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Chapter 1

Introduction

The scientific and technological progress during the past century has pushed
experimental and manufacturing techniques to the nano-meter scale. With
the advance of experimental techniques such as the scanning tunnelling mi-
croscopy, the atomic force microscopy and optical tweezers, one is able to
access and even manipulate physical objects on the atomic level [1, 2, 3, 4].
This creates the need to understand the physics on that scale in order to be
able to study the processes in biological systems, to be able to create new
chemical substances and to be able to engineer new materials. Proteins are
essential components of the living systems as we know them on earth. The
study of their interaction with surfaces such as membranes, catalysts and
porous materials is important for biological research. Many functional ma-
terials include special coatings that prevent adhesion of certain substances.
The deposition of a macro-molecule on a surface in a predefined conforma-
tion is a problem yet to be solved. One can, for instance, stretch molecules
immersed in liquids with the help of optical tweezers [5]. There are, however,
no means to force the creation of other specific conformations or to deposit
them on a substrate. Understanding the physics of these systems is also an
interesting undertaking because the processes are guided by the fight between
entropy and energy. However, the complexity of the systems does not allow
for a straightforward theoretical analysis.

An important step towards the research on polymers has been the avail-
ability of powerful computing machines due to the technological advance in
recent years. These can be used to study the properties of virtual systems us-
ing sophisticated simulation techniques [6, 7, 8, 9, 10, 11, 12]. The computer
models contain the most important interactions and exhibit similar transi-
tions as the real world. This allows the study of every aspect of the system
without the need to deal with the perversity of matter. One can varying
every parameter at will, which is not possible in the real world. Temper-
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8 CHAPTER 1. INTRODUCTION

ature, for instance, is a parameter that is hard to control and manipulate
in an experiment. Moreover, the equipment used in an experiment has spa-
tial dimensions and operating environment requirements, meaning that only
a number of compatible measuring and controlling devices fit in a typical
experimental setup. This gives access to only a few observables. Detecting
other properties of the system might require a completely new experimental
setup using other experimental methods, or might be impossible due to the
lack of experimental techniques or equipment. These are, however, no limi-
tations for a computer model. One can measure every property of the system
or parts thereof during the course of an experiment (computer simulation).

Recently, the phase diagram of a non-grafted finite interacting self-
avoiding walk (ISAW) near an attractive substrate has been constructed
[13]. The ISAW is one of the simplest models that exist for polymers. It
simulates a self-interaction between nonadjacent monomers and undergoes
a collapse or coil-globule transition from a high-temperature phase to a low
temperature phase, and another transition at even lower temperatures form-
ing crystalline structures called freezing transition [14]. Adding an attrac-
tive surface introduces the adsorption transition to the system, where at low
temperatures the polymer is adsorbed and at high temperature desorbed.
The interplay between both attractions gives rise to the existence of differ-
ent phases depending on the strength of each interaction. Phases in this
work mean pseudo-phases (except otherwise mentioned), since the systems
discussed have finite size. The word “pseudo” has been omitted to ease
the reader. The pseudo-phases that I am referring to indicate regions on
the phase diagram where the system has similar properties. Some of these
pseudo-phases are believed to exist as phases in the thermodynamic sense
for longer chains, others however, exist only in the specified length scales.

The goal of this work is to add attractive parallel stripes to the model and
to study the effect of such stripes on the phase diagram compared to a ho-
mogeneous substrate surface. This is a simple pattern and can serve as a the
basis for understanding the adsorption of polymers on substrates containing
more complicated patterns. The effects of the the stripe-attraction strength
on the phase diagram are being studied for two different stripe widths. The
corresponding phase diagrams are constructed using both canonical and mi-
crocanonical analysis. The differences and similarities between the resulting
two diagrams are discussed and analytical calculations are given where pos-
sible. The effect of the self-attraction on the phase diagram is also being
discussed, as it leads to qualitatively different results and changes the set of
available phases. The dependence of the phase diagram on the confinement
volume is discussed as it has either minor or major influence, depending on
the length scale. Additionally, the results are compared with the literature
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on an equivalent off-lattice model in reference [12].



10 CHAPTER 1. INTRODUCTION



Chapter 2

The Model

2.1 Introduction

This work investigates the properties of a simple polymer system in three
dimensions. The system lives on a simple cubic lattice and has only nearest
neighbour interactions, i.e. only neighbouring sites can interact with each
other. An interacting self-avoiding walk is used to model the polymer chain.
Each point of the walk represents a monomer of the polymer, an interaction
of nonadjacent monomer-monomer neighbours is used and the excluded vol-
ume constraint is modelled by the self-avoidance constraint. Two other types
of constraints are introduced in the form of infinitely extended impenetrable
walls: an attractive one and a steric one with no interactions whatsoever.
Moreover, the attractive wall is patterned with parallel stripes whose attrac-
tion can be different from the rest of the wall. An illustration is given on
Figure 2.1. The energy of the ISAW is defined as:

E(ns, nstr, nm) = −εsns − εstrnstr − εmnm, (2.1)

where ns, nstr and nm are the number of monomer-surface (excluding
stripes), monomer-stripes, monomer-monomer (excluding adjacent neigh-
bours) contacts, respectively. The strength of the interactions is modelled by
the parameters εs, εstr and εm, respectively. One can use a common energy
scale εs and rescale εstr = aεs and εm = bεs. The energy becomes

E(ns, nstr, nm) = −εs (ns + anstr + bnm) (2.2)

and this gives one the possibility to tune the strength of monomer-stripes
and monomer-monomer interactions relative to the monomer-surface inter-
action via the parameters a and b. The case a = b = 1 means that all

11
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zw

steric wall

attractive wall with stripes

Figure 2.1: A SAW in a cavity of height zw, where the lower wall is attractive
and patterned with stripes indicated by thick grey lines, the upper wall is
steric. The balls represent the monomers of the chain and the connecting
line is the self-avoiding walk.

interactions have equal strength, i.e. εs = εstr = εm. In the following, I
choose εs = kB ≡ 1.

2.2 The confinements

Two cases of confinements are considered: grafted and non-grafted. In the
grafted case, one end of the ISAW is fixed on the surface of the attractive
wall and the rest of the chain is allowed to move freely. In the non-grafted
case, the ISAW is allowed to move freely between the two infinitely extended
parallel walls. The steric wall’s sole purpose is to confine the volume in which
the ISAW can move. Without that last constraint the volume of the system
would be infinite. This makes the number of possible positions of the free
chain (chain without any possible contacts to a wall) infinite. That would
make the relative number of adsorbed conformations vanish and would not
allow the study of adsorption. In formulae, the probability of a conformation
with (ns, nstr, nm) contacts at a temperature T and fixed parameters a and b
is:

p(ns, nstr, nm) =
1

Z
Ω(ns, nstr, nm)e−βE(ns,nstr,nm) (2.3)

where Z is the partition function, Ω(ns, nstr, nm) is the density of states
and β = 1/kBT is the inverse temperature. Denoting with Ωu(nm) the density
of unbound conformations, i.e. those with no contacts to the attractive wall,
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and with Ωb(ns, nstr, nm) the bound ones, i.e. with at least one contact to
that wall, one can write the expression for the density of states as:

Ω(ns, nstr, nm) = δnw,0Ωu(nm) + (1− δnw,0)Ωb(ns, nstr, nm), (2.4)

where nw = ns + nstr is the total number of contacts to the attractive
wall. If zw denotes the distance between the steric and the attractive wall, as
zw →∞, Ωu(nm)→∞ as well. Therefore, I will limit my work to values of zw
of the order of the chain length N . This leaves enough volume between both
walls to allow some information from the free space to be detected. I choose
zw > N to allow for a completely expanded chain along the z axis with no
wall contacts to exist which makes the effects of the steric wall insignificant
to the study of adsorption.

2.3 The stripes

The attractive wall is patterned with parallel, equally spaced, stripes with
equal width as illustrated in Figure 2.2. The distance between the left-most
edges of neighbouring stripes is d, the width of each stripe is w. This gives a
periodicity of length d on the x axis and the system does not change on the
y axis. The interactions of the SAW with the stripes are modelled via the
parameter a = εstr/epss. Three distinct cases can be considered:

• a < 0, repulsion

• a = 0, no interaction

• a > 0, attraction.

The first case a < 0 is not being discussed in this work. The second one,
a = 0, is equivalent to the case a � 0 with interchanging the roles of the
stripes and the wall. The interval a > 0 can, furthermore, be divided in
three:

• 0 < a < 1, the stripes are less attractive than the wall

• a = 1, the surface is homogeneous

• a > 1, the stripes are more attractive than the wall.

The system with homogeneous attractive wall (a = 1) has already been
studied in [13]. The case 0 < a < 1 is equivalent to the case a > 1 with
interchanging the roles of the stripes and the wall, therefore, only the case
a > 1 is of interest for the present work.
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y

Figure 2.2: An example of a stripe-patterned wall. The stripes are indicated
with a grey colour. The distance between the left-most edges of neighbouring
stripes is d = 5. The width of each stripe is w = 2. The axes of the coordinate
system are labelled with x and y.

2.4 Observables

The properties of the system are studied with the help of several observ-
ables, their temperature derivatives, variances and mutual covariances. The
partition sum of the system is

Z =
∑
σ

e−βE(σ) (2.5)

and the expectation value of an observable O is

〈O〉 =
1

Z
∑
σ

O(σ)e−βE(σ), (2.6)

where the sums are performed over all possible states σ of the system.
Extrema in the first temperature derivative of the expectation values de-
liver information about abrupt changes in the corresponding property, which
yields information about existing phases. Analysing these functions per hand
can be inconvenient, when the number of observables increases, therefore one
needs a way of detecting these extrema with the help of a computer. There
are two approaches that can be taken: use the data set to find all extrema
with a sophisticated algorithm or use the second temperature derivative. The
latter is trivial to implement and has been used here, since one only has to
look for neighbouring points that are on the different sides of zero. There
are also two approaches for calculating the temperature derivatives of expec-
tation values of observables: by calculating the derivative numerically using
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the data set and by calculating it via other observables. The latter has been
utilised since it is straight forward and less error-prone for data from ex-
act enumeration, which does not have statistical fluctuations like data from
Monte Carlo (MC) simulations. The temperature derivatives are computed
as follows:

d〈O〉
dT

=
1

kBT 2
(〈OE〉 − 〈O〉〈E〉) =

1

kBT 2
Cov [O, E] (2.7)

d2〈O〉
dT 2

=− 2

kBT 3
(〈OE〉 − 〈O〉〈E〉)

+

(
1

kBT 2

)2 (
〈OE2〉 − 2〈OE〉〈E〉+ 2〈O〉〈E〉2 − 〈E2〉〈O〉

)
,

(2.8)

where Cov [x, y] = 〈xy〉 − 〈x〉〈y〉. Obviously this approach does not add
that much complexity to the computer program since one needs to measure
additionally only higher powers of E and multiplication of those with O. All
the extrema of all observables give a rough map of the phase diagram. The
next step is to study the properties of each phase via the information that
the observables themselves deliver.

