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Introduction to the problems addressed in this talk

What are spacetimes of Gödel type?

“Third” in the hierarchy of simplicity after Minkowski and highly symmetric
de Sitter/Einstein static Universe.

Stationary, homogeneous, axisymmetric spacetimes (Lorentzian 3+1
manifolds).

Non globally-hyperbolic, with closed time-like curves

Original Gödel spacetime: the source (Tab) is dust + cosmological constant

Three versions: constructed on 2D homogeneous surfaces with
spherical/hyperbolic/flat geometry. On these surfaces there is a
“gravitomagnetic field”. The “strength” of this filed and the curvature radius
lead to a 2-parameter family. The spacetimes are anisotropic.
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Outline of the talk
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Section 1: Gravitomagnetism/rotating spacetimes

Weak field limit of GR

Asymptotically (far away):

ds2 = (1 − 2m

r
)dt2 − (1 +

2m

r
)d~x2 +Ai dx

i dt

with m:mass, and Ai dx
i = J

r
sin(θ) dϕ gravitomagnetic effect due to the angular

momentum J .
Generally for stationary fluid flows:

~A(~x) =

∫
ρ~v

|~x− ~y| d
3y

which is the same as the electromagnetic potential of a rotating charge

distribution.

Physical consequences

Typical effects associated with ~A: as of magnetic fields with ~B = rot ~A, which is
the tendency of particles (geodesics) to circulate in the plane perpendicular to ~B.

Result for a sphere: homogeneous ~B inside - relativity of centrifugal effect.
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Strong-field results; dragging of inertial frames.

Kerr spacetime

In exact solutions the effect is visible as “dragging of inertial frames”, i.e. non-zero
angular velocity (w.r.t. stars at ∞) by zero angular-momentum observers.

Strong field results for compact objects

Perturbative method of Hartle: find the spacetime of a rotating star for a
given non-rotating configuration. Perturbation in Ω (strong fields).

Dragging of inertial frames becomes stronger if the object becomes more
compact. Usually ωdrag ≪ Ω, but if R → Rs than ωdrag becomes a
significant fraction of Ω (but this is difficult for stars).

Description of strongly rotating compact objects in GR is a notoriously
difficult problem.
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Motivation for Gödel’s spacetimes

Are Gödel’s spacetimes physically relevant?

Gödel’s spacetimes provide solutions with purely “magnetic” effects

The full spacetime is not astrophysically relevant.

Fascinating astrophysical phenomena associated with rotating compact
objects; Kerr (outer) horizon behaves a little like a superconductor (Bicak)

Deep physics of cold rotating phases, or conducting phases in magnetic fields

What can be addressed in Gödel’s spacetimes?

Simplest examples of dragging of inertial frames and of gravimagnetism

Physics (mechanics, classical and quantum fields) in curved spacetimes.

Classical fields: explicit exact results (this talk).

Quantum fields: staggering arena (no global hyperbolicity), but: so far only
QFT has an argument against causal pathologies (Kay-Radzikowski-Wald)
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Summary of motivation

Figure: Relativistic jet from M87 (image: HST).

J.P.Lasota writes in astro-ph/0607453: “The jet launching mechanism is

unknown. This is rather embarrassing and some well-intentioned authors prefer to

write that it is the details of this mechanism that are unknown, but this is a rather

huge understatement. In most models of jet launching the accretion-flow

anchored magnetic field plays a crucial role.”
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Section 2: Simple class of rotating spacetimes

Consider the (stationary) Lorentzian geometries given by the metrics

ds2 =
(
dt+Ai(~x)dx

i
)2 − hij(~x) dx

i dxj

with i, j = 1 . . . 3.

The vector field ~A(~x) can be as a vector field on the Riemanninan surface H
(section) with the metric hij

Geodesics? Equivalent problem: trajectories in the static spacetime

ds2 = (dt)2 − hij(~x) dx
i dxj

in a magnetic field corresponding to Fij = ∂iAj − ∂jAi. More precisely
finding geodesics requires solving for the trajectory ~x(s)

ẋi∇(h)
i ẋj = E Fij ẋ

i

together with the equation for t(s)

ṫ+Aiẋ
i = E.

Energy, E = (∂t)
aẋb gab > 0 for for future-oriented lines.
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Gödel models and their (global) causal structure:

Gödel’s models: the homogeneous section H (hij) is R× two-sphere S2, or

Lobachevsky (hyperbolic) plane H2 or a flat plane R
2.

the magnetic-field of ~A, ~B = (0, 0, B), is homogeneous on H ; distinguished
direction will be called X . Flat case:

ds2 = (dt+ 1
2Br

2dϕ)2 − dr2 − r2dϕ2 − dX2

Spherical case:

ds2 =
[
dt+ 2B sin2( θ

2 )dϕ
]2 − dθ2 − sin2(θ)dϕ2 − dX2

axial symmetry apparent; ϕ ∈ [0, 2π) with periodicity assumed

integral curves of (∂ϕ)a are closed timelike lines for B2r2 > 4; they
correspond to (some) “outward” acceleration; by homogeneity - such curves
pass thru every point.

projections of light-like and time-like geodesics to (r, ϕ) are “circles”
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Geometry of simple “rotating” spacetimes:

In the class of geometries with metrics ds2 = (dt+ ~A · d~x)2 − hijdx
idxj

much can be understood. Finding geodesics is equivalent to finding trajectories of
charged particles on H in magnetic field ~B = rot ~A.

