Solutions to the d'Alembert equation in Gödel spacetimes

Piotr Marecki (Leipzig University)
Lunch Seminar, Courant Research Center, Universität Göttingen

6 Mai 2009

What are spacetimes of Gödel type?

■ "Third" in the hierarchy of simplicity after Minkowski and highly symmetric de Sitter/Einstein static Universe.

- Stationary, homogeneous, axisymmetric spacetimes (Lorentzian 3+1 manifolds).
- Non globally-hyperbolic, with closed time-like curves
- Original Gödel spacetime: the source $\left(T_{a b}\right)$ is dust + cosmological constant
- Three versions: constructed on 2D homogeneous surfaces with spherical/hyperbolic/flat geometry. On these surfaces there is a "gravitomagnetic field". The "strength" of this filed and the curvature radius lead to a 2-parameter family. The spacetimes are anisotropic.

Outline of the talk

1 Motivation: "magnetic" effects in GR

2 Geodesics

3 Waves (d'Alembert equation)

Section 1: Gravitomagnetism/rotating spacetimes

Weak field limit of GR

Asymptotically (far away):

$$
d s^{2}=\left(1-\frac{2 m}{r}\right) d t^{2}-\left(1+\frac{2 m}{r}\right) d \vec{x}^{2}+A_{i} d x^{i} d t
$$

with m :mass, and $A_{i} d x^{i}=\frac{J}{r} \sin (\theta) d \varphi$ gravitomagnetic effect due to the angular momentum J.
Generally for stationary fluid flows:

$$
\vec{A}(\vec{x})=\int \frac{\rho \vec{v}}{|\vec{x}-\vec{y}|} d^{3} y
$$

which is the same as the electromagnetic potential of a rotating charge distribution.

Physical consequences

Typical effects associated with \vec{A} : as of magnetic fields with $\vec{B}=\operatorname{rot} \vec{A}$, which is the tendency of particles (geodesics) to circulate in the plane perpendicular to \vec{B}. Result for a sphere: homogeneous \vec{B} inside - relativity of centrifugal effect.

Kerr spacetime

In exact solutions the effect is visible as "dragging of inertial frames", i.e. non-zero angular velocity (w.r.t. stars at ∞) by zero angular-momentum observers.

Strong field results for compact objects

- Perturbative method of Hartle: find the spacetime of a rotating star for a given non-rotating configuration. Perturbation in Ω (strong fields).
- Dragging of inertial frames becomes stronger if the object becomes more compact. Usually $\omega_{\text {drag }} \ll \Omega$, but if $R \rightarrow R_{s}$ than $\omega_{\text {drag }}$ becomes a significant fraction of Ω (but this is difficult for stars).
- Description of strongly rotating compact objects in GR is a notoriously difficult problem.

Are Gödel's spacetimes physically relevant?

- Gödel's spacetimes provide solutions with purely "magnetic" effects
- The full spacetime is not astrophysically relevant.
- Fascinating astrophysical phenomena associated with rotating compact objects; Kerr (outer) horizon behaves a little like a superconductor (Bicak)
- Deep physics of cold rotating phases, or conducting phases in magnetic fields

What can be addressed in Gödel's spacetimes?

■ Simplest examples of dragging of inertial frames and of gravimagnetism
■ Physics (mechanics, classical and quantum fields) in curved spacetimes.
■ Classical fields: explicit exact results (this talk).
■ Quantum fields: staggering arena (no global hyperbolicity), but: so far only QFT has an argument against causal pathologies (Kay-Radzikowski-Wald)

Figure: Relativistic jet from M87 (image: HST).
J.P.Lasota writes in astro-ph/0607453: "The jet launching mechanism is unknown. This is rather embarrassing and some well-intentioned authors prefer to write that it is the details of this mechanism that are unknown, but this is a rather huge understatement. In most models of jet launching the accretion-flow anchored magnetic field plays a crucial role."

Consider the (stationary) Lorentzian geometries given by the metrics

$$
d s^{2}=\left(d t+A_{i}(\vec{x}) d x^{i}\right)^{2}-h_{i j}(\vec{x}) d x^{i} d x^{j}
$$

with $i, j=1 \ldots 3$.

- The vector field $\vec{A}(\vec{x})$ can be as a vector field on the Riemanninan surface H (section) with the metric $h_{i j}$
- Geodesics? Equivalent problem: trajectories in the static spacetime

$$
d s^{2}=(d t)^{2}-h_{i j}(\vec{x}) d x^{i} d x^{j}
$$

in a magnetic field corresponding to $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}$. More precisely finding geodesics requires solving for the trajectory $\vec{x}(s)$

$$
\dot{x}^{i} \nabla_{i}^{(h)} \dot{x}_{j}=E F_{i j} \dot{x}^{i}
$$

together with the equation for $t(s)$

$$
\dot{t}+A_{i} \dot{x}^{i}=E .
$$

Energy, $E=\left(\partial_{t}\right)^{a} \dot{x}^{b} g_{a b}>0$ for for future-oriented lines.