The energy E gives the probability of finding the conformation at a spe-
cific temperature T . The total number of surface contacts nw = ns + nstr

gives the fraction of the chain that is adsorbed onto the surface. This is also
the part that is flat, i.e. two-dimensional. The number of stripe (surface, ex-
cluding stripes) contacts nstr (ns) indicates what fraction of the chain lies on
the stripes (surface, excluding stripes). The number of monomer-monomer
contacts nm describes the compactness of the chain, i.e. the more compact
the chain, the larger nm is.

The squared end-to-end distance R2
ee indicates how extended the chain is:

Ree = ~rN − ~r1, (2.9)

where ~ri is the coordinate of the i-th monomer. The radius of gyration
R2

gyr describes the dimensions of the chain and its components R2
11, R

2
22 and

R2
33 give the extensions of the SAW from its centre of mass on each axis:

R2
gyr = R2

11 +R2
22 +R2

33, (2.10)

with

R2
ij =

1

N

N∑
n=1

(
r
(n)
i − ri

)(
r
(n)
j − rj

)
, (2.11)
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where r
(n)
i (i = 1, 2, 3) is the i-th Cartesian coordinate of the n-th monomer

and ri =
∑N

n=1 r
(n)
i /N . For clarity R2

11, R
2
22 and R2

33 will be denoted as
R2

gyr,x, R
2
gyr,y and R2

gyr,z.

Rapid changes of the values of these quantities indicate phase boundaries
and manifest themselves as extreme values in the temperature derivatives of
the corresponding quantities. One of the most important is the heat capacity
CV that indicates the cumulative behaviour of all observables that are part
of the energy E:

CV =
d〈E〉
dT

=
1

kBT 2

(
〈E2〉 − 〈E〉2

)
=

ε2s
kBT 2

(
Var [ns] + b2Var [nm] + a2Var [nstr]

+2bCov [ns, nm] + 2aCov [ns, nstr] + 2abCov [nm, nstr])

(2.12)

where Var [x] = Cov [x, x].

2.5 Studies of similar models

There are several analytic and Monte Carlo studies of the adsorption of ISAW
onto a homogeneous surface in three dimensional lattice systems [13, 15, 16,
17]. They have found the existence of 4 main phases: desorbed-expanded
(DE), desorbed-compact (DC), adsorbed-expanded (AE) and adsorbed-compact
(AC). These works identified the boundaries between those phases, their
shapes and the corresponding transitions in order to study the phase dia-
gram of the systems. There exist also similar studies for off-lattice polymer
models [18, 19].

Replacing the homogeneous surface with a patterned one introduces yet
another main phase transition which is called recognition in this work. The
shape of the phase diagram of this new system is studied and compared to
the results for an off-lattice MC study of a similar polymer model by Monika
Möddel [12] (see section 3.6).

2.6 Phases and transitions

Phase transitions in thermodynamics are defined for infinite systems. The
difference to finite systems is that extreme points in the derivatives of the
expectation values of canonical observables d〈O〉/dT do not coincide. These
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variations will furthermore be illustrated by the signals in different observ-
ables that give hints about pseudo-phase boundaries. The term phase would
be used in what is to follow for clarity, but it should be noted that due to
the finite sizes of the systems being investigated here, these are not phases
but pseudo-phases.

2.6.1 Free chains

Starting with a free ISAW, the first observation that one makes when chang-
ing the temperature of the system is that at high temperatures the preferred
conformations are extended with large energy and hence small number of
monomer-monomer contacts, opposed to the low temperature regime where
compact conformations with lots of self contacts are preferred (see Figure 2.3
for an illustration of the ground state of a chain with N = 30). One can iden-
tify two distinct transitions in finite systems. The first one is the coil-globule
transition, where the polymer collapses from a coiled to a globular state with
decreasing temperature as more self-contacts are favoured. This leads to a
decrease of its spatial extension and thus a decrease in the radius of gyra-
tion. The transition temperature is the so-called Θ-point and the transition
will be referred to as collapse. Another transition takes place below the Θ-
point (at lower temperatures) when even the globule is compacted by further
increasing the number of self-contacts. This will be referred to as freezing.

The energy of a free chain is E = −εmnm, which without loss of generality
can be written as E = −xy. One can absorb the energy scale x in the
temperature T by a simple transformation (E, T ) ↔ (E ′, T ′). Using β′ =
1/kBT

′ it is easy to show that Eβ = E ′β′ ⇒ 〈O〉(E, T ) = 〈O〉(E ′, T ′):

〈O〉(E, T ) =

∑
σO(σ)e−βE(σ)∑

σ e
−βE(σ)

=

∑
σO(σ)e−β

′E′(σ)∑
σ e
−β′E′(σ)

= 〈O〉(E ′, T ′). (2.13)

Solving for E ′ = λE = −λxy gives T ′ = λT , thus 〈O〉(E, T ) =
〈O〉(λE, λT ). This notation makes it easy to see that a peak at a temper-
ature T in the system with energy E will be detected at a temperature λT
in the system with energy λE. Thus, increasing the self-interaction energy
by a factor λ results in a linear shift of all transitions from temperatures
T to higher temperatures λT . The monomer-monomer interaction energy
is usually used to model a solvent, i.e. the larger its value, the worse the
solvent and vice versa. The better the solvent, the better it screens the inter-
molecular attraction resulting in a lower value of εm. Thus, depending on the
solvent quality and the temperature one expects to find a polymer in one of
the mentioned phases.
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Figure 2.3: An example of a ground state of a free ISAW of N = 30 on
the left. The solid line represents the ISAW, the monomers are indicated by
circles and the monomer-monomer bonds by dashed lines. The ground state
is a 3 × 3 × 3 cube with 3 extra points on the bottom face. The cubical
structure is illustrated on the right.

2.6.2 Attractive wall constraint

Introducing an attractive surface to the system results in two competing
forces: monomer-surface attraction vs. monomer-monomer attraction. This
changes the behaviour of the chains in the vicinity of the surface, where
both forces compete. This leads to the distinction of two additional phases:
adsorbed - a large fraction of the chain is on the surface and the opposite
when a large fraction of the chain is free, i.e. desorbed. The collapse of the
chains in the desorbed phase (away from the adsorption boundary) should be
easy to detect, provided the collapse happens at a higher temperature than
the adsorption. Near the adsorption transition, the collapse gets modified,
since the monomer-monomer interactions compete with the monomer-surface
interactions. How the modification takes place depends on the energy scales.
The latter also influences the existence and form of the collapse transition in
the adsorbed phase.

In the case of equal self- and wall-attraction (b = 1) the ground state of
the ISAW is mostly two-dimensional for short chains. This is due to the small
number of self-contacts that the chain can create. For a homogeneous surface
a short chain should maximise self-contacts in two dimensions as illustrated
in Figure 2.4. Longer chains have nm > N which favours self-contacts to wall-
contacts, thus creating a three-dimensional structure with one face attached
to the wall. The latter is called a Surface Attached Globule (SAG). For b > 1
both the two and the three dimensional structures compete and which ones
become ground states depends on the strength of the self attraction b and
the chain length N .
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x
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Figure 2.4: An example of a 2-dimensional ISAW of N = 15 and minimal
energy. All points of a 3 × 5 rectangle have to be connected by the ISAW
(solid line) in order to maximise the number of monomer-monomer contacts
nm = 8 (dashed lines).

2.6.3 Attractive stripes

Introducing stripes to the attractive wall (a > 1) adds yet another competing
force: the monomer-stripe attraction. For a large enough interaction, one
would expect that large parts of the chain lay on one or several stripes,
depending on the distance d between the stripes and the chain length N .
For a larger interaction, the expectation would be that most of the chain
lays on exactly one stripe, which would be called a recognised phase and
the transition to it the recognition transition. The recognised phase is a sub
phase of the adsorbed phase, since the stripes are part of the wall. Therefore,
one would expect to find either a boundary between the recognised and the
rest of the adsorbed phases, or a boundary between the recognised and the
desorbed phases in case the recognised phase is the only constituent of the
adsorbed phase.

One can discuss the ground states in the case a � b since they are
trivial. For narrow stripes (w = 1) the ground state conformation is one
dimensional and non-degenerate. Wider stripes (w = 2, 3, . . .) allow the
chain to build self-contacts and thus allows lower energies for the ground
state. The ground state conformations in that case are two-dimensional
SAWs constrained to the stripe with maximum number of self-contacts nm

and are highly degenerate. In the other case when a� b is not satisfied, the
ground state conformations can be three-dimensional. That depends on the
strength of the interactions a and b, the width of the stripe w as well as the
length of the chain N and is not trivial.
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Chapter 3

Exact Enumeration

3.1 Introduction

The first method that one can use in order to study a system is to generate
all possible states of that system and calculate observables for each state.
This method is called exact enumeration and gives one the possibility to
compute the expectation values of all observables of interest over the chosen
statistical ensemble. The data obtained in this way is exact and can also be
used to verify the results of MC simulations. This gives a certain amount
of confidence that the used algorithms work as expected and that no errors
have been made in the process of writing the computer program.

The disadvantage of the method of exact enumeration is that it allows one
to study only relatively small systems due to the enormous computational
effort of generating all possible system states. The number of free SAW of
length N in three dimensions is believed to be cN ∝ µN , where µ is on
the order of 5 [20], and thus gets large very fast as illustrated by the data
in Table 3.1. Moreover, the computational time needed for generating all
possible chains of a certain length grows faster than the number of chains
possible, since the amount of computer memory that needs to be accessed
grows too.

Using the resources provided by the Institute of Theoretical Physics of
the University of Leipzig chains up to a length of N = 19 could be enu-
merated in reasonable time. A growth-based enumeration algorithm has
been used to generate all possible SAW of length N from a fixed starting
point (x0, y0, z0). This allows for a trivial parallellization, where each pos-
sible starting point of the chain within the volume of the system could be
enumerated independently. Each enumeration provides a density of states
Ω(x0, y0, z0, ns, nstr, nm). Combining the separate Ω for a chosen set of start-

21
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Table 3.1: The number cN of free SAW of length N in three-dimensions taken
from the data in [20].

N cN N cN N cN

1 1 9 387 966 17 100 121 875 974
2 6 10 1 853 886 18 473 730 252 102
3 30 11 8 809 878 19 2 237 723 684 094
4 150 12 41 934 150 20 10 576 033 219 614
5 726 13 198 842 742 21 49 917 327 838 734
6 3 534 14 943 974 510 22 235 710 090 502 158
7 16 926 15 4 468 911 678 23 1 111 781 983 442 406
8 81 390 16 21 175 146 054 24 5 245 988 215 191 414

ing point coordinates (x1, y1, z1), . . . , (xn, yn, zn) gives the density of states
for a complete system. Using the fact that the system does not change in the
y direction, one value for the y coordinate of the starting point is sufficient.
The starting points for a system with a cavity and parameters (zw, d, w) are
{(x, y, z) | 1 ≤ x ≤ d, y = 1, 1 ≤ z ≤ zw}.

