

Student Seminar

Stefan Söffing Sebastian Eggert

Electronic properties of a harmonically confined 1D Hubbard model

July 21, 2010

Electronic properties of a harmonically confined 1D Hubbard model

Cold gases and the Hubbard model

Results: Homogeneous part

Results: Oscillations

July 21, 2010

- Aim: Study the behavior of correlated electrons in low dimensional condensed matter systems
- Artificial crystal of light: Optical lattice
- Load with ultracold atoms

July 21, 2010

- Tune hopping and interaction as needed
- Choose lattive geometry and <u>dimension</u>

I. Bloch, Nature Physics 1, 23-30 (2005)

July 21, 2010

• Detection of particles:

www.physik.uni-kl.de/ott

www.quantum-munich.de

July 21, 2010

1D Hubbard model

> 1D system of interacting fermions; quantum wire

$$H = -t\sum_{j,\sigma} \left(\psi_{j,\sigma}^{\dagger} \psi_{j+1,\sigma} + \psi_{j+1,\sigma}^{\dagger} \psi_{j,\sigma} \right) + U\sum_{j} n_{j,\uparrow} n_{j,\downarrow}$$

- Kinetic energy: Hopping parameter t
- Coulomb repulsion: On-site interaction U
- Fixed band filling n

July 21, 2010 Elec

• But: Experiments are carried out in a <u>trap</u>:

$$H = -t\sum_{j,\sigma} \left(\psi_{j,\sigma}^{\dagger}\psi_{j+1,\sigma} + \psi_{j+1,\sigma}^{\dagger}\psi_{j,\sigma}\right) + U\sum_{j} n_{j,\uparrow}n_{j,\downarrow} + \sum_{j} \left(j - \frac{L+1}{2}\right)^2 n_j$$

> which effects has the additional potential?

July 21, 2010

Electronic properties of a harmonically confined 1D Hubbard model

Cold gases and the Hubbard model

Results: Homogeneous part

Results: Oscillations

July 21, 2010

Observable: <u>Electronic density</u>

July 21, 2010

- *Reference*: Numerical calculation: <u>DMRG</u> (Density Matrix Renormalization Group)
 - Quasi exact (controllable error)
 - Arbitrary potential
 - Arbitrary interaction

Observable: <u>Electronic density</u>

July 21, 2010

- *Reference*: Numerical calculation: <u>DMRG</u> (Density Matrix Renormalization Group)
 - Quasi exact (controllable error)
 - Arbitrary potential
 - Arbitrary interaction
 - Computationally expensive for large systems
- Aim: Analytical expression for the density

• U=0: Thomas-Fermi approach

 $\frac{\partial E}{\partial n_0} = \mu$

at each point, with $\mu = \mu(x)$

July 21, 2010

• U=0: Thomas-Fermi approach

 $\frac{\partial E}{\partial n_0} = \mu$

July 21, 2010

at each point, with $\mu = \mu(x)$

•
$$\Rightarrow n_0(x) = \frac{k_F^{(0)}}{\pi} \sqrt{1 - (x/L_F)^2}$$

with classical turning points $L_F = \sqrt{\frac{2N-1}{\omega}}$

- *U*>0: **Repulsive** interaction:
 - broadening
 - deformation
- Adjust the profile

$$n_0(x) \propto \left[1 - (x/L_F)^2\right]^{\alpha}$$

with fit parameters L_F , $\alpha \approx 0.5$

July 21, 2010

- Can we determine the broadening and deformation of the cloud directly?
- → Make use of exact solution: <u>Bethe Ansatz</u>
 - Analytical result
 - For arbitrary interaction

July 21, 2010

July 21, 2010

Density in the trap

- Can we determine the broadening and deformation of the cloud directly?
- → Make use of exact solution: <u>Bethe Ansatz</u>
 - Analytical result
 - For arbitrary interaction
 - Coupled integral equations
 - Homogeneous system, thermodynamic limit
- → Idea: Local Bethe Ansatz

Local Bethe Ansatz

July 21, 2010

Local Bethe Ansatz

Solve auxiliary system for each lattice point

July 21, 2010

Local Bethe Ansatz

Solve auxiliary system for each lattice point

July 21, 2010

July 21, 2010

July 21, 2010

July 21, 2010

• Density in trap center:

July 21, 2010

Electronic properties of a harmonically confined 1D Hubbard model

Cold gases and the Hubbard model

Results: Homogeneous part

Results: Oscillations

July 21, 2010 Electronic pr

Oscillations:

- Known from homogeneous case:
 - U = 0: Friedel oscillations
 - > $U \rightarrow \infty$: Wigner crystal oscillations
- On top of the slowly varying part

Oscillations:

July 21, 2010

Oscillations:

July 21, 2010

Oscillations:

•
$$\delta n(x) = A_1 \frac{\cos\left(2\tilde{k}_F(x)x\right)}{\left[1 - (x/L_F)^2\right]^{K_1}} + A_2 \frac{\cos\left(4\tilde{k}_F(x)x\right)}{\left[1 - (x/L_F)^2\right]^{K_2}}$$

Position dependent Fermi wave vector

$$2\tilde{k}_F(x) = \frac{2\pi}{x} \int_0^x n_0(y) \, dy = k_F^{(0)} \left[Z(x) + L_F/x \, \sin\left(x/L_F\right) \right]$$
$$k_F^{(0)} = \alpha \sqrt{2N - 1}$$

July 21, 2010

Oscillations:

•
$$\delta n(x) = A_1 \frac{\cos\left(2\tilde{k}_F(x)x\right)}{\left[1 - (x/L_F)^2\right]^{K_1}} + A_2 \frac{\cos\left(4\tilde{k}_F(x)x\right)}{\left[1 - (x/L_F)^2\right]^{K_2}}$$

Position dependent Fermi wave vector

$$2\tilde{k}_F(x) = \frac{2\pi}{x} \int_0^x n_0(y) \, dy = k_F^{(0)} \left[Z(x) + L_F/x \, \sin\left(x/L_F\right) \right]$$
$$k_F^{(0)} = \alpha \sqrt{2N - 1}$$

- Unknown amplitude and exponent
- Fit parameters $A_{1,2}, K_{1,2}, L_F, k_F$

July 21, 2010

July 21, 2010

July 21, 2010

July 21, 2010

- More electronic properties: (Local) Density of States
 - Tunneling experiments
 - Photoemission
 - Probe single particle wavefunctions

Conclusions

- Slowly varying part of the density:
 - Fit (Thomas-Fermi approach) vs.
 - Local Bethe Ansatz (fails at intermediate U)
- Oscillations described by analytical expression (adapted from homogeneous case)
- Crossover from Friedel into Wigner crystal regime well described within a trap