
Relativistic KMS-Condition
Reconstruction of two Models

Nelson Symmetry
The Theorem

Outline of Proof

The relativistic KMS-condition for the thermal P(φ)2 model

F. Robl

26.06.09

F. Robl The relativistic KMS-condition for the thermal P(φ)2 model



Relativistic KMS-Condition
Reconstruction of two Models

Nelson Symmetry
The Theorem

Outline of Proof

Overview

The relativistic KMS-condition

Reconstruction of two models

Nelson Symmetry

The Theorem

Outline of Proof

F. Robl The relativistic KMS-condition for the thermal P(φ)2 model



Relativistic KMS-Condition
Reconstruction of two Models

Nelson Symmetry
The Theorem

Outline of Proof

The relativistic KMS-condition

Definition

Let i ∈ {1, . . . n − 1}, λi > 0 and
∑n−1

i=1 λi = 1. Wightman distributions W
(n)
β

satisfy the relativistic KMS-condition at inverse temperature β, if there exists a
positive timelike unit vector e and an analytic continuation of W

(n)
β to the

domain

R + i(λ1(V
+ ∩ (βe + V−))) × . . . × R + i(λn(V

+ ∩ (βe + V−))).

Remarks

We denote the analytic continuation again by W
(n)
β .

Bros and Buchholz formulated several versions of the relativistic

KMS-condition, among them one on the level of the algebra of

observables.
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The relativistic KMS-condition

β

Vβ

R
d

If we are in the rest frame of the thermal system e is just the time unit vector.

Vβ := V
+ ∩ (βe + V

−) = {(t, x) ∈ R
2 | |t| < inf(x , β − x)}
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Covariance and Gaussian Measure

Let Sβ be the circle of circumference β and S(Sβ × R) the Frechet space of
Schwarz functions. For f , g ∈ S(Sβ × R), m > 0, Dx = −i∂x and Dα = −i∂α

define the covariance:

C(f , g) := (f , (D2
α + D

2
x + m

2)−1
g).

The functional
E(f ) = e

−C (f ,f )/2

satisfies the conditions of Minlos‘ theorem, establishing the existence of the
Gaussian measure dφC . Let Q := S ′

R(Sβ × R) and φ(f ) : Q → R, q 7→ 〈q, f 〉,
then

f ∈ SR(Sβ × R) :

∫

Q

e
iφ(f )

dφC = e
−C (f ,f )/2.
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Time zero fields

In two dimensions Wick ordering is sufficient to resolve the ultraviolet problem.
Let h ∈ SR(R), g ∈ SR(Sβ) and α ∈ Sβ, x ∈ R.

φ(α, h) := lim
k→∞

φ
(
δk(. − α) ⊗ h

)
, φ(g , x) := lim

κ→∞
φ
(
g ⊗ δκ(. − x)

)
,

lim
κ→∞

∫

R

h(x) :φ(0, δκ(. − x))n :C0 dx ,

lim
k→∞

∫

Sβ

g(α) :φ(δk(. − α), 0)n :Cβ
dα,

lim
k,k′→∞

∫

Sβ×R

f (α, x) :φ(δk(· − α) ⊗ δk′(· − x))n :C dα dx .

All exist in Lp(Q, Σ, dφC ), 1 ≤ p < ∞, where Σ is the Borel σ-algebra on Q.
We will write

∫
R

h(x) :φ(0, x)n :C0 dx ,
∫

Sβ
g(α) :φ(α, 0)n :Cβ

dα and
∫

Sβ×R
f (α, x) :φ(α, x)n :C dα dx respectively.
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The interacting measure

Let P be a polynomial, bounded from below and introduce a cutoff parameter
l > 0. Let

dµl :=
1

Zl

e
−

∫
Sβ×[−l,l ]:P(φ(α,x)):C dα dx

dφC .

Zl is a constant, such that
∫

Q
dµl = 1. The limiting measure exists:

dµ := lim
l→∞

dµl .

This has been done by Høegh-Krohn [2] and Gerard, Jäkel [3] [4].
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Reconstruction

Reflection maps R, R ′:

(Rφ)(α, x) := φ(−α, x)

(R ′φ)(α, x) := φ(α,−x)

For 0 ≤ γ ≤ β (resp. 0 ≤ y) we denote by Σ[0,γ] (resp. Σ[0,y]) the σ-algebra
generated by the functions φ(f ) with supp f ⊂ [0, γ] × R

(resp. supp f ⊂ Sβ × [0, y ]).
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Scalar products:

∀F , G ∈ L
2(Q,Σ[0,β/2], dµ) : (F , G) :=

∫

Q

R(F )Gdµ ≥ 0

∀F ,G ∈ L
2(Q,Σ[0,∞), dµ) : (F , G)′ :=

∫

Q

R
′(F )Gdµ ≥ 0.