A growth-based approach has been used for generating all possible
chains X of length N originating from the point (x0, y0, z0). Algorithm 1
using depth-first recursion has been utilised for that purpose. Starting
with an empty chain X one invokes the recursion by calling the function
GROW((x0, y0, z0), 1). Moreover, it is straightforward to turn this algorithm
into a fast computer program.

Algorithm 1 GROW(x, n).

Ensure: x is a free point
append x to the chain X
if n = N then

compute neighbours(x)
compute observables

else
compute free-neighbours(x)
for i in free-neighbours(x) do

call GROW(i, n+ 1)
end for

end if
remove x from the chain X
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3.2 Calculation of observables

A more convenient way to handle equations (2.5) and (2.6) is to rewrite them
as sums over the different types of contacts:

Z =
∑

nm,ns,nstr

Ω(nm, ns, nstr)e
−βE(nm,ns,nstr) (3.1)

〈O〉 =
1

Z
∑

nm,ns,nstr

O(nm, ns, nstr)e
−βE(nm,ns,nstr) (3.2)

with O(nm, ns, nstr) being the sum of O for conformations with the spec-
ified number of contacts:

O(nm, ns, nstr) =
∑
σ

O(σ) δn′
m,nm δn′

s,ns δn′
str,nstr . (3.3)

In this way one only needs to store O(nm, ns, nstr) for every observable of
interest from the exact enumeration and can introduce the parameters a, b
and T later. This approach offers the possibility to explore the state space
with just a single exact enumeration without the need to re-enumerate for
every set of parameters.

3.3 Free chains

Exact enumeration has been done for free chains with b = 1 in order to
identify the types and locations of phase transitions that can be detected.
The ground state for N = 15 has nm = 11, while the ground state for
N = 18 has nm = 16. One can identify one distinct peak in each of the
curves d〈nm〉/dT , d〈R2

gyr〉/dT and d〈E〉/dT (see Figures 3.1 and 3.2):

• for N = 15 the peaks are located at T = 0.6432(1) in d〈nm〉/dT and
CV , T = 0.9028(1) in d〈R2

gyr〉/dT

• for N = 18 the peaks are located at T = 0.4858(1) in d〈nm〉/dT and
CV , T = 1.0330(1) in d〈R2

gyr〉/dT .

The peak in d〈nm〉/dT moves to lower temperature with increasing chain
length, contrary to the peak in d〈R2

gyr〉/dT which moves to higher tempera-
ture.

The positions of the peaks in CV indicating the collapse and the freezing
transitions have been studied systematically for different chain lengths on
the simple cubic lattice in [21]. It has been found that both transitions can
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be detected as separate peaks in CV for chains with a length of N > 40.
Moreover, it has also been found that for these chains the position of the
peak corresponding to the collapse transition moves to higher temperatures
with increasing chain lengths. The position of the peak corresponding to
the freezing transition, however, has been found to have a discontinuous
behaviour. The temperature at which the peak is to be found decreases
with increasing chain length up to a value N = N1, where the temperature
would jump for N = N1 + 1 to a higher value and continuously decrease
again up to another value of the chain length N = N2. The data in that
study shows that the peak corresponding to the freezing transition shifts
to lower temperatures continuously for 15 ≤ N ≤ 18 and jumps up again
at N = 19. From this I would conclude that the peak in d〈nm〉/dT gives
hints to the freezing transition, since it shifts to lower temperatures and
the peak in d〈R2

gyr〉/dT indicates the collapse transition, since it shifts to
a higher temperature going from N = 15 to N = 18. That would also
agree with the fact that only one peak is detectable in CV for N = 15 as
one can see in Figure 3.1. Taking a longer chain with N = 18 the ratio
of the maximum number of self-contacts to the chain length increases from
11/15 ≈ 0.73 to 16/18 ≈ 0.88. The distance in temperature between both
transitions increases and one finds hints about them in CV and d〈R2

gyr〉/dT .
There seems to be two peaks where one is quite dominating as can be seen
in Figure 3.2.

The information about the locations of both transitions is used to make a
rough guess about the expected location of these transitions, provided they
exist, in the system with an attractive surface. Moreover, one can play with
the magnitude of the self-attraction in order to shift the location of the peaks
in temperature and look at other effects that might arise from these changes.

3.4 Chain in a cavity (N = 15)

The properties of the ISAW in a cavity have been studied using the method
of exact enumeration. The distance between the bounding walls has been
fixed to zw = 2N + 1 in this section, except when otherwise mentioned. The
ground state of the system is a chain connected to the surface of the attractive
wall: either laying flat on it completely (nw/N = 1) for small values of b or
touching it with parts of the chain for larger values of b. The two-dimensional
structure is due to the short length of the chain not allowing for lots of self-
contacts. One can clearly distinguish between two main phases: adsorbed
and desorbed and the transition between both is clearly identifiable as a peak
in CV . In the following I will discuss systems with different stripe widths and
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Figure 3.1: Canonical expectation values of important observables and their
temperature derivatives for the parametrisation N = 15: (a) the number
of self-contacts 〈nm〉; (c) the energy 〈E〉; (e) the squared radius of gyration
〈R2

gyr〉 and its components 〈R2
gyr,x〉, 〈R2

gyr,y〉 and 〈R2
gyr,z〉; (b), (d) and (f) show

the temperature derivatives of (a), (c) and (e).
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Figure 3.2: The same observables as in Figure 3.1, but for N = 18.
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different monomer-monomer interaction strengths and their phase diagrams.
The stripe distance has been fixed to d = 5. The chain length that is going
to be discussed is fixed to N = 15.

3.4.1 Narrow stripes (w = 1, b = 1)

Three distinguished phases can be identified for this parametrisation: des-
orbed, adsorbed and recognised as can be seen in the phase diagram in Fig-
ure 3.3. Transitions can be clearly detected between the desorbed and ad-
sorbed phases for all temperatures, between the adsorbed and the recognised
phase for T > 1.9. There are some indications for a freezing transition in the
low temperature (T < 1) adsorbed phase for a < 1.9, although the transition
boundary is not that clearly identifiable. The boundary of the adsorption
as well as the recognition transition is approximately linear in T for a > 5
and at first sight both are parallel. The slope of the adsorption transition
can be extracted from a linear fit for a > 5 of each curve and is obtained as
0.63(1). The same procedure for the recognition transition yields 0.57(1) for
the minima in d〈R2

ee〉/dT and 0.60(1) for the minima in d〈R2
gyr〉/dT . Extrap-

olating for larger values of a one can speculate that both transitions would
not merge, as the slope of the recognition transition is a bit smaller than the
one of the adsorption transition. That, however, does not hold in general. It
will be shown later on in section 3.4.3 that both can merge.

The desorbed phase is divided in two: “desorbed 1” and “desorbed
2”. The boundary between both parts is barely detectable at first sight
in d〈R2

ee〉/dT and d〈R2
gyr〉/dT , since the maxima peaks are very small com-

pared to the values of the curves for lower temperatures, so one has to zoom
in to see the peaks. Though barely detectable, the boundary is there indi-
cating the influence of the surface on the desorbed phase. That effect will be
explained later on.

Adsorption

The adsorption transition can be identified as an approximately straight line
in the phase diagram in Figure 3.3. It shifts to higher temperatures as the
stripe attraction increases. To a first approximation, the shift is linear in a for
a > 5. At low temperatures the whole chain is adsorbed, i.e. 〈nw〉/N = 1 and
〈R2

gyr,z〉 = 0, as one can see in Figure 3.4. This means that the ground state
is a two-dimensional SAW. The transition can be detected in the following
observables:

• a negative minimum in d〈nw〉/dT , i.e. as the temperature T increases
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Figure 3.3: (a) the phase diagram of the system with (b) a zoom-in of the in-
teresting part of the plot. The curves indicate minima or maxima of d〈O〉/dT
for different values of the monomer-stripe interaction a. The legend of (b) is
the same as that of (a), every 5th data point is plotted in (a).
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Figure 3.4: (a) the expected number of wall contacts 〈nw〉 and (b) the ex-
pectation value of the z-component of the squared radius of gyration 〈R2

gyr,z〉
for different values of a. The arrow indicates increasing values of a.

the total number of contacts to the attractive wall decreases and the
chain moves in the free space between both walls

• a positive maximum in d〈R2
gyr,z〉/dT , i.e. as the temperature T in-

creases larger parts are able to move freely in the z direction and are
no longer connected to the wall

• a positive global maximum in CV indicates the cumulative behaviour
of the chain as the energy contributions from the wall decrease with
increasing temperature T , it lays a bit off from the other two indicators
because besides ns and nstr another constituent is nm which does not
play any role in the adsorption; this maximum is also the highest one.

In this parametrisation I find a clear boundary separating the recognised
phase from the rest of the adsorbed phase.

Freezing

The adsorption transition at this parametrisation can be located at values of
T > 1. As identified in section 3.3, the expected freezing transition should
be located near T ≈ 0.6. Some indications about it can be found in the
following observables:

• maximum in d〈R2
gyr〉/dT and d〈R2

ee〉/dT , i.e. the chain expands with
increasing temperature
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• minimum in d〈nm〉/dT , which indicates a transition from a compact
two-dimensional chain to an extended one

• a maximum in CV

The transition temperature of the freezing does not seem to be influenced
by the value of the stripe attraction as long as one is not close to the recog-
nition transition. Signals of the freezing transition are not detectable any
more for a > 1.9, where the recognition starts to take place.

Recognition

The recognition transition is the transition where a chain adapts to the shape
of a stripe. Depending on the value of a the ground state is a chain laying
partly on a stripe or a chain laying completely on a stripe, i.e. the polymer
recognises the stripe. One can see in Figure 3.6 that at low temperatures
for a ∈ [1.0; 1.6] approximately 1/3 of the chain is laying on a stripe and for
a ≥ 2.0 the full polymer is located on the stripe. Ground states corresponding
to both parameter intervals are depicted in Figure 3.5. As expected for larger
stripe attraction a the recognition transition shifts to higher temperatures.
To a first approximation, the shift is linear for a > 6. The recognition
transition can be detected in the following observables:

• a negative minimum in d〈nstr〉/dT as the chain detaches from the stripe
at higher temperatures

• negative minima in d〈R2
gyr〉/dT and d〈R2

ee〉/dT as the chain is not
stretched along the stripe that much at higher temperatures

• a maximum in CV

Collapse

There is no clear collapse transition detectable, although there are positive
maxima in d〈R2

gyr〉/dT and d〈R2
ee〉/dT for T > 2. The boundary formed by

the maxima separates what I call here the phases “desorbed 1” and “desorbed
2” in Figure 3.3. In the latter phase, the chain has almost no self-contacts
as can be seen in Figure 3.7 (〈nm〉/N < 0.2) and is a bit stretched. Going
to lower temperatures the boundary to “desorbed 1” indicates that there
the chain begins to create some self-contacts. The fraction of self-contacts
created is quite low and hence the values of 〈R2

ee〉 and 〈R2
gyr〉 are large too.