■ Gödel's models: the homogeneous section $H\left(h_{i j}\right)$ is $\mathbb{R} \times$ two-sphere \mathbb{S}_{2}, or Lobachevsky (hyperbolic) plane \mathbb{H}_{2} or a flat plane \mathbb{R}^{2}.

- the magnetic-field of $\vec{A}, \vec{B}=(0,0, B)$, is homogeneous on H; distinguished direction will be called X. Flat case:

$$
d s^{2}=\left(d t+\frac{1}{2} B r^{2} d \varphi\right)^{2}-d r^{2}-r^{2} d \varphi^{2}-d X^{2}
$$

Spherical case:

$$
d s^{2}=\left[d t+2 B \sin ^{2}\left(\frac{\theta}{2}\right) d \varphi\right]^{2}-d \theta^{2}-\sin ^{2}(\theta) d \varphi^{2}-d X^{2}
$$

- axial symmetry apparent; $\varphi \in[0,2 \pi)$ with periodicity assumed
- integral curves of $\left(\partial_{\varphi}\right)^{a}$ are closed timelike lines for $B^{2} r^{2}>4$; they correspond to (some) "outward" acceleration; by homogeneity - such curves pass thru every point.
- projections of light-like and time-like geodesics to (r, φ) are "circles"

Geometry of simple "rotating" spacetimes:

In the class of geometries with metrics $d s^{2}=(d t+\vec{A} \cdot d \vec{x})^{2}-h_{i j} d x^{i} d x^{j}$ much can be understood. Finding geodesics is equivalent to finding trajectories of charged particles on H in magnetic field $\vec{B}=\operatorname{rot} \vec{A}$.
Gödel spacetimes are simplest realizations of this structure with homogeneous (flat, spherical and hyperbolic) H 's and a constant unidirectional magnetic field.
Causality is violated in these spacetimes (thus: they are not globally hyperbolic).

- Problem: determine solutions of the linear PDE (d'Alembert)

$$
\nabla_{a} \nabla^{a} \Psi(t, \vec{x})=0
$$

- Ansatz: general solution Ψ is a linear combination of solutions determined by separation of variables,

$$
\Psi(t, \vec{x})=\sum_{I=(\omega, P, \ldots)} c_{I} \Psi_{I}(t, \vec{x}), \quad \Psi_{I}(t, \vec{x})=e^{-i \omega t} e^{i P X} \psi(r, \varphi)
$$

■ There are five Killing vectors (generators of symmetries) in spherical (or hyperbolic) cases. Three of them K_{0}, K_{1}, K_{2} fulfill the $\mathrm{SU}(2)$ (or $\mathrm{SU}(1,1)$) algebra commutation relations. The remaining ones are $K_{T}^{a}=\left(\partial_{t}\right)^{a}$ and $K_{X}^{a}=\left(\partial_{X}\right)^{a}$.

- Remarkable identities

$$
\begin{aligned}
& \nabla_{a} \nabla_{\mathbb{H}_{2}}^{a}=\underbrace{\left(K_{1}^{2}+K_{2}^{2}-K_{0}^{2}\right)}_{\text {Casimir op. of } S U(1,1)}+\underbrace{\left(1-B^{2}\right)\left(\partial_{t}\right)^{2}-\left(\partial_{X}\right)^{2}}_{\text {lin. comb. of } K_{T}^{2} \text { and } K_{X}^{2}} \\
& \nabla_{a} \nabla_{\mathbb{S}_{2}}^{a}=\underbrace{\left(K_{1}^{2}+K_{2}^{2}+K_{0}^{2}\right)}_{\text {Casimir op. of } S U(2)}+\underbrace{\left(1+B^{2}\right)\left(\partial_{t}\right)^{2}-\left(\partial_{X}\right)^{2}}_{\text {lin. comb. of } K_{T}^{2} \text { and } K_{X}^{2}}
\end{aligned}
$$

Spherical case: algebraic methods

We take $\Psi=e^{-i \omega t} e^{i P X} \psi(\theta, \varphi)$. The Killing vectors are of the form

$$
\begin{aligned}
K_{+} & =L_{+}+B z \cdot\left(i \partial_{t}\right) \\
K_{-} & =L_{-}+B z \cdot\left(i \partial_{t}\right) \\
K_{0} & =L_{0}+B \cdot\left(i \partial_{t}\right)
\end{aligned}
$$

with $K_{ \pm}=K_{1} \pm i K_{2}$, and provide a modification of generators (\vec{L}) of rotation on the sphere. Here $z=\tan \left(\frac{\theta}{2}\right) e^{i \varphi}$. The \vec{K} 's are selfadjoint on the Hilbert space of L^{2} functions of the sphere with the standard measure.