By factoring out the kernels N and N ′ of (·, ·) and (·, ·)′ respecitvely, we can
define the physical Hilbert spaces.

Hβ := L2(Q,Σ[0,β/2], dµ)/N and HC := L2(Q,Σ[0,∞), dµ)/N ′.

Let V : L2(Q, Σ[0,β/2], dµ) → Hβ and V ′ : L2(Q,Σ[0,∞), dµ) → HC denote the
canonical projections, then

Ωβ := V(1), ΩC := V ′(1).

Lastly - without any detail - the Osterwalder Schrader programme provides us
with the generators of time and space translations. On HC we have the
selfadjoint operators HC and PC , on Hβ we have Lβ and Pβ .
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Wightman distributions

Then with φC (α + α′, s + s ′) = e i(s′HC−α′PC )φC (α, s)e−i(s′HC−α′PC ) (similarly
for φβ) define the Wightman functions:

W(n)
C (α1, s1, α2, s2, . . . , αn, sn) :=

(
ΩC , φC (α1, s1) · · ·φC (αn, sn)ΩC

)

W(n)
β (t1, x1, . . . , tn, xn) :=

(
Ωβ , φβ(t1, x1) · · ·φβ(tn, xn)Ωβ

)

W
(n)
β satisfies the KMS-condition. Since both models are translation invariant:

W
(n)
C (α2−α1, s2−s1, . . . , αn−αn−1, sn−sn−1) :=

(
ΩC , φC (α1, s1) · · ·φC (αn, sn)ΩC

)

W
(n)
β (t2−t1, x2−x1, . . . , tn−tn−1, xn−xn−1) := (Ωβ , φβ(t1, x1) · · ·φβ(tn, xn)Ωβ)
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Nelson Symmetry

Observe the following property of the covariance C :

For h1, h2 ∈ SR(Sβ) and ν := (D2
t + m2)−1:

lim
k,k′→∞

C(h1 ⊗ δk (· − x1), h2 ⊗ δk′(· − x2)) = (h1,
e−|x1−x2|ν

2ν
h2)

Define Cβ(h1, h2) := (h1,
1
2ν

h2).

And for h1, h2 ∈ SR(R) and ε := (D2
x + m2)−1:

lim
k,k′→∞

C(δk(·−t1)⊗h1, δk′(·−t2)⊗h2) = (h1,
e−|t2−t1|ε + e−(β−|t2−t1|)ε

2ε(1 − e−βε)
h2)

Define C0(h1, h2) := (h1,
1+e−βε

2ε(1−e−βε)
h2).
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Nelson Symmetry

Proposition

e
−

∫ β
2

−
β
2

(
∫ l
−l :P(φ(α,x)):C0

dx ) dα

dφC = e
−

∫ l
−l (

∫ β
2

−
β
2

:P(φ(α,x)):Cβ
dα ) dx

dφC
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Nelson Symmetry

Proposition

lim
l→∞

e
−

∫ β
2

−
β
2

(
∫ l
−l :P(φ(α,x)):C0

dx ) dα

dφC = lim
l→∞

e
−

∫ l
−l (

∫ β
2

−
β
2

:P(φ(α,x)):Cβ
dα ) dx

dφC
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Nelson Symmetry

Proposition

lim
l→∞

e
−

∫ β
2

−
β
2

(
∫ l
−l :P(φ(α,x)):C0

dx ) dα

dφC = lim
l→∞

e
−

∫ l
−l (

∫ β
2

−
β
2

:P(φ(α,x)):Cβ
dα ) dx

dφC

With more work:
For 0 < α1 < . . . < αn−1 < β

2
and xi ∈ R:

W
(n)
β (iα1, x1, . . . , iαn−1, xn−1) = W

(n)
c (α1, ix1, . . . , αn−1, ixn−1)
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The Theorem

Theorem

Let Tβ := R
2 + iVβ , i ∈ {1, . . . , n − 1}, λi > 0 and

∑n−1
i=1 λi = 1. The thermal

correlation functions W
(n)
β (t2 − t1, x2 − x1, . . . , tn − tn−1, xn − xn−1) of the

translation invariant P(φ)2 model admit an analytic continuation into the

product of domains (λ1Tβ) × · · · × (λn−1Tβ).

Strategy of Proof:

Find analytic continuation of W
(n)
C using locality on the circle and the

Edge-of-the-Wedge theorem.

Use Nelson symmetry to carry this information over to W
(n)
β .

The spectral theorem finishes off.
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Outline of Proof

Heifets and Osipov proved the following theorem.

Theorem

The joint spectrum of HC and PC is purely discrete and is contained in the

forward light cone V+ := {(E , p) | |p| < E ; E > 0}.