Therefore, the chain has not collapsed and this is not a collapse transition
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(a) a = 1.5

(b) a = 3.5

Figure 3.5: Ground states of the system with: a = 1.5 (a) and a = 3.5 (b).
The chain is indicated by connected black dots representing the monomers.
The thick grey line illustrates a stripe.
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in the sense of a free chain. It is merely an indicator of the free chain
starting to feel the surface. This pure mathematical effect can be understood
by looking at the behaviour of 〈R2

ee〉 and 〈R2
gyr〉. For a free chain their

values decrease (Figure 3.1e) with decreasing temperature and at the point of
greatest decrease one gets a peak in the derivative at Tcollapse, which indicates
the position of the collapse transition. For the system in question here,
there is another effect at low temperature: the chain gets two-dimensional
when adsorbed and even one-dimensional when completely attached to a
stripe. This makes the values of both observables increase with decreasing
temperature. This competition can be seen in Figure 3.6b: the larger the
value of a the larger the value of T where the increase in 〈R2

ee〉 and 〈R2
gyr〉 sets

on, thus deforming the part of the curve where the collapse would have been
detected as the greatest increase. This deformation still allows one to detect a
greatest increase for larger values of T , since the curve increases nevertheless.
Hence, a greatest increase should be measurable somewhere in the part of the
curve that has not been deformed much, leading to small peaks in d〈R2

ee〉/dT
and d〈R2

gyr〉/dT . Since in this parametrisation the collapse is not detectable
in the desorbed phase, the line between “desorbed 1” and “desorbed 2” could
have been skipped and the phase could have been labelled only as “desorbed”,
but that would have not been easy in the parametrisations that are to follow
(b = 5), where the implications of this line become obvious. Moreover, the
collapse transition, when located in the desorbed phase, should always take
place at the same temperature. That would have led to a horizontal straight
line in the phase diagram in Figure 3.3, which is obviously missing.

The system at a = 1.5

The ground state in this parametrisation is a two-dimensional chain laying on
the attractive wall with 5 stripe- and 8 self-contacts. These values can be read
from the data in Figure 3.8a. The conformation has the structure depicted
in Figure 3.5a (laying on one stripe with the long side parallel to the stripe).
Figure 3.8 shows the temperature dependence of the expectation values of
some of the measured observables and their temperature derivatives. As the
temperature increases the number of stripe-contacts increases resulting in a
positive peak in d〈nstr〉/dT at T ≈ 0.15 thus breaking some self-contacts
resulting in a negative peak in d〈nm〉/dT at T ≈ 0.25. This decrease of
self-contacts is also detectable as the first shoulder in CV . Less self-contacts
in this case mean that the chain elongates along the x-axis resulting in the
positive peak in d〈R2

gyr,x〉/dT at T ≈ 0.3 and the one negative in d〈R2
gyr,y〉/dT

at T ≈ 0.25. As the temperature increases further, parts of the chain start
to detach from the surface. This results in negative values and a shoulder in
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Figure 3.7: The expected number of self-contacts 〈nm〉 for different values of
a. The arrow indicates increasing values of a.

d〈nw〉/dT . The latter is detectable as the first peak in CV at T ≈ 0.8. Going
to higher temperatures, large parts of the chain start to detach from the wall.
This produces the second peak in CV at T ≈ 1.65, which comes from the
decrease of wall contacts. The latter is detectable as a peak in d〈nw〉/dT at
the same temperature. The detachment from the surface is also detectable
as a positive maximum in d〈R2

gyr,z〉/dT at the same temperature, showing
that the chain expands in the z-dimension.

The system at a = 3.5

The ground state in this parametrisation is a chain stretched along a stripe
(nstr/N = 1) and with no monomer-monomer contacts (nm = 0) as depicted
in Figure 3.5b. Figure 3.9a shows the temperature dependence the expec-
tation values of some of the measured observables and their temperature
derivatives. As the temperature increases, a fraction of the chain detaches
from the stripe but stays attached to the surface of the wall. This allows
the formation of self-contacts resulting in the positive peaks in d〈ns〉/dT and
d〈nm〉/dT at T ≈ 1.3 and a negative one in d〈nstr〉/dT at T ≈ 1.4, plotted in
Figure 3.9b. The decrease in stripe contacts gives, furthermore, rise to the
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Figure 3.8: Canonical expectation values of important observables and their
temperature derivatives for a = 1.5: (a) the number of self-contacts 〈nm〉, the
number of surface contacts without stripes 〈ns〉, the number of stripe contacts
〈nstr〉 and the number of total wall contacts 〈nw〉 normalised to the length of
the chain; (c) the energy 〈E〉 and its components 〈−ns〉, 〈−bnm〉 and 〈−anstr〉;
(e) the squared radius of gyration 〈R2

gyr〉 and its components 〈R2
gyr,x〉, 〈R2

gyr,y〉
and 〈R2

gyr,z〉; (b), (d) and (f) show the temperature derivatives of (a), (c) and
(e), respectively.
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low temperature peak in CV at T ≈ 1.5 (Figure 3.9d) as the system enters
the adsorbed phase. As the temperature increases further, the number of
wall contacts decrease rapidly resulting in a negative peak in d〈nw〉/dT at
T ≈ 2.6, giving rise to the high temperature peak in CV at T ≈ 2.5 and the
system undergoes a transition into the desorbed phase.

Information about the changes in the shape of the chain can be found
in the negative peak in d〈R2

gyr,y〉/dT at T ≈ 1.3 and the positive one in
d〈R2

gyr,x〉/dT at T ≈ 1.5, indicating that the chain undergoes a transition
from the stretched shape along the stripe, i.e. along the x-axis, to shapes
that extend also along the y axis. Another shape transition can be located
at a higher temperature in d〈R2

gyr,z〉/dT at T ≈ 2.6, indicating that the
chain changes its shape from a flat (two-dimensional) to a three-dimensional
conformation.

Estimating the position of the recognition transition at low tem-
peratures

Knowing the ground states of the chain in the recognised and the rest of
the adsorbed phase one can make a rough estimate of the position of the
recognition transition. The energy of the recognised chain is Erecognised =
E(0, 15, 0) = −15a (see Figure 3.5b), the energy of the chain at say a = 1.5
is Eadsorbed = E(10, 5, 8) = −18 − 5a (see Figure 3.5a). Solving Eadsorbed −
Erecognised = 0 for a yields a = 1.8 meaning that:

• Eadsorbed < Erecognised, for a ≤ 1.8

• Eadsorbed > Erecognised, for a ≥ 1.8

which agrees approximately with the position of the recognition transition
in the phase diagram in Figure 3.3b.

Microcanonical Analysis

Looking for first-order phase transitions, one can also perform a microcanon-
ical analysis of the system using the computed density of states. Detailed
information about the theory of microcanonical thermodynamics of finite
systems can be found in [22]. This kind of analysis allows one to detect tran-
sitions with phase coexistence. For that purpose one needs to look at the
density of states in Figure 3.10a. If one is able to find a tangent line to the
entropy S(E) = kB log Ω(E) that is a tangent at two points of the curve and
does not intersect the curve at any other points, then the inverse slope of that
line is the transition temperature. One can easily fit tangent lines to S(E)
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Figure 3.9: The same as Figure 3.8 but for a = 3.5.
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per hand, but taking a parametrisation with non-integer values of a (as in
Figure 3.10b) changes things completely. Due to the lattice, only states with
discrete energy values exist, moreover due to the self-avoidance and the wall
constraint only states with a certain combination of the number of contacts
(ns, nstr, nm) are allowed. This creates a quite messy picture of the density
of states for some non-integer combinations of the parameters a and b. In
order to extract the transition temperatures for each parametrisation I used
the following automated approach:

1. compute S(E)

2. for each pair (Ei, Ej) solve the system of equations{
S(Ei) = aij + bijEi

S(Ej) = aij + bijEj

for aij and bij, thus defining the linear function fij(E) = aij +bijE that
passes through the points (Ei, S(Ei)) and (Ej, S(Ej))

3. if fij(E) ≥ S(E) ∀E 1, then T = 1/bij is the microcanonical transition
temperature.

Using this method I could obtain the adsorption and the recognition
transition curves plotted in Figure 3.11. There are a few horizontal lines
in the plot that are located in the desorbed region. They correspond to
the high energy peak region in Ω(E) (Figure 3.10a) and come from neigh-
bouring energy values, on which tangent lines with a small slope can be
fitted. These horizontal lines can easily be filtered out by requiring that the
tangents are fitted through energy values Ei and Ej some distance apart.
Requiring |Ei − Ej| > b seems a good rule of thumb in this case, since the
minimum energy change in the high energy phase is b. This yields the plot in
Figure 3.11b, where one can clearly identify the adsorption and recognition
transition lines. As one can see, the phase boundaries are well defined lines
for large values of a, opposed to the curves on the canonical phase diagram.
The slope of the recognition transition boundary is 0.6000(1) and the slope
of the adsorption transition boundary for a > 7 is 0.5988(1).

1This step cannot be done as written on a computer, because fij(E) ≥ S(E) is not
always fulfilled for E ∈ {Ei, Ej} when using floating point numbers with finite precision
in the numerical calculations of fij(E). The latter criteria can be in practise rewritten as
fij(E) + εnum ≥ S(E). I used εnum ≈ 1000× 10−16 for calculations with double precision
floating point numbers (IEEE 754) with the hope that it would give me enough precision
to detect the functions fij(E) giving me first-order phase transitions without much false
positives.
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Figure 3.10: The density of states of the system for: (a) integer values of a
and (b) a non-integer value of a . The arrow indicates increasing value of a.

In order to better understand the transitions, let’s first take a look at the
construction of the tangents to S(E). Figure 3.12 gives an example for a = 5.
The line corresponding to the adsorption transition touches S(E) at E = −2
and E = −39. The line corresponding to the recognition transition touches
S(E) at E = −68 and E = −75. The latter line is interesting, because (for
large enough values of a, where one can detect the recognition transition) it
connects the lowest energy state (E1 = E(0, N, 0), Ω(E1) = 2) with what
seems to be a small peak in S(E). The energy corresponding to that peak is
E2 = E(2, N − 2, 1). This is the set of all conformations laying onto a stripe
with all but two monomers, which lay on the rest of the wall and allow the
chain to form one self-contact. Such a conformation is depicted in Figure 3.13.
The total number of such conformations is Ω(E2) = 56. Knowing this, one
can calculate the microcanonical temperature corresponding to the transition
between these two states:

T =
E2 − E1

log(Ω(E2))− log(Ω(E1))
=

E2 − E1

log(Ω(E2)/Ω(E1))
. (3.4)

This yields T = (2a− 2− b)/ log(28) = (2a− 3)/ log(28). This expression
for the temperature of the recognition transition gives the line in Figure 3.11.
Moreover, it is an analytic expression that allows one to also estimate the
value of a where the recognition transition would start to appear:

a = lim
T→0

T log(28) + 2 + b

2
= 1 +

b

2
= 1.5 (3.5)

This value is close to the previous estimation of a = 1.8. Doing the
same kind of analysis in order to obtain an analytic expression for the ad-
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Figure 3.11: The phase diagram recovered from the microcanonical analysis
for two different variations of the method described in 3.4.1: one allowing
|min(Ei − Ej)| > 0 (a) and the other allowing |Ei − Ej| > 1 (b). The points
indicate transition temperatures computed from the density of states for
different values of a in the parametrisation b = 1.
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sorption transition would be quite difficult, due to the high entropy of the
conformations involved.

