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Exercise 1 (Critical exponents of the van der Waals gas)

To take into account interaction corrections to an ideal gas of atoms, van der Waals
proposed the following equation of state (with a, b > 0),(

p+ a

(
N

V

)2
)

(V −Nb) = NkBT .

Roughly speaking, the coefficient b represents effects due to a hard core repulsive in-
teraction and decreases the effective volume of the system. At larger distances, the
interaction between the atoms is attractive and leads to a reduction of the pressure.
Because the interaction is always between pairs of molecules, this correction is expected
to be proportional to the square of the density n = N/V .

a) Using the van der Waals equation of state it is possible to describe the dis-
continuous liquid-gas transition and the critical end point. A plot of p(V ) for
representative values of T is shown below.
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Rewrite the equation of state as a cubic polynomial in V and argue that at
the critical point (pc, Vc, Tc) the van der Waals equation of state reduces to
(V − Vc)

3 = 0. Compare coefficients and show that a = 3pc(Vc/N)2 and
b = 1/3Vc/N .



b) Calculate the free energy F (T, V ) by integrating −p(T, V ) along an isotherm
with respect to V , i.e.

F (T, V ) = −
∫ V

V0

p(V ′)dV ′ + const.(T ) .

You may adjust the temperature-dependent additive constant by comparing your
result in the limit V →∞ with that of an ideal gas

F (T, V )ideal = NkBT ln
h3

(2πmkBT )3/2V
+NkBT .

Using the relation CV = −T
(
∂2F
∂T 2

)
V

calculate the specific heat at constant volu-

me. What do you obtain for the critical exponent α defined by CV ∝ |t|−α?

c) The exponent γ is defined by κT ≡ − 1
V

(
∂V
∂p

)
T

= − 1
V

(
∂p
∂V

)−1
T,V=Vc

∝ |t|−γ (with

V = Vc). The exponent δ is defined at T = Tc by p−pc ∝ (n−nc)δ ∝ −(V −Vc)δ.
Calculate the critical exponents γ and δ.

d) * As you might have noticed, the van der Waals equation of state predicts regions

in the phase diagram where the compressibility κT ≡ − 1
V

(
∂V
∂p

)
T

does not satisfy

κT ≥ 0. This instability is of course unphysical and can be traced back to the fact
that the van der Waals equation does not allow for phase separation. A simple
remedy is the Maxwell construction: Draw a line parallel to the V -axis which cuts
the graph p(V ) in such a way that the two areas enclosed by this line and p(V )
are equal. In the inner part of the graph (ranging from Vliquid to Vgas) the pressure
p(V ) is now replaced by the horizontal line. Justify the Maxwell construction by
considering an isotherm of F (T, V ) = −

∫
p dV +const(T ). By allowing for phase

separation you can now reduce the free energy F (T, V ) for Vliquid < V < Vgas,
turning the free energy convex. Apply the Maxwell construction to your above
sketch and mark the coexistence curve in the p-V -diagram (where F is non-
analytic).

e) * To obtain the critical exponent β write V = Vc(1 + v) and T = Tc(1 + t)
and expand p(T, V ) for small t and v. You need to keep terms up to order
O(t, tv, v3). You should justify this later on. Apply the Maxwell construction
to obtain the coexistence curve. Go ahead and calculate the coefficient β defined
by Vgas − Vliquid ∝ |t|β with t ≤ 0.

Verify the identity

e−
x4

4! =

∫ ∞
−∞

dy e−
x2

2
− ix2y

4

which is the simplest analogon to the mathematical operations performed in the Hub-
bard Stratonovich transformation.


