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Variational Monte Carlo

The variational principle T = 0

E =
〈Ψ|H|Ψ〉

〈Ψ|Ψ〉
≥ Egs

• |Ψ〉 is a variational many-body wave function depending on
some variational parameters

• Tool to select the best approximation of the ground state:
the best approximation gives the lowest expectation value of
the energy

• We need a numerical approach to compute expectation

values ( 〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 ) over many-body wave functions:

Variational Monte Carlo
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Variational Monte Carlo

E =
〈Ψ|H|Ψ〉

〈Ψ|Ψ〉
=

∑

x

ExP̄x

• Ex =
∑

x′

Ψ(x′)
Ψ(x) Hx′,x, the local-energy, depends only on the

electronic configuration |x〉

• Electronic configurations are generated according to the

equilibrium probability distribution P̄x = |Ψ(x)|2
P

x′ |Ψ(x′)|2 , using

the Metropolis algorithm
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Metropolis algorithm

• Start from an initial configuration |x0〉

• Choose a new trial configuration |xt〉 by moving one particle
to a new position

• Accept the new configuration with a probability

Px0→xt
= min

[

1,

∣

∣

∣

∣

Ψ(xt)

Ψ(x0)

∣

∣

∣

∣

2
]

• Repeat this procedure generating a Markov chain (Every
configuration |xn〉 depends only on the previous |xn−1〉)

• After a thermalization time M configurations |xn>M 〉 are
independent from the initial one x0 and distributed
according to P̄x
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Variational Monte Carlo

Monte Carlo samplings of the configurations {|x〉} has to satisfy
two conditions

• Does a stationary P̄x exist?
• Detailed balance: The number of processes corresponding

to the transition |x〉 → |x′〉 shall be compensated by the
number of processes in the reverse sense |x′〉 → |x〉:

P̄xPx→x′ = Px′→xP̄x′

P n+1
xn+1

=
X

xn

Pxn→xn+1
P n

xn
=

X

xn

Pxn→xn+1
P̄xn = P̄xn+1

X

xn

Pxn+1→xn = P̄xn+1

• Metropolis algorithm satisfies the detailed balance
condition:

|Ψ(x)|2 > |Ψ(x′)|2 ⇒ |Ψ(x)|2 ∗ |Ψ(x′)|2/|Ψ(x)|2 = 1 ∗ |Ψ(x′)|2

– p. 5



Variational Monte Carlo

• Under which conditions an arbitrary initial probability
distribution P 0

x = δx,x0
will converge to P̄x?

• Ergodicity: Any configuration |x′〉 can be reached, in a
sufficiently large number of steps, starting from any initial
configuration |x〉.
This implies that P̄x is the unique equilibrium probability
distribution.
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The Hubbard model

HHub =
∑

i,j,σ

tijc
†
i,σcj,σ +

∑

i

Uni,↑ni,↓

General wave function for a correlated electron system

|Ψ〉 = P({vi})|D({∆i})〉

• P({vi}) correlation factor

• D({∆i}) Mean-field Slater determinant

• {vi} and {∆i} are variational parameters to be optimized
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Phase diagram on the square lattice

Hubbard model on the square lattice with next
and nearest-next neighbour hopping

HHub =
∑

〈i,j〉,σ

tc†i,σcj,σ+
∑

〈〈i,j〉〉,σ

t′c†i,σcj,σ+
∑

i

Uni,↑ni,↓ t

t’
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Spin liquid

Spin liquid state= Mott insulating paramagnetic state without any
spontaneously broken symmetry at T = 0

Spin liquid described through a superposition of valence bond states
(pattern of singlet pairs) RVB Anderson (1987)

Spin liquid states are favoured by frustrated interaction
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Wave function for a magnetic state

|ΨAF〉 = J∫G|AF〉 HAF =
∑

i,j,σ

t̃ijc
†
i,σcj,σ + ∆AF

∑

i

exp[iQRi](niSi)

J∫ = exp



−
1

2

∑

i,j

ui,jS
z
i Sz

j



 G = e−g
P

i
ni,↑ni,↓

• G On-site Coulomb
repulsion

• J∫ Spin-Jastrow factor
Fluctuations orthogonal
to the ordering plane
(like spin waves) x

y
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Wave function for a magnetic state