3.4.2 Narrow stripes (w = 1, b = 5)

Increasing the strength of the self-attraction results in a linear shift of the
collapse and the freezing transitions for a free chain. The self-attraction is
chosen to be b = 5 in this section, thus shifting the collapse of the free chain
to T ≈ 4.5. This temperature is above the adsorption transition temperature
for small values of a and allows the observation of collapse in the desorbed
phase, thus changing the phase diagram. Moreover, it forces the appearance
of other phases that would otherwise be observed at b = 1 in long chains.
Longer chains allow for higher number of self-contacts per unit length (nm/N)
which allows for higher contributions to the value of the energy compared
to the other interactions and allows the energy to fluctuate more. Taking a
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(a)

(b)

Figure 3.13: Example conformations with energy E(2, N − 2, 1). The thick
grey line illustrates a stripe.

look back at the definition of the energy of the chain:

E(ns, nstr, nm) = −εsns − εstrnstr − εmnm (2.1)

normalising to the length of the chain:

E(ns, nstr, nm)/N = −εs
ns

N
− εstr

nstr

N
− εm

nm

N
(3.6)

and having in mind that max(ns/N) = max(nstr/N) = 1 where max(nm/N) =
O(4) with O(4) < 4, one can easily see that for N = 15, bmax(nm/N) ≈ 3.7
gives comparable energy contributions as longer chains. This artificial am-
plification of the self-interaction, that otherwise happens naturally in longer
chains, gives the possibility to observe layering in the low temperature re-
gion. One can identify three different phases in the low temperature adsorbed
region (T < 1):

• a ∈ [1.1; 1.7], where 〈ns〉 = 6, 〈nstr〉 = 3, 〈nm〉 = 11

• a ∈ [2.3; 4.9], where 〈ns〉 = 4, 〈nstr〉 = 4, 〈nm〉 = 11

• a > 5.6, where 〈ns〉 = 0, 〈nstr〉 = 15, 〈nm〉 = 0

The first two phases with 〈nm〉 = 11 have compact chains formed in two
layers, where one side of the structure is attached to a stripe and the rest
of the surface. Example conformations from these phases are depicted in
Figure 3.16 and Figure 3.17.
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Figure 3.14: (a) the phase diagram of the system with (b) a zoom-in of
the interesting part of the plot. The curves indicate minima or maxima
of d〈O〉/dT for different values of the monomer-stripe interaction a. The
legend of (b) is the same as that of (a), every 5th data point is plotted in
(a). The lines of the arrows indicate the position of the collapse and freezing
transitions as calculated from the free chain. The heads of the arrows are
used to outline the arrow lines from the rest of the curves and carry no
physical information.
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of a. The arrow indicates increasing values of a.

Collapse

The collapse transition in this parametrisation can be identified with the
horizontal straight line at about T ≈ 4.7 for a < 4. For larger values of a
the peaks in d〈R2

ee〉/dT and d〈R2
gyr〉/dT shift to higher temperatures due to

the influence of the adsorption transition. The continuation of the horizontal
line for a > 4 indicates only the positions of the peaks in the observables
mentioned above. It does not indicate any collapse, since the number of
self-contacts (plotted in Figure 3.15) at those temperatures is quite low,
therefore indicating that the conformations are not globular. Both parts
of the phase diagram separated by that line are named “desorbed 1” and
“desorbed 2”. The conformations in these regions have coil-like structure.
The region below the collapse transition line is named “DC” - desorbed
collapsed. This means that for those values of a, going to lower temperatures
would allow the globular structures to be adsorbed onto the surface, which
is known as the surface attached globule (SAG) phase.
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Figure 3.16: Conformation with N = 15, ns = 6, nstr = 3, nm = 11. The
thick grey line illustrates a stripe.

Freezing

A minimum in d〈nm〉/dT can be detected as a horizontal straight line in
the phase diagram at about T ≈ 3.25 for small values of a. Its position
corresponds to the expected position of the freezing transition for a free chain
with b = 5.0. That is at T = 3.2160(5). The region between the freezing and
the adsorption transition lines is labelled as the “DF” phase, i.e. desorbed-
frozen. For larger values of a near the position of the adsorption transition,
the line changes its slope and becomes an inclined straight line for a > 5.
For those values at a > 5 the fraction of self-contacts is low (Figure 3.15).
Therefore this cannot be called a freezing transition line in that region. The
reason for the peak not staying at a constant temperature is the same effect
as discussed for the behaviour of the collapse transition. This leads to a new
phase between the “desorbed 1” and the “adsorbed” which is here labelled
as “desorbed 3”. The fact that this phase is detectable is consistent with the
assumption that the adsorption transition should modify all transitions from
the “desorbed” phase in the same way.

Adsorption

For small values of a the collapse transition takes place at a higher temper-
ature than the adsorption transition. Therefore the adsorbed chains have
globular form (SAG) with only a small number of wall contacts nw as one
can see in Figure 3.18. The ground state of the ISAW in the case of small a
is composed of two layers as one can see from the value of 〈R2

gyr,z〉 6= 0. For
values of a < 1.7 it has the ground state conformation of a free chain and
is attached with one side to the wall as depicted in Figure 3.16. For values
of 2.8 < a < 4.6 elongated shapes along a stripe depicted in Figure 3.17
are preferable. For values of a > 4.6, no collapse can be clearly detected.
For a > 7 the adsorption transition shifts to higher temperatures than the
collapse transition and therefore no collapse is possible.
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Figure 3.17: Conformation with N = 15, ns = 4, nstr = 4, nm = 11. The
thick grey line illustrates a stripe.
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Figure 3.18: (a) the expected number of wall contacts 〈nw〉 and (b) the ex-
pectation value of the z component of the squared radius of gyration 〈R2

gyr,z〉
for different values of a. The arrow indicates increasing values of a.
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Figure 3.19: (a) the expected number of stripe contacts 〈nstr〉 and (b) the
expectation value of the squared end-to-end distance 〈R2

ee〉 for different values
of a. The arrow indicates increasing values of a.

Collapse of the adsorbed chain

The collapse transition can be detected in the adsorbed phase too. It is
indicated by the small approximately horizontal lines at T ≈ 2.5 for 4 < a <
6. Above that line the conformations are two dimensional and that part of
the phase is labelled here as “AE” (adsorbed extended). The larger a gets
the more extended the chain becomes in “AE” as can be seen from the values
of 〈R2

ee〉 in Figure 3.19b. The lower part of the adsorbed phase is labelled
here as “AC2” to indicate that the chain is adsorbed, collapsed and forms
two layers. Therefore, the transition line separating “AE” and “AC2” can
be associated with the collapse transition. The chain having contacts with
the attractive wall has less energy than the same chain with no contacts to
the attractive wall. This results in a shift of the temperature of the collapse
transition in the adsorbed phase. That is the reason why it is located at a
lower temperature than in the desorbed phase.

Recognition

The recognition transition can be clearly identified for values of a > 5.6.
The ground state is again a one dimensional chain laying completely along a
stripe with ns = 0, nstr = 15, nm = 0 as can be seen in Figure 3.19.
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Estimating the position of the recognition transition at low tem-
peratures

Knowing the structure of the SAW at low temperatures for different values
of a makes it easy to estimate the positions of several transitions:

• solving E(6, 3, 11)− E(4, 4, 11) = 0 for a gives a = 2

• solving E(4, 4, 11)− E(0, 15, 0) = 0 for a gives a = 59/11 ≈ 5.4

Microcanonical Analysis

As one can see in Figure 3.20a, the interpretation of the data from the mi-
crocanonical analysis is a bit tricky, since there are a lot of horizontal lines
in the desorbed phase. Using the same rule of thumb |Ei − Ej| > b removes
these effects and produces the nice phase diagram in Figure 3.20b. What
is left after filtering the effects of the free chain is the adsorption, recogni-
tion and the freezing (T ≈ 3.1) transition lines. The collapse transition is
not present because it is not of first-order. One can also clearly see that the
slopes change at a point where two lines cross. The temperature of the recog-
nition transition for a > 7 can again be trivially calculated as in section 3.4.1.
The transition is between the same two types of conformations with ener-
gies E1 = E(0, N, 0) and E2 = E(2, N − 2, 1). The transition temperature
is then T = (2a − 7)/ log(28). The slope of the recognition transition for
a < 7 cannot be deduced in a trivial way, since it involves different types of
conformations over the range of values of a. A simple approximation for the
temperature of the recognition transition in that part of the phase diagram
is the transition between the conformations with energy E1 and the type of
conformations depicted in Figure 3.17 with energy E3 = E(4, 4, 11). The
number of conformations Ω(E3) has not been calculated explicitly but can
be estimated from the density of states for a = 6, where Ω(E3) = 11388.
Thus, the resulting transition temperature is T = (11a− 59)/ log(5694) and
fits approximately the data points in the phase diagram.

3.4.3 The effect of zw

Increasing the distance zw between the bounding walls increases the volume
of the systems. This results in an increase of the entropy in the high en-
ergy region, see Figure 3.21. Consequently, this leads to an increase of the
slope of the straight line indicating the first order phase transition in the
microcanonical entropy, which means that the adsorption temperature shifts
to lower temperatures for larger values of zw. This effect can be seen in the
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Figure 3.20: The phase diagram recovered from the microcanonical analysis
for two different variations of the method described in 3.4.2: one allowing
|min(Ei − Ej)| > 0 (a) and the other allowing |Ei − Ej| > 5 (b). The points
indicate transition temperatures computed from the density of states for
different values of a for b = 5.
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canonical phase diagram in Figure 3.22, where some of the transition lines are
plotted. The decrease of the adsorption temperature allows one to clearly
detect the straight horizontal line of the collapse transition in d〈R2

gyr〉/dT
and d〈R2

ee〉/dT over a larger range of temperatures. One sees that as zw
increases, the entropy from the desorbed phase leads to larger contributions
and thus the curvature in the straight line of the collapse sets on for larger
values of T . This is also a good example to show that this curvature is purely
a mathematical effect. The only physical information that it carries is the
temperature at which the presence of the attractive surface and stripes can
be detected in the desorbed phase. The same mathematical effect appears in
the freezing transition line, but has been omitted from the plot for clarity.

