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Introduction to the problems addressed in this talk

What are spacetimes of Godel type?

m “Third" in the hierarchy of simplicity after Minkowski and highly symmetric
de Sitter/Einstein static Universe.

m Stationary, homogeneous, axisymmetric spacetimes (Lorentzian 3+1
manifolds).

m Non globally-hyperbolic, with closed time-like curves

m Original Godel spacetime: the source (Typ) is dust + cosmological constant

m Three versions: constructed on 2D homogeneous surfaces with
spherical /hyperbolic/flat geometry. On these surfaces there is a
“gravitomagnetic field”. The “strength” of this filed and the curvature radius
lead to a 2-parameter family. The spacetimes are anisotropic.
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Section 1: Gravitomagnetism /rotating spacetimes

Weak field limit of GR

Asymptotically (far away):
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with m:mass, and A; dz* = %
momentum J.

Generally for stationary fluid flows:
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sin(f) de gravitomagnetic effect due to the angular

which is the same as the electromagnetic potential of a rotating charge
distribution.

Physical consequences

Typical effects associated with A: as of magnetic fields with B = rotA, which is.
the tendency of particles (geodesics) to circulate in the plane perpendicular to B.
Result for a sphere: homogeneous B inside - relativity of centrifugal effect.
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Strong-field results; dragging of inertial frames.

Kerr spacetime

In exact solutions the effect is visible as “dragging of inertial frames”, i.e. non-zero
angular velocity (w.r.t. stars at co) by zero angular-momentum observers.

Strong field results for compact objects

m Perturbative method of Hartle: find the spacetime of a rotating star for a
given non-rotating configuration. Perturbation in Q (strong fields).

m Dragging of inertial frames becomes stronger if the object becomes more
compact. Usually wgreg < €2, but if R — R, than wgyqg becomes a
significant fraction of  (but this is difficult for stars).

m Description of strongly rotating compact objects in GR is a notoriously
difficult problem.
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Motivation for Godel's spacetimes

Are Godel’s spacetimes physically relevant?

m Godel's spacetimes provide solutions with purely “magnetic” effects

m The full spacetime is not astrophysically relevant.

m Fascinating astrophysical phenomena associated with rotating compact
objects; Kerr (outer) horizon behaves a little like a superconductor (Bicak)

m Deep physics of cold rotating phases, or conducting phases in magnetic fields

What can be addressed in Godel's spacetimes?

m Simplest examples of dragging of inertial frames and of gravimagnetism

m Physics (mechanics, classical and quantum fields) in curved spacetimes.
m Classical fields: explicit exact results (this talk).

m Quantum fields: staggering arena (no global hyperbolicity), but: so far only
QFT has an argument against causal pathologies (Kay-Radzikowski-Wald)
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Summary of motivation

Figure: Relativistic jet from M87 (image: HST).

J.P.Lasota writes in astro-ph/0607453: “The jet launching mechanism is
unknown. This is rather embarrassing and some well-intentioned authors prefer to
write that it is the details of this mechanism that are unknown, but this is a rather
huge understatement. In most models of jet launching the accretion-flow
anchored magnetic field plays a crucial role.”
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Section 2: Simple class of rotating spacetimes

Consider the (stationary) Lorentzian geometries given by the metrics
ds® = (dt + Ay(Z)da’)? — hij(Z) da’ da’

with ¢,7 =1...3.
m The vector field A(Z) can be as a vector field on the Riemanninan surface H
(section) with the metric h;;
m Geodesics? Equivalent problem: trajectories in the static spacetime

ds? = (dt)? — hj(Z) d' da?

in a magnetic field corresponding to F;; = 0; A; — 0;A;. More precisely
finding geodesics requires solving for the trajectory Z(s)

#V Wi, = B Fyjit
together with the equation for ¢(s)
i+ Aidi' = E.

Energy, E = (0;)*@" gqp > 0 for for future-oriented lines.
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Godel models and their (global) causal structure:

m Godel's models: the homogeneous section H (h;;) is Rx two-sphere Sy, or
Lobachevsky (hyperbolic) plane Hs or a flat plane R2.

the magnetic-field of A, B = (0,0, B), is homogeneous on H; distinguished
direction will be called X. Flat case:
ds* = (dt + $Bridy)® — dr* — r*dy® — dX?
Spherical case:
ds® = [dt + 2B sin®(£)dp]” — d6> — sin?(0)dp? — dX>

axial symmetry apparent; ¢ € [0, 27) with periodicity assumed

integral curves of (9,,)® are closed timelike lines for B%r? > 4; they
correspond to (some) “outward” acceleration; by homogeneity - such curves
pass thru every point.

projections of light-like and time-like geodesics to (r, ) are “circles”
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Geometry of simple “rotating” spacetimes:

In the class of geometries with metrics ds® = (dt + A - d)? — hy;da’da?
much can be understood. Finding geodesics is equivalent to finding trajectories of
charged particles on H in magnetic field B = rot A.