• A spin-Jastrow factor orthogonal to the ordering plane
allows to reproduce the correct spin-spin correlations at
large distance Franjic and Sorella Prog.Theor.Phys. 97, 399 (1997)

• A spin-Jastrow factor orthogonal to the ordering plane
correctly describes the strong-interacting limit of the
Hubbard model (comparison with a spin-Jastrow factor
parallel to the ordering plane)
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Wave function without magnetism

Charge-Jastrow factor over the ground state of a BCS
Hamiltonian

Appropriate for both a metallic state with superconducting
fluctuations and an insulator without magnetic order (spin liquid)

|ΨBCS〉 = J |BCS〉 Capello et al. PRL 94, 026406 (2005)

HBCS =
∑

i,j,σ

t̃ijc
†
i,σcj,σ − µ

∑

i,σ

c†i,σci,σ +
∑

i,j

∆ijc
†
i,↑c

†
j,↓ + H.c.

J = exp[−
1

2

∑

i,j

vijninj ] = exp[−
1

2

∑

q 6=0

vqnqn−q] ; vij > 0

ni = 0, 1, 2
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Jastrow factor in real space

J = exp[−1
2

∑

i,j vijninj ] ; vij > 0

The long-range Jastrow J correlates empty and doubly occupied
sites, inducing a Metal-Insulator Transition at a finite U/t

ninj = DiDj + HiHj − HiDj − DiHj + ni + nj − 1

Di = ni,↑ni,↓ Hi = (1 − ni,↑)(1 − ni,↓)

• DiDj + HiHj repulsion between doublons and between holons

• −HiDj − DiHj attraction between holons and doublons
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Jastrow factor in q−space

J = exp[−1
2

∑

q 6=0 vqnqn−q]

Vq ∝











1/q : metal
1/q2 : insulator (1D)

log(q)/q2 : insulator (2D)

Metal-insulator transition with a J |BCS〉 wave function on a 2D
square lattice Capello et al. PRB 73, 245116 (2006)
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Jastrow factor

The J |BCS〉 wave function can be poorly
accurate in the insulating phase

t

t’

• Bad description of the strongly interacting limit of the Hubbard model

• Poor accuracy with respect to the magnetic wave functions
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• We need to include correlation in the determinant |BCS〉

• A large ∆AF satisfies the single-occupancy constraint
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Backflow correlations

• Proposed by Feynman and Cohen to describe a roton excitation in liquid 4He
PR 102, 1189 (1956)

• Fictitious coordinates of the particles, r
b
α

rb
α = rα +

∑

β

ηα,β(rβ − rα)

• Creates a return flow of current, opposite to the motion of the excitation

v

• Applied to electron jellium and metallic hydrogen by Ceperley and coworkers

PRB 48, 12037 (1993), PRB 58, 6800 (1998), PRE 68, 046707 (2003)
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Backflow correlations in the Hubbard model

Correlation between empty sites and doubly occupied sites
inside the mean-field variational wave function |BCS〉 and |AF〉

rb
i,σ = ǫri,σ + η

∑

j

tijDiHj(rj,σ − ri,σ)

Di = ni,↑ni,↓ Hj = (1−nj,↑)(1−nj,↓)
i j

On a lattice electronic positions are limited to lattice sites: an alternative definition, based
on single-particle orbitals, is implemented

Tocchio et al. PRB 78, 041101(R) (2008)

φb
k(ri,σ) = ǫφk(ri,σ) + η

∑

j

tijDiHjφk(rj,σ)
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Are backflow correlations important?

Comparison with exact diagonalization
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Are backflow correlations important?

Proper description of the strongly-interacting limit
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Becca et al. J.Phys.Conf.Ser. 145, 012016 (2009)
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Conclusions

• Variational Monte Carlo to study ground-state properties of
correlated Hamiltonians

• exp[−1
2

∑

i,j ui,jS
z
i Sz

j ]|AF〉 to describe a magnetic ground
state

• exp[−1
2

∑

i,j vijninj ]|BCS〉 to describe a non-magnetic
ground state

• Charge-Jastrow factor: Metal-Insulator Transition at a finite
U/t

• Backflow correlations: How to correlate a non-magnetic
wave function; a spin-liquid state can be stabilized in
presence of frustration
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