This part of the canonical phase diagram shows another interesting effect
- the adsorption transition line gets closer to the recognition transition line
as zw increases. These transitions cannot be clearly distinguished from each
other for larger values of a in all observables that are of interest. Moreover,
the transition lines for zw ∈ {16N + 1, 32N + 1, 64N + 1} cannot be distin-
guished from each other on the scale of the plot. The latter can be easily
understood from the microcanonical entropy in Figure 3.21. Note that the
density of states for weak self-attraction (b = 1) is plotted in order to make it
visually clear for the reader to understand what is to follow, since the struc-
ture of the density of states in the case of strong self-attraction (b = 5) is
more complicated, still the same arguments apply in that case too. Without
loss of generality, I will drop the indices ij used in 3.4.1 and denote with
f(E) = a + bE the straight line passing through the points (E1, y1) and
(E2, y2) of the microcanonical entropy y(E) = log Ω(E), where E1 < E2, i.e.
E2 is the energy from the high energy region dominated by desorbed con-
formations. The transition temperature is then T = 1/b, where b = dy/dE
with dy = y2 − y1 and dE = E2 −E1. To a first approximation Ω(E2) ∝ zw.
It follows that in that region y2 ∝ log zw. Since y1 is the number of adsorbed
conformations, it is constant and does not change for zw ≥ 2N + 1. Thus
dy ∝ log zw ⇒ T ∝ dE/ log zw. Increasing zw lifts the bell shaped high en-
ergy region of the entropy retaining the shape, which results in dE ≈ const
for zw ∈ [2N + 1; 64N + 1]. Therefore, to a first approximation T ∝ 1/ log zw
explains the behaviour of the adsorption transition line and also proves the
intuitive result limzw→∞ T = 0, i.e. no adsorption for an infinitely large vol-
ume.

A better approximation in order to fit the data points is Ω(E2) = pzw +q,
where p is the number of free conformations per starting point ×d and q
accounts for the number of conformations with starting points z ≤ N from
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Figure 3.21: The density of states for a = 2, b = 1 and zw = 2kN + 1, with
k = 1, 2, . . . , 8. The arrow indicates increasing values of zw.

a wall. The adsorption temperature in this case is

T ≈ dE

log(pzw + q)− y1
=

dE

log(zw + q
p
) + log p− y1

, (3.7)

rewriting with c1 = dE, c2 = log p− y1 and c3 = q/p:

T ≈ c1
c2 + log(zw + c3)

. (3.8)

The latter formula fits the simulation data acquired from the microcanon-
ical analysis quite well for zw = 2kN + 1, with k = 1, 2, . . . , 8C=. Fitted
curves and the corresponding fit parameters can be found in the Appendix.

There is another misleading effect in the canonical phase diagram in Fig-
ure 3.22, namely that the recognition transition moves to higher temperatures
with increasing zw. Looking at the microcanonical phase diagram, the situ-
ation looks different - the recognition transition stays in place, it is just the
adsorption transition that shifts to lower temperatures with increasing zw.
Moreover, other effects appear for large values of a: the slope of the adsorp-
tion transition decreases with increasing zw. Eventually, for large enough
zw the adsorption transition merges with the recognition transition as illus-
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Figure 3.22: Part of the canonical phase diagram for b = 5 and zw = 2kN+1,
with k = 1, 2, . . . , 6. The arrows indicate increasing values of zw on each
transition line. Note that the curves for k ≥ 4 cannot be distinguished from
each other on this scale.

trated in the microcanonical phase diagram for zw = 128N+1 in Figure 3.23.
Further increase of zw results in a shift of the merged transition to lower tem-
peratures. The merge of the adsorption and the recognition transitions can
be easily explained by the fact that the high temperature regime is domi-
nated by the entropy of the free chain, where the low temperature regime is
dominated by the high Boltzmann weight of the recognised chain. In other
words, an adsorbed but not recognised chain has low entropy and low Boltz-
mann weight and plays a less significant role in the ensemble averages with
increasing values of a and zw.

3.4.4 Wider stripes (w = 2, d = 5)

Exact enumeration has been done also on a system with larger stripe width.
The value chosen here is w = 2. The distance between the left-most edges
of neighbouring stripes is kept fixed at d = 5. The overall system behaviour
is similar. One finds the same types of phases and phase boundaries. The
main difference here is that the increased stripe width increases the fraction
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Figure 3.23: The microcanonical phase diagram for b = 5 and zw = 128N+1
using the filtering criteria |Ei − Ej| > b.

of the surface covered by the stripes from 1/5 for w = 1 to 2/5 for w = 2.
This changes the ground states in the different phases and results in shifts
of the phase boundaries. The phase diagrams for weak (b = 1) and strong
(b = 5) self-attraction are plotted in Figures 3.24 and 3.25.

Adsorption transition

The increased fraction of the stripe surface allows the chain to be adsorbed
easier for values of a > 1. This explains the increase of the slope of the
transition line. The ground states in the “adsorbed” phase are different from
the ones in the system with narrow stripes, but that does not affect the
overall structure of the phase diagram.

Recognition transition

An important difference here is the fact that the wider stripes change the
ground state of the recognised chain. In this case, the linear chain structure is
no longer the one with the lowest energy. The wider stripe makes it possible
for the chain to create self-contacts without the loss of stripe contacts. This
results in conformations with lower energies compared to the system with
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Figure 3.24: (a) the phase diagram of the system with b = 1 (b) a zoom-in
of the interesting part of the plot. The curves indicate minima or maxima
of d〈O〉/dT for different values of the monomer-stripe interaction a. The
legend of (b) is the same as that of (a), every 5th data point is plotted in
(a). (Note that the data set is up to a = 21 but the plot has been extended
to accommodate the legend.)
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Figure 3.25: (a) the phase diagram of the system with b = 5 (b) a zoom-in
of the interesting part of the plot. The curves indicate minima or maxima
of d〈O〉/dT for different values of the monomer-stripe interaction a. The
legend of (b) is the same as that of (a), every 5th data point is plotted in
(a). (Note that the data set is up to a = 21 and T = 10 but the plot has
been extended to accommodate the legend.)
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(a)

(b)

Figure 3.26: Example ground states for large values of a of the system with
wider stripes. Both conformations (a) and (b) have the same energy.

narrow stripes. Moreover the ground state in the recognised phase is highly
degenerate. It is a SAW confined on a stripe with maximum self-contacts
as illustrated in Figure 3.26, where two possible conformations are depicted.
Contrary to the narrow stripe system, there are some temperature induced
effects in this part of the phase diagram. Increasing the temperature leads to
breaking some self-contacts, thus stretching the chain along the stripe. This
could also be related to the freezing transition, since it is dependent only on
the strength of the self-interaction b. Hence happens at constant temperature
Trfreezing for large values of a. Moreover, Trfreezing ≈ 0.65 for b = 1 is close to
the temperature where the freezing transition of the free chain takes place.
Increasing b results in a linear shift of Trfreezing as in the case of the freezing
transition temperature. The part of the “recognised” phase where the frozen
conformations dominate is denoted here as the “recognised,frozen” phase and
the boundary between both is indicated by the approximately horizontal line
in the bottom part of the phase diagram. The slope of the recognition tran-
sition line (the one separating the “adsorbed” and the “recognised” phases)
is greater than in the system with narrow stripes again due to the larger
fraction of the wall, which is occupied by the stripes.

Collapse transition

The collapse transition should be located below the adsorption transition
for b = 1 and cannot be clearly identified. For larger self-attraction (b =
5) it is located above the adsorption transition for small values of a and
can be detected on the canonical phase diagram. Moreover, in this case
the collapse in the “adsorbed” phase is poorly detectable as peaks in the
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canonical expectation values of the observables considered. There is only
one curve that approximately indicates the collapse and hence the boundary
between the “AE” and “AC2” phases. The influence of the attractive surface
on the desorbed phase is again indicated as the line separating the “desorbed
1” and “desorbed 2” phases.

Freezing transition

The freezing transition is located below the adsorption transition for b = 1
and is not clearly identifiable as well. For larger self-attraction (b = 5) it is
located above the adsorption transition for small values of a. The influence
of the attractive surface on the desorbed phase is also indicated by bending
of the curve upwards and the part of the phase diagram that I have labelled
as “desorbed 3”.

Microcanonical analysis

The microcanonical phase diagram of the system with wider stripes is more
complicated due to the fact that the wider stripes allow several transitions
between two-dimensional conformations fully attached to a stripe but with
different number of self-contacts. These can be identified as horizontal lines
in the recognised phase. Moreover, the transition between the “recognised”
and the “recognised,frozen” phases is also detected using the microcanonical
analysis. The conformations from both phases have neighbouring energies
E1 and E2 where |E1 − E2| = b. Due to this, the transition line gets filtered
when using the criteria |Ei − Ej| > b to obtain the most important parts of
the phase diagram, see Figures 3.27 and 3.28. However, a horizontal line in
the recognised phase passes this criteria, but that one is not associated with
the transition between the “recognised” and the “recognised,frozen” phases.

Another peculiar fact is that the part of the “adsorbed” phase not con-
taining the “recognised” phase disappears when the self-attraction is stronger
(b = 5) for larger values of a and one observes a direct transition between the
“desorbed” and the “recognised” phases in that parameter range, though the
canonical phase diagram indicates what seems to be two separate transitions.
This, however, can be misleading since for N = 19 one can clearly detect two
separate lines in the microcanonical phase diagram in Figure 3.29 indicating
the adsorption and the recognition transitions.
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Figure 3.27: The phase diagram recovered from the microcanonical analysis
for two different variations of the method described in 3.4.1: one allowing
|min(Ei − Ej)| > 0 (a) and the other allowing |Ei − Ej| > b (b). The points
indicate transition temperatures computed from the density of states for
different values of a for b = 1.
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Figure 3.28: The same as in Figure 3.27 but for b = 5.
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Figure 3.29: The computed microcanonical phase diagram for N = 19, b = 5
using the filtering criteria |Ei − Ej| > b.

3.5 Chain in a cavity (N = 15, 16, 17, 18, 19)

3.5.1 Narrow stripes (b = 1, w = 1)

The overall structure of the phase diagram does not change in the range
15 ≤ N ≤ 19. The main difference is that the adsorption and recognition
transition lines in the canonical phase diagram shift to higher temperatures.
The shift is greater for larger values of a. The adsorption transition shifts
more than the recognition transition, which is barely detectable on the scale
of the plot in Figure 3.30. However, the microcanonical plot in the same
Figure shows a different behaviour. The adsorption transition shifts to higher
temperatures with increasing chain length, but the recognition transition
shifts to lower temperatures.

3.5.2 Narrow stripes and stronger self-attraction (b =
5, w = 1)

The overall structure of the phase diagram of the system with narrow stripes
and stronger self-attraction does not change for 15 ≤ N ≤ 19. The directions
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Figure 3.30: (a) part of the canonical phase diagram for b = 1 for 15 ≤ N ≤
19, (b). The arrows indicate increasing values of N . Note that every 2nd
data point has been plotted in (a).
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of the shifts in the transitions are the same as in the case of weak self-
attraction (b = 1).

3.5.3 Wider stripes w = 2

The overall structure of the phase diagram of the system with wider stripes
does not change for 15 ≤ N ≤ 19. The directions of the shifts in the
transitions are the same as in the case of narrow stripes both for b = 1 and
b = 5.

