# "E pur si muove" - on the problem(s) of rotation in Gereral Relativity

#### Piotr Marecki (Leipzig University)

#### Institutsseminar, Institut für Quantenphysik, Universität Ulm

2 June 2009

### 1 "Gravitomagnetic" effects in General Relativity

2 Homogeneous spacetimes with gravitomagnetic effects

3 Superfluid models of curved spacetimes

#### Weak field limit of General Relativity:

Perturbations  $\bar{h}_{ab}$  of flat spacetime by a spherically symmetric source:

$$ds^{2} = [1 + V(r)] dt^{2} - [1 - V(r)] d\vec{x}^{2} + A_{i} dx^{i} dt$$

are found from  $(\partial_t^2-\nabla^2)\bar{h}_{ab}=T_{ab},$  which simplify to:

$$\vec{A}(\vec{x}) = \int \frac{\rho \vec{v}(\vec{y})}{|\vec{x} - \vec{y}|} \, d^3 y, \qquad V(r) = -\int \frac{\rho(\vec{y})}{|\vec{x} - \vec{y}|} \, d^3 y.$$

which are the same as the electromagnetic potentials for the charge conf.  $(\rho, \vec{v})$ .

#### Physical consequences (roughly):

Typical effects associated with  $\vec{A}$ : as of magnetic fields with  $\vec{B} = \text{rot}\vec{A}$ , which is the tendency of particles (geodesics) to circulate in the plane perpendicular to  $\vec{B}$ .

## Relativity of inertia in rotating systems

(Newtons bucket and Mach's considerations)

Result for a heavy sphere rotating with angular velocity  $\vec{\Omega}$ : inside of the sphere:

- the Newtonian potential  $V(\vec{x}) = const$
- $\blacksquare$  the vector potential  $\vec{A}(\vec{x})\sim\vec{\Omega}\times\vec{x}$
- homogeneous  $\vec{B}$  a Coriolis-type effect.

Outside of the sphere:

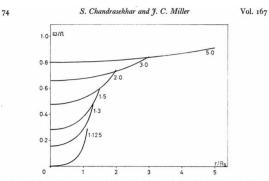
- $\blacksquare$  the Newtonian potential  $V(\vec{x}) = -M/r$
- the vector potential  $\vec{A}(\vec{x}) \sim \vec{\Omega} \times \vec{x} \cdot \frac{1}{r^3}$
- $\vec{B}$  drops off as  $1/r^3$ .

Proportionality factors of order  $R_{Schw}/R$ .

### Strong-field results

#### Strong field results for compact objects

- Perturbative method of Hartle: find the spacetime of a rotating star for a given non-rotating configuration. Perturbation in  $\Omega$  (strong fields).
- Dragging of inertial frames stronger for more compact objects. Usually  $\omega_{drag} \ll \Omega$ , but if  $R \to R_s$  then  $\omega_{drag}$  becomes a significant fraction of  $\Omega$ .



F16. 1. The angular velocity  $\varpi = (\Omega - \omega)$  relative to the local inertial frame:  $\varpi/\Omega$  is plotted agains  $r/R_S$  for several values of  $R/R_S$ . The curves are labelled by the values of  $R/R_S$  to which they belong.

Figure: Rotating incompressible fluid stars; Chandrasekhar and Miller, MNRAS 167, 63.

### Geodesics for (some) rotating spacetimes

$$ds^{2} = \left(dt + A_{i}(\vec{x})dx^{i}\right)^{2} - h_{ij}(\vec{x}) dx^{i} dx^{j}, \qquad i, j = 1...3$$

Consider \$\vec{A}(\vec{x})\$ as a vector field on a surface \$H\$ (section) with the metric \$h\_{ij}\$
 Geodesics? Equivalent problem: trajectories in the static spacetime

$$ds^{2} = (dt)^{2} - h_{ij}(\vec{x}) \, dx^{i} \, dx^{j}$$

in a magnetic field corresponding to  $F_{ij} = \partial_i A_j - \partial_j A_i$ .