Godel spacetimes are simplest realizations of this structure with homogeneous
(flat, spherical and hyperbolic) H's and a constant unidirectional magnetic field.

Causality is violated in these spacetimes (thus: they are not globally hyperbolic).
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Section 3: The d'Alembert equation

m Problem: determine solutions of the linear PDE (d'Alembert)
V. Ve¥(t,%) =0
m Ansatz: general solution W is a linear combination of solutions determined by
separation of variables,
U(t, &) = Z cr¥y(t, ), U(t, &) = e e Xo(r, o)
I=(w,P,...)

m There are five Killing vectors (generators of symmetries) in spherical (or
hyperbolic) cases. Three of them Ky, K1, K fulfill the SU(2) (or SU(1,1))
algebra commutation relations. The remaining ones are K¢ = (0;)* and
K% = (0x)".

m Remarkable identities

VaVi, = (K7 + K3 — K§) + (1= B)(9;)” - (9x)*

Casimir op. of SU(1,1) lin. comb. of K2 and K%
VaVE = (K? + K2+ K2)+ (1+ B?)(8,)? — (9x)?
Casimir op. of SU(2) lin. comb. of K2 and K%
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Spherical case: algebraic methods

We take U = e~ ™“eiPXq)(6, ¢). The Killing vectors are of the form

K+:L++BZ(71815)
K_=L_+DBz-(id,)
Ko=Lo+ B - (id;)

with K = K| +iK,, and provide a modification of generators (L) of rotation on
the sphere. Here 2z = tan(%)ew. The K's are selfadjoint on the Hilbert space of
L? functions of the sphere with the standard measure.
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Spherical case: algebraic methods

We take U = e~ ™“eiPXq)(6, ¢). The Killing vectors are of the form

K+:L++BUJZ
K =L_+Bwz
Ko= Lo+ Bw

with K1 = K| +iK,, and provide a modification of generators (L) of rotation on
the sphere. Here 2z = tan(g)ew. The K's are selfadjoint on the Hilbert space of
L? functions of the sphere with the standard measure.

m Ladder-operator construction of eigenvectors of K? is standard, provided
there exist lowest vectors annihilated by K _ (otherwise— singular solutions)

: 2. Gh oy _ N
m Eigenvalues of K2: A\(A+ 1) with A =5

m for each ) there is a family of vectors to Ky = —A, ..., A (ladder)
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Spherical case: algebraic methods

We take U = e~ ™“eiPXq)(6, ¢). The Killing vectors are of the form

K+:L++BUJZ
K =L_+Bwz
Ko= Lo+ Bw

with K1 = K| +iK,, and provide a modification of generators (L) of rotation on
the sphere. Here 2z = tan(g)ew. The K's are selfadjoint on the Hilbert space of
L? functions of the sphere with the standard measure.

m Ladder-operator construction of eigenvectors of K? is standard, provided
there exist lowest vectors annihilated by K _ (otherwise— singular solutions)

m Eigenvalues of K2 A(A+1) with A = §

m for each ) there is a family of vectors to Ky = —A, ..., A (ladder)

m for the extremal vector(s) from K_1)_y = 0 we obtain
_x = cos® ™ 0 sin™ fe"™?, where m = \ + Bw

m from periodicity follows m € Z, solutions singular unless m € [0, 2]
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Spherical case: family of the solutions

The resulting structure,

—iwt eiPX

Uoakp(t,T) =e (Bw) Y2k (0, )

Solutions exist for Bw = Z/2
m For each such frequency there exist families with A > | Bw|

m In each such family there are eigenfunctions (p.,)Yax (0, ¢) for k € [=A, A
They are Spin-(Bw) spherical harmonics

m The momentum in the inhomogeneous direction is discrete; the wave

equation:
P?=(1+B7?) (Bw)? = A(A+1)

m This puts an upper constraint on A for each (Bw), and produces a gap in
frequencies |w| > B.

m Solutions with the same Bw are orthonormal on H with the measure
V—hd3x = sin(0) df dp dX

m Global picture not yet clear. Spacetime - not globally hyperbolic. Given an
arbitrary solution “in the small” - can it be extended to the whole spacetime?
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Summary (d'Alembert equation):

Due to the remarkable fact, that the d'Alembert operator can be expressed as a
linear combination of the Casimir operators of the symmetry group all solutions
fulfilling the separation Ansatz can be determined explicitly. They are simple
functions of z = tan(%)e®.

arXiv:gr-qc/0703018  (soon to be upgraded)
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Summary of the talk

m Rotating matter in GR leads to the appearance of “gravitomagnetic” fields.

m Geodesics in simple spacetimes with such fields correspond to trajectories of
charged particles in spacetimes without these fields. Godel solutions are
spacetimes with a homogeneous “gravitomagnetic’ component. These
spacetimes are also homogeneous (though anisotropic), the geodesics
“spirals” (in r, p, X).

m A full family of solutions to the d’Alembert equation, expressible by
elementary functions can be constructed.
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