It follows, that the Fourier series Ŵ
(n)
c of the correlation function has its

support in the forward light cone. Thus we can define a function F , which is
holomorphic in

(Sβ × R + iV
+) × . . . × (Sβ × R + iV

+)

and whose boundary value (in the sense of distributions) is W
(n)
c :

F (ξ1 + iη1, . . . , ξn−1 + iηn−1)

:=
1

(2π)n−1

∑

pk∈σ(PC ,EC )
k∈{1,...,n−1}

e
i
∑ n−1

j=1
(ξj+iηj )·pj Ŵ

(n)
c (p1, . . . , pn−1).
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Locality on the Circle

Lemma

Let i ∈ {1, . . . , n − 1}, λi > 0,
∑n−1

i=1 λi = 1. The restriction

W
(n)
C |λ1Vβ×...×λn−1Vβ

is real.

Remark

W
(n)
c is real on a larger domain. This carries through the proof resulting in a

larger domain of analyticity of W
(n)
β , than is demanded by the relativistic

KMS-condition.
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Proof of Lemma

If the relative coordinates in λ1Vβ × . . . × λn−1Vβ are spacelike the fields
commute:

s

α
β

b
b

Wc(α1, s1, . . . , αn, sn)

= (Ωc , φ(α1, s1) · · ·φ(αn, sn)Ωc )

= (Ωc , φ(αn, sn) · · ·φ(α1, s1)Ωc )

= Wc(α1, s1, . . . , αn, sn)

n : Sβ × R → R
+, (α, s) 7→ |α| + |s|

W := {(α, s) ∈ Sβ × R | α < s}, nW := n|W

λVβ = Vλβ = {(α, s) ∈ W | nW (α, s) < λβ}
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Proof of Lemma (continued)

An (α, s) ∈ W is spacelike, iff (α, s) ∈ Vβ . Therefore we have to show, that
∀i , j ∈ {1, . . . , n} : nW ((αj , sj ) − (αi , si )) < β. Without loss of generality i < j .

nW ((αj , sj) − (αi , si )) = nW ((αj , sj) − (αj−1, sj−1) + (αj−1, sj−1) − . . . (αi , si ))

≤ nW ((αj − αj−1, sj − sj−1)) + . . . + nW ((αi+1 − αi , si+1 − si ))

< λj−1β + . . . + λiβ ≤ β
n−1∑

i=1

λi = β

F. Robl The relativistic KMS-condition for the thermal P(φ)2 model
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Edge-of-the-Wedge Theorem

Theorem

Let O ∈ C
n open and containing some open, real environment E ∈ R

n.

Furthermore let C an open convex cone in R
n. Defining D± := (Rn ± iC) ∩O,

suppose, that two functions F+ and F− are analytic in D+ and D− respectively.

Finally the common boundary values are to be a distribution T ∈ D′(Cn).

lim
y→0
y∈C

∫

E

F+(x + iy) f (x) dx = T (f )

lim
y→0
y∈C

∫

E

F−(x − iy) f (x) dx = T (f )

Then there exist a complex neighbourhood N of E and a function G, which is

analytic in N and coincides with F+ in D+ and with F− on D−. N can be

chosen independently of F1 and F2.

Taken from Streater, Wightman; PCT, Spin and Statistics and all that.
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Outline of Proof

R
2

V +

V−

Vβ

N

Define
F+ := F |(λ1Vβ×···×λn−1Vβ )+iV+n .
Applying the Schwartz reflection
principle define a second analytic
function F− on
(λ1Vβ × . . . × λn−1Vβ) + i(V−)n−1

by
F−(z) := F+(z̄).

By the Edge-of-the-Wedge theorem
we now get a complex
neighbourhood N of
λ1Vβ × . . . λn−1Vβ and an analytic
continuation G to

N ∪
(
i (V + ∪ V

−)n−1
)

.
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Recalling our result from Nelson symmetry, for 0 < α1 < . . . < αn−1 < β
2

and
xi ∈ R:

W
(n)
β (iα1, x1, . . . , iαn−1, xn−1) = W

(n)
c (α1, ix1, . . . , αn−1, ixn−1),

we now have an analytic continuation of W
(n)
β to

(
(V + ∪ V

−)n−1 ∪ Γ
)

+ i (λ1Vβ × . . . × λn−1Vβ) ,

where Γ = −iN . Finally, applying the spectral theorem to

(Ωβ, φβ(0, 0)e−i(t1Lβ−x1Pβ)φβ(0, 0) · · · e−i(tn−1Lβ−xn−1Pβ)φβ(0, 0)Ωβ),

we get the analyticity in λ1(R
2 + iVβ) × . . . × λn−1(R

2 + iVβ).

F. Robl The relativistic KMS-condition for the thermal P(φ)2 model



Relativistic KMS-Condition
Reconstruction of two Models

Nelson Symmetry
The Theorem

Outline of Proof

References
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