distribution of the Barabśi–
Albert model, (b) degree-degree correlations, (c) average neighbor
degree and (d) a sample with N = 20 and L = N − 1 = 19.
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Figure 4.9.: Example data of an ensemble defined with the local edge weight
function (4.36). The fallof at in the degree distribution (a) for low
degrees (q > 2) and the peak at q ∼ 500 suggest that star-like graphs
are typical in this ensemble. The degree-degree correlations (b)
and average neighbor degree (c) generally confirm this picture by
indicating strong disassortativity. (d) shows a sample graph with
N = 20, L30 nodes and sites respectively. The properties were
estimated from a sample of N = 50× 106 graphs with L = N =
1000.
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Figure 4.10.: Properties and a sample graph from the graph ensemble defined by
the weights (4.37). The figures show (a) the degree distribution,
(b) the degree-degree correlation function, (c) the average neighbor
degree and (d) a sample graph (L = 30, N = 20). The desired
feature of assortative graphs is confirmed in the plots of both εkq
and qnn. For the estimation of these properties N = 10000 graphs
with L = N = 1000 were generated.
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5. Conclusion and Outlook

The condensation process that is observed in the PFSS process as a relaxation
of the system into its steady state has been studied mainly using numerical
techniques, to understand the underlying condensation mechanism and find its
typical time scale.

It has been found that the condensation mechanism relies on the fast evap-
oration of small droplets in a first regime, leading to a coarse grained system
with few condensates of similar mass. The further condensation is dominated by
slightly biased fluctuations of the condensate masses leading to a slow transfer
of particles to the largest condensate until it remains as the single condensate
in the system. The expected time scale of this process is τ ∝M δ with a scaling
exponent δ = 2 for the asymmetric process and δ = 3 for the symmetric process.
These scaling exponents have been confirmed by means of numerical simulations
of the condensation process. The estimated scaling exponents are δ = 2.04±0.07
and δ = 2.9± 0.2 respectively. Hence, the time scale of the condensation in the
PFSS process is the same as in the zero-range process.

The scaling of the condensation time for the symmetric transport process
on lattices in two dimensions has been studied. It fulfills the same scaling law
τ ∝ M δ with the scaling exponent δ = 1.95 ± 0.1 that has been estimated
by numerical computations. This agrees with the expected with the expected
scaling behavior and exponent for the proposed mechanism of mass condensation
and the condensation time scale of the zero-range process.

Due to the slow dynamics of the studied process and the requirement to
directly simulate it, I was only able to systematically study the condensation
process in relatively small systems of up to M = N = 500 sites and particles
respectively in the totally asymmetric (p = 1) case of the model. As the dynamics
of the symmetric process are much slower, exhibiting a scaling exponent of
approximately δ ∼ 3, numerical investigation is limited to very small systems of
about N = 200 in reasonable time. However, in systems of this size still strong
finite size effects are present and affect observations.

Mass condensation in the the discussed transport process does indeed occur
on lattices and regular graphs in two dimensions (k = 4 for the latter) with
critical densities of ρc = 0.00317 ± 0.00005 and ρc ∼ 0.14 ± 0.02 respectively.
The dynamics on lattices lead to an extended condensate which has a similar
shape as in the one-dimensional case. The scaling exponent is estimated as
δ = 1.95± 0.1 which again is the same as for the ZRP. For regular graphs, it
remains unclear whether the condensate is extended in the steady state. The
observed average condensate size is in the order of 4 sites but might still decrease
in much longer simulations.

For the process on regular graphs no scaling of the condensation time has
been observed in this study. However, the condensation process seems to be
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dominated by the local structure of the graph, as the growth of the average mass
of the biggest condensate exhibits plateaus with life-time of the order of the
condensation time. As an explanation, the slow movement of the condensate to
the region of the graph where the condensate is most stable is proposed. That
is, to a cluster of nodes in the graph with few connections to the remaining
network.

Another interesting feature of the discussed transport process that is worth
further study is the movement of the condensates in the coarsening regime
of the condensation process in one dimension. It has been observed in the
site occupation time series that large condensates move “synchronized”, which
indicates the existence of a long range interaction between them affecting their
motion.

As a spin-off the graphgen package for Monte Carlo generation of equilibrated
graphs was implemented and tested. It allows the explicit introduction of degree-
degree correlations between the nodes of graphs, allowing for a finer tuning of
the structural properties of the graphs to be generated. Specifically his may
be used to enable further systematical study of the condensation process on
graphs with defined structure properties. Furthermore, as the toolkit is designed
generically, it is suitable for the general study of complex-network properties
and the simulation of real-world networks.
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A. Partition Function of the ZRP on
scale-free Networks

The originial partition function for the balls in boxes model can be rewritten as
a recursion

Z(N,M) =

M∑
m1=0

· · ·
M∑

mN=0

δM,
∑N
i=1mi

N∏
i=1

p(mi)q
mi
i (A.1)

=
M∑

mN=0

p(mN )qmNN

M−mN∑
m1=0

· · ·
M−mN∑
mN−1

δM,
∑N−1
i=1 mi

N−1∏
i=1

p(mi)q
mi
i


=

M∑
mN

p(mN )qmNN Z(N − 1,M −mN ), (A.2)

with the the node degree qi and the weight

p(m) =
m∏
n=1

1

u(n)
, p(0) = 1 . (A.3)

The hopping rate function

u(m) =

{
0 m = 0

1 m ≥ 1
(A.4)

used in the study of condensate life-times in [22] simplifies the derivation of the
recursion. The weights are then p(m) = 1 for all occupation numbers m, the
factor disappears. Now the network structure information given as an unordered
node degree sequence {qi} is rewritten to a degree multiplicity sequence {λq}
with λq =

∑N
i δq,qi . The multiplicity sequence is proportional to the degree

distibution, which is a power law for scale free networks. This is exploited by the
recursive calculation of the partition function starting with the highest degrees
in each step. Thus the recursion tree grows only at the order of the number of
different degrees instead of the number of nodes as nodes of the same degree
are grouped. The combinatoric multiplicity of these groups is the number of
partitions of m identical particles on λq equal sites giving a binomial factor.