3.6 Chain in a cavity - comparison to Monika

Möddel’s results

Monika Möddel has studied a similar model as part of her PhD Thesis [12] at
the University of Leipzig. Her work is based on Monte Carlo computer sim-
ulations of polymer chains in continuum, i.e. the positions of the monomers
are not confined to a lattice. The self-attraction, self-repulsion (analog to
the self-avoidance on lattice) and the wall attraction have been modelled by
continuous potentials. The chain length is chosen to be N = 40. One cannot
do a simple one-to-one mapping between the results in that work and the
present work. The choice of the chain length affects the absolute positions
of the collapse and freezing transitions of the free chain. The choice of the
lattice (continuum in Möddel’s work) affects the number of nearest neigh-
bours, the maximum number of self-contacts for a fixed chain length N , as
well as geometry of preferable conformations. This might also affect the ab-
solute position of the collapse and freezing transitions as well. The position
of both is also affected by the chosen strength of the self-attraction. These
facts alone, do not allow a simple one-to-one mapping between both works.
However, qualitatively the results of both works are comparable in terms of
the stripe-attraction vs. temperature phase diagrams:

• the general structure of the phase diagram is similar - the phases appear
in the same order, the phase boundaries have comparable shapes

• the slope of the adsorption transition increases with increasing stripe
width

• a freezing transition can be found in the “recognised” phase of the
system with wider stripes and none could be found in the case of narrow
stripes
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• the collapse transition could be located in the “adsorbed” phase at
lower temperatures than the collapse transition in the “desorbed” phase.

• the “width” of the transitions lines in Möddel’s work has been indi-
cated in this work by plotting the peaks of several observables (where
possible), in order to show that there is a certain “spread” of the signal
in these finite systems

Quantitatively, the results are not comparable, but the interesting part
of the phase diagram is located at temperatures and stripe attractions of the
same order of magnitude: 1 ≤ a ≤ 10, 0 ≤ T ≤ 10.

3.7 Chain grafted to a stripe

3.7.1 N = 15, w = 1, d = 5, b = 1

This section considers a grafted chain, i.e. one end of the ISAW is fixed to
a stripe. The chain is allowed to extend completely, i.e. zw > N . The latter
is equivalent to removing the steric wall, since the chain cannot enter the
free space with coordinate z > N and hence that part of the volume has no
contribution to the system and can effectively be removed. The lack of free
chains results in reduced entropy in the high energy region. This effect can be
seen by comparing the the density of states of the grafted and the non-grafted
systems, which are plotted in Figures 3.31 and 3.10a, respectively.

The high energy region, where the entropy reduction takes place is E >=
−11 for this chain length. This results in a change of the adsorption tran-
sition, since the convex intruder is not present any more. Due to the graft-
ing of the chain, at least one monomer is attached to a stripe at all times.
Therefore globular conformations cannot be adsorbed by creating arbitrary
contacts with the wall, since one end of the chain must have a contact with
a stripe.

The entropy in the low energy region has similar structure in both cases.
This indicates that the recognition transition is similar in both systems.
However, the degeneracy of the E(2, N − 2, 1) state is lower than in the
non-grafted system, because some of the conformations where one end of the
chain is not on the stripe are not allowed (see Figure 3.13 for an illustration).
Therefore, the slope of the recognition transition in the microcanonical anal-
ysis is higher T = (2a− 3)/ log(26), compared with T = (2a− 3)/ log(28) for
the non-grafted system.

The adsorption transition in this system can be detected only as a minima
in d〈nw〉/dT and d〈R2

gyr,z〉/dT for larger values of a. For small a, one can
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Figure 3.31: The density of states of the grafted system for integer values of
a. The arrow indicates increasing value of a.

detect a maxima in CV and a minima in d〈Onstr〉/dT , but the peaks from
the recognition transition are much higher and the trace of the adsorption
transition disappears in these observables as can be seen in Figure 3.32.
The peaks in CV and d〈Onstr〉/dT indicating the adsorption transition are
approximately at the position of the signal in d〈nw〉/dT for small a, but the
the signal in d〈R2

gyr,z〉/dT deviates from that.

Surprisingly, the microcanonical phase diagram in Figure 3.33 is rich on
information on in what could be labelled here as the “desorbed” phase. How-
ever, analysing all of the is not in the scope of this work. The recognition
transition line can be analytically calculated as was mentioned before, but
one cannot clearly identify the adsorption transition curve.

3.7.2 N = 15, w = 2, d = 5, b = 1

Increasing the stripe width to w = 2 accounts for the appearance of the
“recognised,frozen” transition as in the case of the non-grafted system. This
can be seen in the phase diagram in Figure 3.34. The slopes of the recognition
transition and the indications for the adsorption transition are larger, as
in the case of the non-grafted system. This is expected, since the stripes
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Figure 3.32: (a) the phase diagram of the system with (b) a zoom-in of
the interesting part of the plot. The curves indicate minima or maxima of
d〈O〉/dT for different values of the monomer-stripe interaction a. The legend
of (b) is the same as that of (a), every 5th data point is plotted in (a).
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Figure 3.33: (a) part of the computed microcanonical phase diagram of the
system; (b) a zoom-in of the interesting part of (a).
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occupy a larger fraction of the surface and thus allow for easier adsorption
of the chain. The microcanonical diagram is skipped here. It shows again
transition lines at constant temperatures in the recognised phase as in the
case of non-grafted system. The transition between the “recongised” and the
“recognised,frozen” phases is again detected in the microcanonical analysis
and is hence a first-order phase transition. The part of the microcanonical
phase diagram where the desorbed phase it located is again rich of detected
transitions. These are, as already mentioned, not in the scope of this work.

3.7.3 N = 15− 19, stronger self-attraction

One can force the grafted chain to undergo a collapse transition in the des-
orbed phase by increasing the strength of the self-interaction. The parts of
the chain no connected to the surface allow for comparable effects to the free
chain, i.e. a collapse and freezing transitions can be detected. The location
of the transition temperatures for both are close to the ones of the free chain.
The effect of increasing b is again an approximately linear shift of both the
collapse and the freezing transitions. Moreover, because of these similarities
to the non-grafted system, further discussion will be skipped.
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Figure 3.34: (a) the phase diagram of the system with (b) a zoom-in of
the interesting part of the plot. The curves indicate minima or maxima of
d〈O〉/dT for different values of the monomer-stripe interaction a. The legend
of (b) is the same as that of (a), every 5th data point is plotted in (a).
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Chapter 4

Pruned-Enriched Rosenbluth
Method

4.1 Introduction

There are a few disadvantages when using the method of exact enumeration:

• one cannot enumerate large systems in a reasonable amount of com-
puter time

• one obtains only statistical averages of the observables and loses the
detailed information about the typical conformations for each phase.

The first one is a major disadvantage when one wants to obtain informa-
tion about larger systems or is interested in scaling behaviour. The second
one is a major disadvantage when it comes to studying the geometrical shapes
that the ISAW forms in the different phases. The exact enumeration delivers
statistical averages but one cannot ask questions such as: what is the typical
shape a certain part of the phase diagram. One can read off the expected
values of certain observables like different types of contact numbers or the
chain energy. But when one wants to study a conformation specified by these
parameters, one needs to re-enumerate the whole system again and save out
the chains of interest. Repeating this step several times for each phase is a
highly impractical approach since the enumeration takes quite a long amount
of time. In order to cope with both problems one can resort to the method
of Monte Carlo simulations. There are two approaches that one can choose:

• Markov chain Monte Carlo methods - one starts with a complete sys-
tem, which evolves in fixed steps according to certain rules

69
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• chain growth Monte Carlo methods - one tries to generate a complete
system multiple times.

In the first method one needs a good set of rules for system evolution.
In the case of lattice polymer models these rules try to move parts of the
chain or cut parts of it and put them on other places. After applying the
rules, which is called an update, one gets possibly a new system state, which
can further be changed by doing an update again. This sampling method
must satisfy two major criteria: detailed balance and ergodicity. Due to
the geometrical constraints implied by the self-avoidance requirement for the
chain, however, a “good” set of rules is needed. Finding such a set is not a
trivial task and there has been a lot of research in this direction [23, 24, 25].

Another approach is the chain growth method. One starts at a fixed point
in the system and tries to generate a chain by growing it step by step from
that point. Choosing the next step is done again via a certain set of rules.
The simplest one would be to try to complete the chain by choosing the next
step at random. This however leads to creating conformations that do not
fulfil the self-avoidance requirement. The result is a waste of computation
time, since these chains are invalid, need to be discarded and one has to start
growing the chain from the beginning.

The first idea to try to generate random SAWs without wasting that much
computer time is relatively old an can be traced back to [6]. Their rules are
quite simple: choose the next step at random from all possible valid new
steps, i.e. all possibilities fulfilling the self-avoidance constraint. Each chain
of length N is given a weight WRR

N to correct the bias introduced by choosing
only valid new steps:

WRR
N =

N∏
n=1

mn (4.1)

where mn is the number of valid choices for the next step at the partial
length n. The formula can also be written in a recursive form:

WRR
n = WRR

n−1mn (4.2)

where WRR
n is the weight of the partial chain of length n. Partial chains

with no possible continuation, i.e. mn = 0 are given the weight WRR = 0 and
are hence discarded. The expectation value of the observable O is computed
as:

〈O〉 =

∑
iOiWi∑
iWi

(4.3)
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where Oi and Wi = WRR
N,i are the value of the observable and the weight

of the chain generated at the try i, respectively. This method might lead to
biased results as a small number of chains with large weights can dominate
the sum. Moreover, it is not as efficient as desired since partial chains that
cannot be completed due to a dead end, i.e. WRR = 0 are a waste of computer
time as they do not enter the sum. The number of full chains nN of length
N obtained from n0 tries to grow a full chain decreases exponentially with
N :

nN = n0exp (−λN) . (4.4)

This effect is called attrition and a possible solution to it has been pro-
posed short after in [26]. Their idea of tackling the problem is called enrich-
ment: taking p copies of the partial chain each s steps and trying to complete
all copies independently. A proper choice of p and s would reduce the effect
of attrition. A bad choice would lead to biased statistics. Their criteria for a
good choice is keeping the number of samples per enrichment step constant.

However, this approach does not mitigate the other problem, namely
the bias in 〈O〉. The latter has been tackled by a relatively new method
called Pruned-Enriched Rosenbluth Method (PERM) [27]. It uses the idea
of enrichment, but does not always enrich the partial chain every s steps. It
rather enriches by a factor p only when its weight Wn > W>

n , where W>
n is

the enrichment threshold. Moreover, this method introduces a mechanism to
control the number of chains with low weights: partial chains with weights
Wn < W<

n , where W<
n is the pruning threshold, are discarded with a certain

probability q. The events of pruning and enrichment are accounted for by
correcting the weight of the partial chain to account for the introduced bias:
Wn = Wn/p after enrichment and Wn = Wn/q after pruning. This method
allows one to control the distribution of the weights of the generated chains,
i.e. not spending too much computational time on lots of chains with low
weights. However, choosing the amount and threshold of enrichment and
pruning (p, q,W>

n and W<
n ) is not a trivial task. Bad choices might lead to

bad sampling.