Gödel spacetimes are simplest realizations of this structure with homogeneous
(flat, spherical and hyperbolic) H ’s and a constant unidirectional magnetic field.

Causality is violated in these spacetimes (thus: they are not globally hyperbolic).
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Section 3: The d’Alembert equation

Problem: determine solutions of the linear PDE (d’Alembert)

∇a∇aΨ(t, ~x) = 0

Ansatz: general solution Ψ is a linear combination of solutions determined by
separation of variables,

Ψ(t, ~x) =
∑

I=(ω,P,...)

cIΨI(t, ~x), ΨI(t, ~x) = e−iωteiPXψ(r, ϕ)

There are five Killing vectors (generators of symmetries) in spherical (or
hyperbolic) cases. Three of them K0,K1,K2 fulfill the SU(2) (or SU(1,1))
algebra commutation relations. The remaining ones are Ka

T = (∂t)
a and

Ka
X = (∂X)a.

Remarkable identities

∇a∇a
H2

= (K2
1 +K2

2 −K2
0)

︸ ︷︷ ︸

Casimir op. of SU(1,1)

+ (1 −B2)(∂t)
2 − (∂X)2

︸ ︷︷ ︸

lin. comb. of K2

T
and K2

X

∇a∇a
S2

= (K2
1 +K2

2 +K2
0 )

︸ ︷︷ ︸

Casimir op. of SU(2)

+ (1 +B2)(∂t)
2 − (∂X)2

︸ ︷︷ ︸

lin. comb. of K2

T
and K2

X
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Spherical case: algebraic methods

We take Ψ = e−iωteiPXψ(θ, ϕ). The Killing vectors are of the form

K+ = L+ +B z · (i∂t)

K− = L− +B z · (i∂t)

K0 = L0 +B · (i∂t)

with K± = K1 ± iK2, and provide a modification of generators (~L) of rotation on

the sphere. Here z = tan( θ
2 )eiϕ. The ~K’s are selfadjoint on the Hilbert space of

L2 functions of the sphere with the standard measure.

P. Marecki (Universität Leipzig) Section: d’Alembert equation, solutions, interpretation 12 / 15



Spherical case: algebraic methods

We take Ψ = e−iωteiPXψ(θ, ϕ). The Killing vectors are of the form

K+ = L+ +Bω z

K− = L− +Bω z

K0 = L0 +Bω

with K± = K1 ± iK2, and provide a modification of generators (~L) of rotation on

the sphere. Here z = tan( θ
2 )eiϕ. The ~K’s are selfadjoint on the Hilbert space of

L2 functions of the sphere with the standard measure.

Ladder-operator construction of eigenvectors of ~K2 is standard, provided
there exist lowest vectors annihilated by K− (otherwise→ singular solutions)

Eigenvalues of ~K2: λ(λ + 1) with λ = N

2

for each λ there is a family of vectors to K0 = −λ, . . . , λ (ladder)
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K0 = L0 +Bω

with K± = K1 ± iK2, and provide a modification of generators (~L) of rotation on

the sphere. Here z = tan( θ
2 )eiϕ. The ~K’s are selfadjoint on the Hilbert space of

L2 functions of the sphere with the standard measure.

Ladder-operator construction of eigenvectors of ~K2 is standard, provided
there exist lowest vectors annihilated by K− (otherwise→ singular solutions)

Eigenvalues of ~K2: λ(λ + 1) with λ = N

2

for each λ there is a family of vectors to K0 = −λ, . . . , λ (ladder)

for the extremal vector(s) from K−ψ−λ = 0 we obtain

ψ−λ = cos2λ−m θ sinm θeimϕ, where m = λ+Bω

from periodicity follows m ∈ Z, solutions singular unless m ∈ [0, 2λ]
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Spherical case: family of the solutions

The resulting structure,

Ψω,λ,k,P (t, ~x) = e−iωteiPX
(Bω)Yλk(θ, ϕ)

Solutions exist for Bω = Z/2

For each such frequency there exist families with λ > |Bω|
In each such family there are eigenfunctions (Bω)Yλk(θ, ϕ) for k ∈ [−λ, λ].
They are Spin-(Bω) spherical harmonics

The momentum in the inhomogeneous direction is discrete; the wave
equation:

P 2 =
(
1 +B−2

)
(Bω)2 − λ(λ + 1)

This puts an upper constraint on λ for each (Bω), and produces a gap in
frequencies |ω| > B.

Solutions with the same Bω are orthonormal on H with the measure√
−hd3x = sin(θ) dθ dϕdX

Global picture not yet clear. Spacetime - not globally hyperbolic. Given an
arbitrary solution “in the small” - can it be extended to the whole spacetime?
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Summary (d’Alembert equation):

Due to the remarkable fact, that the d’Alembert operator can be expressed as a
linear combination of the Casimir operators of the symmetry group all solutions
fulfilling the separation Ansatz can be determined explicitly. They are simple
functions of z = tan( θ

2 )eiϕ.

arXiv:gr-qc/0703018 (soon to be upgraded)
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Summary of the talk

Rotating matter in GR leads to the appearance of “gravitomagnetic” fields.

Geodesics in simple spacetimes with such fields correspond to trajectories of
charged particles in spacetimes without these fields. Gödel solutions are
spacetimes with a homogeneous “gravitomagnetic” component. These
spacetimes are also homogeneous (though anisotropic), the geodesics
“spirals” (in r, ϕ,X).

A full family of solutions to the d’Alembert equation, expressible by
elementary functions can be constructed.
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