Spherical case: algebraic methods

We take $\Psi=e^{-i \omega t} e^{i P X} \psi(\theta, \varphi)$. The Killing vectors are of the form

$$
\begin{aligned}
K_{+} & =L_{+}+B \omega z \\
K_{-} & =L_{-}+B \omega z \\
K_{0} & =L_{0}+B \omega
\end{aligned}
$$

with $K_{ \pm}=K_{1} \pm i K_{2}$, and provide a modification of generators (\vec{L}) of rotation on the sphere. Here $z=\tan \left(\frac{\theta}{2}\right) e^{i \varphi}$. The \vec{K} 's are selfadjoint on the Hilbert space of L^{2} functions of the sphere with the standard measure.

- Ladder-operator construction of eigenvectors of \vec{K}^{2} is standard, provided there exist lowest vectors annihilated by K_{-}(otherwise \rightarrow singular solutions)
- Eigenvalues of $\vec{K}^{2}: \lambda(\lambda+1)$ with $\lambda=\frac{\mathbb{N}}{2}$

■ for each λ there is a family of vectors to $K_{0}=-\lambda, \ldots, \lambda$ (ladder)

Spherical case: algebraic methods

We take $\Psi=e^{-i \omega t} e^{i P X} \psi(\theta, \varphi)$. The Killing vectors are of the form

$$
\begin{aligned}
K_{+} & =L_{+}+B \omega z \\
K_{-} & =L_{-}+B \omega z \\
K_{0} & =L_{0}+B \omega
\end{aligned}
$$

with $K_{ \pm}=K_{1} \pm i K_{2}$, and provide a modification of generators (\vec{L}) of rotation on the sphere. Here $z=\tan \left(\frac{\theta}{2}\right) e^{i \varphi}$. The \vec{K} 's are selfadjoint on the Hilbert space of L^{2} functions of the sphere with the standard measure.

- Ladder-operator construction of eigenvectors of \vec{K}^{2} is standard, provided there exist lowest vectors annihilated by K_{-}(otherwise \rightarrow singular solutions)
- Eigenvalues of $\vec{K}^{2}: \lambda(\lambda+1)$ with $\lambda=\frac{\mathbb{N}}{2}$

■ for each λ there is a family of vectors to $K_{0}=-\lambda, \ldots, \lambda$ (ladder)

- for the extremal vector(s) from $K_{-} \psi_{-\lambda}=0$ we obtain

$$
\psi_{-\lambda}=\cos ^{2 \lambda-m} \theta \sin ^{m} \theta e^{i m \varphi}, \quad \text { where } m=\lambda+B \omega
$$

- from periodicity follows $m \in \mathbb{Z}$, solutions singular unless $m \in[0,2 \lambda]$

The resulting structure,

$$
\Psi_{\omega, \lambda, k, P}(t, \vec{x})=e^{-i \omega t} e^{i P X}{ }_{(B \omega)} Y_{\lambda k}(\theta, \varphi)
$$

- Solutions exist for $B \omega=\mathbb{Z} / 2$
- For each such frequency there exist families with $\lambda \geqslant|B \omega|$

■ In each such family there are eigenfunctions ${ }_{(B \omega)} Y_{\lambda k}(\theta, \varphi)$ for $k \in[-\lambda, \lambda]$. They are Spin- $(B \omega)$ spherical harmonics

- The momentum in the inhomogeneous direction is discrete; the wave equation:

$$
P^{2}=\left(1+B^{-2}\right)(B \omega)^{2}-\lambda(\lambda+1)
$$

- This puts an upper constraint on λ for each $(B \omega)$, and produces a gap in frequencies $|\omega| \geqslant B$.
■ Solutions with the same $B \omega$ are orthonormal on H with the measure $\sqrt{-h} d^{3} x=\sin (\theta) d \theta d \varphi d X$
- Global picture not yet clear. Spacetime - not globally hyperbolic. Given an arbitrary solution "in the small" - can it be extended to the whole spacetime?

Summary (d'Alembert equation):

Due to the remarkable fact, that the d'Alembert operator can be expressed as a linear combination of the Casimir operators of the symmetry group all solutions fulfilling the separation Ansatz can be determined explicitly. They are simple functions of $z=\tan \left(\frac{\theta}{2}\right) e^{i \varphi}$.
arXiv:gr-qc/0703018 (soon to be upgraded)

■ Rotating matter in GR leads to the appearance of "gravitomagnetic" fields.

- Geodesics in simple spacetimes with such fields correspond to trajectories of charged particles in spacetimes without these fields. Gödel solutions are spacetimes with a homogeneous "gravitomagnetic" component. These spacetimes are also homogeneous (though anisotropic), the geodesics "spirals" (in r, φ, X).
- A full family of solutions to the d'Alembert equation, expressible by elementary functions can be constructed.