 $\blacksquare$  More precisely finding geodesics requires solving for the trajectory  $\vec{x}(s)$ 

$$\frac{d^2x^j}{ds^2} + \Gamma^j_{ij}\frac{dx^i}{ds}\frac{dx^k}{ds} = E F_{ij}\dot{x}^i$$

 $(\Gamma' s \text{ of } h_{ij})$  together with the equation for t(s)

$$\dot{t} + A_i \dot{x}^i = \mathbf{E}.$$

#### Message:

- For weak gravitational fields there is an almost complete analogy between magnetic and gravitomagnetic fields
- Gravitomagnetic fields have an effect similar to a rotating frame of reference; presence of massive rotating bodies alters the definition of an inertial (non-rotating) frame
- Effect much stronger if the "sources" are very compact

# Section 2: Homogeneous gravitomagnetic fields

Cold quantum phases rotate/are magnetized in a different way than "normal" phases. Resulting configurations are homogeneous and anisotropic.

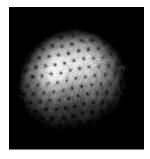




Figure: Lattice of vortices (rotation of a superfluid, MIT Group); Lattice of magnetic-field vortices in type II superconductor (Hess et al. PRL 62, 214).

- quantization of velocity circulation,  $\int_{vortex} \vec{v} \cdot \vec{dx} = n \frac{h}{m}$ quantization of the magnetic flux,  $\int_{vortex} \vec{A} \cdot \vec{dx} = n \frac{hc}{2e}$
- cf. velocity profile of a normal rotating fluid
   cf. magnetic field in type I superconductor; frame dragging in Kerr spacetime

## Gödel models and their (global) causal structure:

Gödel's models: the homogeneous section H (h<sub>ij</sub>) is: Lobachevsky (hyperbolic) plane, sphere or a flat plane plus a free, distinguished direction z.
 gravitomagnetic field of A, B = (0, 0, B), is homogeneous on H

$$d(Rs)^2 = \left(dt + H(r)d\varphi\right)^2 - dr^2 - D^2(r)d\varphi^2 - dz^2$$

with

$$H(r) = \begin{cases} 2B \sinh^2(r/2), & \\ 2B \sin^2(r/2), & \\ \frac{1}{2} Br^2, & \\ \end{cases} D(r) = \begin{cases} \sinh(r), \\ \sin(r), \\ r, \end{cases}$$

- parameters: R (scale) and B
- circles x = const are closed timelike lines for sufficiently large r; they correspond to (some) "outward" acceleration; by homogeneity such curves pass through every point.
- projections of light-like and time-like geodesics to  $(r, \varphi)$  are "circles" (special cases of the result for general  $h_{ij}$ )

Problem: determine solutions of the wave equation

$$\Box \Psi(t, \vec{x}) = \frac{1}{\sqrt{-g}} \partial_a \left[ \sqrt{-g} g^{ab} \partial_b \Psi \right] = 0$$

(usual formula for the Laplacean in curved coordinates; here: spacetime)
 Ansatz: general solution Ψ is a linear combination of solutions determined by separation of variables.

$$\Psi(t,\vec{x}) = \sum_{I=(E,p,\ldots)} c_I \Psi_I(t,\vec{x}), \qquad \Psi_I(t,\vec{x}) = e^{-iEt} e^{ipz} \psi(r,\varphi)$$

(a sum, not insisting on "initial value formulation")

In all cases, all solutions can be found explicitly. In most cases: by algebraic methods (ladder operators). Resulting functions are elementary functions of w = tanh(x/2)e<sup>iφ</sup>, e.g. ψ<sub>LLL</sub> = (1 − ww)<sup>λ</sup>w<sup>m</sup> with λ ∈ ℝ<sub>+</sub>, m ∈ ℕ.

