

Brillouin-Light-Scattering Spectroscopy

Benjamin Jungfleisch

SFB/TR49 Student Seminar 20th – 21th of July 2010

Content

- Spin waves
- Brillouin Light Scattering (BLS)
 - · Quantum mechanical picture
 - Conventional experimental setup
- Applications
 - Time-resolved BLS
 - Phase-resolved BLS
- Wavevector-resolved
 Summary BLS

Spin waves

Benjamin Jungfleisch

SFB/TR49 Student Seminar

Spin waves

Landau-Lifshitz and Gilbert equation

Spin waves

Distinction between different energy contributions

· Exchange energy

(generated by twist of neighbored spins, short range interaction)

Dipolar energy

(generated by magnetic poles in long-wavelength spin waves, long range interaction)

Brillouin-Light-Scattering

Benjamin Jungfleisch

SFB/TR49 Student Seminar

Inelastically scattered light

Raman-Scattering

- · Optical phonons
- Molecule vibrations

Brillouin-Light-Scattering

- Acoustic phonons
- · Spin waves

Frequencies up to several THz

Frequencies below ~ 500 GHz

Grating spectrometer

Tandem Fabry-Pérot interferometer

Brillouin-Light-Scattering

Annihilation (Anti-Stokes)

Stokes:	Anti-Stokes:

Energy conservation law:

<u>ωs = ωi - ω</u>

 $\omega s = \omega i + \omega$

Momentum conservation law: ks = ki - k ks = ki - k

Fabry-Pérot interferometer (FPI)

The functionality of a Fabry-Pérot interferometer is based on multi-beam interference on two plane-parallel surfaces.

The phase difference:

$$\Delta \varphi = \left(\frac{2\pi}{\lambda}\right) 2nl\cos(\theta)$$

Fabry-Pérot interferometer

Transmittance and reflectivity

The transmittance function is given by:

$$T = \frac{(1-R)^2}{1+R^2 - 2R\cos(\Delta \varphi)} = \frac{1}{1+F\sin^2(\Delta \varphi/2)},$$

where R is the reflectivity and $F = \frac{48}{(1-R)^2}$ coefficient of the finesse F.

Maximum transmission occurs when

$$m = 1,2,3,...$$
 $2nl\cos(\theta) = m\lambda$,

Fabry-Pérot interferometer

Our setup: $F \approx 110$

SFB/TR49 Student Seminar

Fabry-Pérot interferometer

for IR= 0,3 mm: Δv = 500 GHz

Operation of the TFPI

Benjamin Jungfleisch

SFB/TR49 Student Seminar

Multi-pass tandem Fabry-Pérot interferometer (TFPI)

- · High contrast: more than 1:1010
- · High spectral resolution in the Sub-GHz-Regime (up to 50 MHz)
- Accessible frequency range: 0,2 GHz 500 GHz

J. Sandercock, www.jrs-si.ch

H. Schultheiß, www.tfpdas.de

SFB/TR49 Student Seminar

BLS setup

Applications

Benjamin Jungfleisch

SFB/TR49 Student Seminar

Applications

Benjamin Jungfleisch

SFB/TR49 Student Seminar

Applications: Time-resolved BLS

Benjamin Jungfleisch

SFB/TR49 Student Seminar

Time-resolved BLS

Benjamin Jungfleisch

SFB/TR49 Student Seminar

Applications: Phase-resolved BLS

Benjamin Jungfleisch

SFB/TR49 Student Seminar

Phase-resolved BLS

Inelastically scattered light contains phase information

But: BLS signal is proportional to laser intensity

Example for phase-resolved BLS: Tunneling

running spin wave: wave has not reached the barrier yet

Applications: Wavevector-resolved BLS

Benjamin Jungfleisch

SFB/TR49 Student Seminar

Wavevector-resolved BLS

No translational invariance in z direction

Only **k**|| = $k \sin(\theta)$ conserved

Maximum wavevector:k < 2.105 cm-1(Backscattering geometry: $\Delta k = 2 k \parallel$)

Wavevector-resolved BLS

Wavevector selection by rotating the sample

Benjamin Jungfleisch

SFB/TR49 Student Seminar

Summary

Brillouin light scattering

study spin waves...