The reslting recursive partition function is

Zk(M, {λq}) =

M∑
m=0

(
λk +m− 1

m

)
kmZk−1

(
M −m, {λ′k}

)
, (A.5)

with the highest degree k of the remaining network and the truncated degree
multiplicity sequence {λ′q}, with λq>k = 0.
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To finally compute the partition function, conditions to break the recursion
are calculated for residue networks as folllows:

Z (N = 1,M, λk, ) =
M∑
m=0

δ m,M
1∏
i=1

kmii p(m)

= kMp(M)

Z (N = λk,M) =

(
λk +m− 1

m

)
kMp(M) (A.6)

Z (N,M = 1, {λk}) =
M∑

m1=0

· · ·
M∑

mN=0

δM,
∑M
i=1mi

N∏
i=1

p(mi)k
mi
i

=
∞∑
k=1

kλkp(1) (A.7)

Z (N,M = 0, {λk}) =

M∑
m1=0

· · ·
M∑

mN=0

δM,
∑M
i=1mi

N∏
i=1

p(mi)k
mi
i

= 1 . (A.8)

In principle this works for any given degree sequence {qi}, with the same
constraints that (A.1) has, like the graph must be connected. For the computa-
tion of expectations using the recursion, the order of the multiplicity sequence
does not matter in principle. However, odering the sequence and entering the
recursion with the highest remaining degree heavily reduces the calculation time.
As a bonus, intermediate Z(M −m,N − n) may be stored and reused over and
over during the recursion.
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B. Application of the Graphgen Library

In this appendix a minimal example program using the graphgen library is
presented in Figure B.1. The goal is to demonstrate the practical interaction of
modules supplemented as class templates to contrast the schematic view given
in Figure B.2.
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B. Application of the Graphgen Library

#include<ofstream>
#include”graphgen . hpp”

double f ( q in t q , q in t k ){ return pow(q−k , 2 ) ; }

using namespace graphgen ;
typedef undi rec ted graph Graph ;
typedef l i nk we ight<graphgen : : va lue type : : weight> Weight ;
typedef canon ica l<Weight , shape : : s imple> Ensemble ;

const int NV=1000;

int main ( ){
// c rea t e graph o b j e c t and cons t ruc t BA graph
Graph graph (NV) ;
graph . gen Barabas iAlbert ( 1 ) ;
// c rea t e ensemble o b j e c t and es t imator
Weight weight ( f ) ;
Ensemble E( graph , weight ) ;
d e g r e ed i s t Deg(2∗NV) ;

for ( int n=0; n<1000000; n++ ){
E. sweep ( ) ;
Deg( graph ) ;

}
// wr i t e degree d i s t r i b u t i o n and l a s t graph to f i l e s
std : : o f s tream degdstr ( ” degree ” ) ;
degdstr<<Deg ;
std : : o f s tream gstream ( ”graphs ” ) ;
gstream<<graphgen : : graphviz ( graph)<<std : : endl ;

}

Figure B.1.: Minimal example simulation program employing the graphgen li-
brary. The ensemble sampling class template is constructed at
the beginning as a typedef and is then created as an object using
the created weight bound to the node weight (4.36), and a graph
object that is initialized as a BA graph (constructed with 1 link
added per node). As an example, a degree distribution estimator
is used. MC sweeps and measurements are done and the obtained
degree distribution is written to a file. The last obtained graph
configuration is written in GraphViz format.
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canonic〈weight, shape, graph〉
microcanonic〈weight, shape, graph〉
grandcanonic〈weight, shape, graph〉

The used ensemble template class glues together the graph
representation, the restricted update proposal mechanism and
weight computation method with some helper classes to a usable
class capable of generating graphs from the specified statistical
ensemble.

graphshape weight

shape::tree

shape::simple

shape::noselflinks

shape::multigraph

The used shape class han-
dles the determination of
appropriate, shape specific
Metropolis updates to pro-
pose to the used ensemble
class as in Tab. 4.2. The de-
termination of the type of
update to be generated is
realized by method polymor-
phism.

vertex weight〈type〉
link weight〈type〉
The used weight class han-
dles the calculation and tab-
ularization of weights, accel-
erating the computation of
ratios. There are templates
for different methods of pass-
ing the local weight function,
such as direct p(q), p(q1, q2),
logarithmic weights or ratios
r(q), r(q1, q2).

undirected graph

Graph representation, modification and structure lookup meth-
ods. The provided module implements representation by adja-
cency list

estimators for structure properties

Estimators accumulate histograms or time series of observ-
ables where appropriate. Measurement of most quantities
is available by supplementary functions to allow custom
accumulation of time series.

sampling of configurations

measurement of structure properties

Figure B.2.: Scheme of interacting modules using combined template classes
employed by the graphgen library. For a more practical understand-
ing, consider to look up the technical documentation or example
programs.
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aus anderweitigen fremden Äußerungen entnommen wurden, sind als solche
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