### Sketch of the solution...

- There are five Killing vectors (generators of symmetries). Three of them  $K_0, K_1, K_2$  fulfill the SU(1,1) algebra commutation relations. The remaining ones are  $K_T^a = (\partial_t)^a$  and  $K_z^a = (\partial_z)^a$ .
- Remarkable identity:

$$\Box = \underbrace{(K_1^2 + K_2^2 - K_0^2)}_{\text{Casimir op. of }SU(1,1)} + \underbrace{(1 - B^2)(\partial_t)^2 - (\partial_z)^2}_{\text{lin. comb. of }K_T^2 \text{ and }K_z^2}$$

- In Gödels original case:  $B = \sqrt{2}$ ; using our Ansatz it remains to determine eigenvectors of the Casimir operator to *positive* eigenvalues.
- This can be done algebraically (as for spherical harmonics), note that

$$K_{+} = w^{2}\partial - \overline{\partial} - (EB)w,$$
  

$$K_{-} = -\overline{w}^{2}\overline{\partial} + \partial - (EB)\overline{w},$$
  

$$K_{0} = w\partial - \overline{w}\overline{\partial} - (EB), \qquad \partial = \frac{\partial}{\partial u}$$

• We get base vectors annihilated by  $K_{-}$  (and  $K_{+}$ ), and generate the rest by applying  $K_{+}$  (or  $K_{-}$ ).

#### Message:

- Gödel's spacetimes are gravitational analogs of constant magnetic fields.
- Geodesics (trajectories of classical particles) and wave equations can be solved in these spacetimes exactly and are expressed by elementary functions.

#### Observation made by W. Unruh:

Unruh extended the usual derivation of wave equation in hydrodynamics to arbitrary (irrotational) flows  $\rho(t, \vec{x})$ ,  $\vec{v}(t, \vec{x})$ , and small perturbations of this flow  $(\delta \rho, \delta \vec{v})$ ,

**parametrize the perturbations via**  $\delta \vec{v} = \vec{\nabla} \phi$ ,  $\delta \vec{\rho} = -\frac{\rho}{c^2} \frac{d}{dt} \phi$ with  $(\partial_t + \vec{v} \cdot \vec{\nabla})$ ,  $c^2 = \frac{\partial p}{\partial \rho}$ 

equations of hydrodynamics, fulfilled by  $(\rho, \vec{v})$ , lead to an equation for  $\phi$ :

$$\frac{d}{dt} \left[ \frac{1}{c^2} \frac{d\phi}{dt} \right] - \frac{1}{\rho} \partial_i (\rho \, \partial^i \psi) = 0.$$

this is exactly the wave equation for spin-0 fields on the spacetime

$$ds^{2} = \frac{\rho}{c} \left[ c^{2} dt^{2} - (\vec{dx} - \vec{v} dt)^{2} \right]$$

## Rotating irrotational flows and their acoustic spacetimes

- Analogy works only for irrotational background flows,  $\nabla\times\vec{v}=0$
- There are so-called irrotational vortices in hydrodynamics;  $\vec{v} \parallel \hat{\phi}$ , behaving as  $|\vec{v}| = \frac{const}{r}$
- Often: finite empty core (always  $\rho(0) = 0$ ); for normal fluids models break down within a finite core, which often rotates rigidly (analogy does not work)
- Superfluids fulfill the assumptions perfectly... for distances larger than the (small) healing length, where the "quantum pressures" modify the hydrodynamic equations.
- Stationary, axially symmetric spacetimes without the axis of rotation (if core empty) are pathological (way too ambiguous); one cannot exclude redefinitions of (t, φ) variables leading to scaling of the angle and introductions of regions with CTCs (gravitational Abrikosov vortices)
- Comparison with superfluid sound-scattering data provides a tool for determining an effective modification of the rotating spacetime in the core region

- What is the acoustic spacetime corresponding to a (very large) lattice of vortices?
- Is it possible to find an acoustic model of locally rotating spacetimes of Gödel type (which share the symmetry of the vortex lattices)?

#### Summary of the talk

- Rotating matter in GR leads to the appearance of "gravitomagnetic" fields, which relativize (set the context for) our notion of non-rotating frames.
- Among examples of this effect the simplest are provided by Gödels spacetimes, which are *homogeneous* and anisotropic
- Physics in Gödel's spacetimes is not technically too difficult, but can be conceptually demanding...
- Small sound on given background superfluid flows provides an arena essentially equivalent to test spin-0 fields in curved spacetimes. To some extent rotating spacetimes can be modeled in this way, but challenges remain in the core of vortices.
- It is not clear what type of a spacetime corresponds to a rotating vortex-lattice.