Trivial choices that one can make are p = 2 and q = 0.5. The proposal
for choosing W>

n and W<
n in [27] is based on the idea of dynamic self tuning

of the algorithm to the running average of the partition sum Zn =
∑

iWn,i.
Initially, one sets W>

n = ∞ and W<
n = 0 in order to obtain some guess of

Zn for every length 1 ≤ n ≤ N . After that one sets W>
n = c>Zn/Z1 and

W<
n = c<Zn/Z1 where c> and c< are constants. The article quotes good

results for c>/c< ≈ 10, where c> and c< are of order 1. Note that I could
not find reliable, in my opinion, rules for tuning the algorithm such that one
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can be sure that the resulting statistics is correct. The only “reliability test”
that I could find was in [28], but that was not satisfactory for me. However,
there have been newer algorithms using the idea of PERM [29, 11, 30], but
they do not mention anything about the reliability of the resulting statistics.

Introducing a temperature to the system, one introduces the Boltzmann
factor exp (−βE) to the weight. Now the Rosenbluth-Rosenbluth sampling
is equivalent to a simple sampling. On every step n one chooses a free site
k ∈ [1,mn] with the same probability pk = 1/mn. The final weight of the
chain in this case is WN = W ss

N with:

W ss
N = WRR

N e−βE =
N∏
n=1

1

pk
e−βEk =

N∏
n=1

mne
−βEk (4.5)

where Ek is the energy corresponding to the chosen next step k.

One can also do importance sampling by choosing the next site k with a
probability depending on the energy contribution of that site:

pk =
e−βEk∑mn

k′=1 e
−βEk′

(4.6)

in which case the final weight of the chain becomes

WN = W is
N =

N∏
n=1

1

pk
e−βEk =

N∏
n=1

mn∑
k′=1

e−βEk′ . (4.7)

Equipped with this Monte Carlo technique one can easily obtain con-
formations from the interesting parts of the phase diagram by running the
algorithm with the desired set of parameters (a, b,N, zw, T ). The chains with
desired properties, such as specific number of contacts or energy, can be eas-
ily obtained and saved for later analysis. Using a computer, one can visualise
the conformation in order to analyse it’s geometrical shape and properties.
Using PERM, I was able to create and analyse the figures of conformations
in this thesis.

One can also use this MC method to study the phase diagram of the
system discussed in this thesis. One needs at least one simulation per data
point (a, b,N, zw, T ). Several simulations per data point are required in order
to obtain better statistics. That, however, is not feasible. I have used the
Multicanonical Chain-Growth Algorithm proposed in [11] in order to simulate
a system with the parameter set (a, b,N, zw) and then re-weight to all desired
temperatures T .
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4.2 Multicanonical Chain-Growth Algorithm

The Multicanonical Chain-Growth Algorithm has been proposed in [11]. The
idea is to use the modified weight WN = Wmuca(E)WRR, where E is the
energy of the chain. The recursive form of the equation reads:

Wn = Wn−1mn
Wmuca
n (En)

Wmuca
n−1 (En−1)

(4.8)

with Wmuca
0 = 1. Later one can introduce the temperature and re-weight

the expected values of all observables to the desired temperature. The key
to success lies in the proper choice of the values Wmuca(E). A possible way
of obtaining these is using an iterative process. One starts with the set of
weights W

muca,(I)
n (E) = 1 ∀E,∀n, where the superscript I indicates the

iteration counter. The first iteration (I = 1) with these weights is effec-
tively simulating at infinite temperature T → ∞, i.e. β = 0 . This yields a
histogram

H(I)
n (E) =

∑
i

Wn,iδE,Ei
. (4.9)

In the first iteration (I = 1) one obtains an estimate of the density of

states Ω(E), i.e. H
(1)
n (E) ∝ Ωn(E). The weights for the next iteration are

updated according to the rule

Wmuca,(I)
n =

W
muca(I−1)
n

H
(I−1)
n (E)

. (4.10)

After updating the weights, one starts the new iteration, simulating with
the those weights. A reasonable guess for the weights has been obtained after
several simulations. Following this, a production run can be started where
one measures all observables of interest. Obtaining the expectation value of
an observable from the production run is done as follows

〈O〉 =

∑
iOiWiΩ(Ei)e

−βEi∑
iWiΩ(Ei)e−βEi

(4.11)

where Ω(E) = H(E)/Wmuca(E) is the estimate of the density of states
up to a multiplicative constant. In practise the iteration in equation 4.11
takes a considerable amount of time, since one iterates over all the output
data for every value of β. The formula can be rewritten with sums over the
energy values:

〈O〉 =

∑
E HO(E)Ω(E)e−βE∑
E H(E)Ω(E)e−βE

(4.12)
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with:

HO(E) =
∑
i

OiWiδE,Ei
(4.13)

which saves computational effort.

4.3 Simulations of a free chain

The multicanonical chain-growth algorithm has been used to verify some of
the observables obtained from the method of exact enumeration. The results
coincide with the exact enumeration and this increases the confidence in
the correctness of the data obtained using both methods. Due to the time
constraint on the master thesis, further simulations and a systematic analysis
of the results could not be performed. However, I will mention some of the
problems observed.

The quality of the results from the production run depend highly on the
guess for the weights Wmuca(E). The quality of the latter however, seems to
depend on the fluctuations of the low-energy parts of the histogramsH(I)(E).
The more the histograms of the last few iterations fluctuate, the greater the
deviation of the data from the production run is from the exact enumeration.

The quality of the results depends even strongly on the choice of the
constants c> and c<. Bad choices deliver completely wrong results with
enormous error bars. This is in contrast to most Markov-Chain Monte Carlo
simulation methods, where the only parameter that one tunes is usually the
temperature.

The error bars obtained with the standard Jackknife method seemed too
small for the deviation from the data of the exact enumeration. Several
runs using the same set of weights Wmuca(E) but different random number
sets delivered data that was fluctuating more. Computing the error bars
from several runs seems a more reliable method for expressing the confidence
intervals.

Further detailed and systematic simulations with longer chains or with
the wall constraints could not be performed due to time constraints, therefore
no results are provided in this section. Moreover, this part of the study of
the system considered in the present work is to be left as a further research
opportunity.
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Summary and outlook

The goal of this work was to study the adsorption of polymers onto a stripe-
patterned surface. An ISAW was used to model the polymer on a square
cubic lattice. The energy of the system was defined as E(ns, nstr, nm) =
−εs (ns + anstr + bnm). Varying the monomer-stripe interaction strength via
the parameter a allowed for the study of the pattern effects on the behaviour
of the system. The phase diagrams obtained show the expected general
structure implied from the existing literature. However, the set of available
phases depends strongly on the strength of the self-interaction. The latter
shifts the collapse transition of the desorbed chain to lower or higher tem-
peratures. Thus the chain can first undergo a collapse transition before it
attaches to the surface as a globule or it can undergo collapse after attaching
to the surface and form compact conformations at low temperatures. The
existence of the “DC” phase is determined bu the relative position of the col-
lapse transition to the position of the adsorption transition. Moreover, the
strength of the self-interaction b was not found to affect much the position of
the adsorption transition. However, a larger values of b shift the recognition
transition to larger values of a as expected.

One of the main differences between long and short chains is that the
collapse transition of longer chains moves to higher temperatures and the
freezing transition stays approximately at a constant temperature (ignoring
artifacts from the choice of the lattice). This increases the temperature range
between both transition for larger chains and allows for the existence of a va-
riety of phases when one considers complex systems incorporating an ISAW.
Thus, the main disadvantage of the short chains that were used in this work
is that both transitions are relatively close to each other in temperature and
the temperature of the collapse transition lies below the adsorption transi-
tion for equal strengths of all interactions (a = b = 1). Moreover, moving
the collapse transition to a temperature higher than the adsorption transi-
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tion also shifts the freezing transition to higher temperatures. This creates
a qualitatively different phase diagram if one wants to compare the results
with other studies of similar systems using other lattices and chain lengths.
However, the general structure of the phase diagram is similar. This was
confirmed by comparing the results of this work with results from a similar
off-lattice model.

Moreover, the influence of the stripe width w on the phase diagram was
also studied. The existence of a new sub-phase of the recognised phase was
found for w = 2. The connection of this sub-phase to the freezing tran-
sition was established as its position depends only on the strength of the
self-interaction b and is approximately equal to the position of the freez-
ing transition. This behaviour is similar to the one found in the reference
literature for an off-lattice model [12].

I found that the dependence of the adsorption transition on the system
volume, i.e. the distance zw between the steric and the attractive walls, is
significant for distances zw ≈ O(N) and decreasing for larger zw. The tem-
perature of the adsorption transition for small values of a was found to be
above the temperature of the recognition transition, though for large values
of a both merge. The position of the adsorption transition in the regime of
small a where no merge with the recognition transition has occurred could
be approximated using the formula T ≈ c1/(c2 + log(zw + c3)), where c1, c2
and c3 are constants. The simulation data yielded a good fit for this equa-
tion. The equation is also consistent with a mean-field approximation found
in [12], however the c3 term is relevant on this length scale and cannot be
ignored, i.e. a the data does not fit well with c3 = 0.

The position of the recognition transition was found to depend strongly
on the strength of the self-attraction. For larger stripe attraction strengths,
the dependence of the adsorption and recognition transition temperatures is
approximately almost linear, which is expected.

This work used the method of microcanonical analysis as a complemen-
tary tool to the canonical analysis for studying the properties of the polymer
adsorption. The phase diagrams obtained from the microcanonical method
agree with the canonical ones within the uncertainty yielded by the finite size
effects. The latter manifest themselves by yielding peaks in the temperature
derivatives of canonical expectation values of different observables. These
peaks do not appear at the same temperature in the vicinity of a phase tran-
sition, but deviate from each other. This can be seen as different lines in
the phase diagram which, when bundled together mark the phase transition
boundary. This is in contrast to the microcanonical method, which yields
(in most cases) only one curve per phase transition. The latter could also be
analytically calculated in the trivial cases.
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Complementary to the exact enumeration, Monte Carlo simulations using
PERM were done in order to save and later visualise relevant conformations.
It turned out to be quite easy to obtain conformations knowing, for instance,
the energy of those dominating a certain phase. A multicanonical version
of the algorithm was also used to verify some of the results from the exact
enumeration. The great amount of data produced by the latter took a signif-
icant amount of time. Due to the time constraint on the master thesis, this
however, did not allow for the study of longer chains using the multicanonical
version of PERM. Applying the latter method to the investigated system is
left open as an opportunity for further research, since lattice models are easy
to simulate and offer an easy way to study finite size scaling.
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Appendix A

Exact Enumeration

A.1 Microcanonical scaling of the adsorption

transition

A.1.1 N = 15, b = 1, w = 1, d = 5

0.8

1

1.2
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Figure A.1: Fit of the temperature of the adsorption transition in dependance
on zw. The transition temperatures for different values of a have been fitted.
Parametrisation N = 15, b = 1, w = 2, d = 5, zw = 2kN + 1, with k =
1, 2, . . . , 8.
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Table A.1: Fit parameteres for equation 3.8 plotted in Figure A.1.

a c1 c2 c3 error c1 error c2 error c3

1 11.2112 5.2686 -0.955977 0.02735 0.02341 0.0354
2 16.6138 7.08372 -1.7206 0.03639 0.02491 0.0277
3.5 32.53 12.5421 -2.76518 0.5408 0.2792 0.164
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