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Abstract. This lecture gives a brief introduction to Monte Carlo simulations of clas-
sical O(n) spin systems such as the Ising (n = 1), XY (n = 2), and Heisenberg (n = 3)
model. In the first part I discuss some aspects of Monte Carlo algorithms to generate
the raw data. Here special emphasis is placed on non-local cluster update algorithms
which proved to be most efficient for this class of models. The second part is de-
voted to the data analysis at a continuous phase transition. For the example of the
three-dimensional Heisenberg model it is shown how precise estimates of the transition
temperature and the critical exponents can be extracted from the raw data. I conclude
with a brief overview of recent results from similar high-precision studies of the Ising
and XY model.

1 Introduction

The statistical mechanics of complex physical systems poses many hard problems
which are difficult to solve by analytical approaches. Numerical simulation tech-
niques will therefore be indispensable tools on our way to a better understanding
of systems like (spin) glasses, disordered magnets, or proteins, to mention only a
few classical problems. Quantum statistical problems in condensed matter or the
broad field of elementary particles and quantum gravity in high-energy physics
would fill many other volumes like this.

The numerical tools can roughly be divided into molecular dynamics (MD)
and Monte Carlo (MC) simulations. With the ongoing advances in computer
technology both approaches are expected to gain even more importance than
they already have today. In the past few years the predictive power of especially
the MC approach was considerably enhanced by the development of greatly
improved simulation techniques. Not all of them are already well enough under-
stood to be applicable to really complex physical systems. But as a first step
it is gratifying to see that at least for relatively simple spin systems orders of
magnitude of computing time can be saved by these refinements. The purpose
of this lecture is to give a brief overview on what is feasible today.

From a theoretical view also spin systems are of current interest since on
the one hand they provide the possibility to compare completely different ap-
proaches such as field theory, series expansions, and simulations, and on the
other hand they are the ideal testing ground for conceptual considerations such
as universality or finite-size scaling. And last but not least they have found a
revival in slightly disguised form in quantum gravity and conformal field theory,
where they serve as idealized “matter” fields on Feynman graphs or fluctuating
manifolds.
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The rest of the paper is organized as follows. In the next section I first recall
the definition of O(n) spin models and the definition of standard observables
like the specific heat and the susceptibility. Then some properties of phase tran-
sitions are summarized and the critical exponents are defined. In Sec. 3, Monte
Carlo methods are described, and Sec. 4 is devoted to an overview of reweighting
techniques. In Sec. 5, applications to the three-dimensional classical Heisenberg
model are discussed, and in Sec. 6, I conclude with a few comments on similar
simulations of the Ising and XY model.

2 Spin Models and Phase Transitions

2.1 Models and Observables

In the following we shall confine ourselves to O(n) symmetric spin models whose
partition function is defined as

Zn(β) =
∑

{σi}

exp(−βHn) , (1)

with
Hn = −J

∑

〈ij〉

σi · σj ; σi = (σ
(1)
i , σ

(2)
i , . . . , σ

(n)
i ); |σi| = 1 . (2)

Here β = 1/kBT is the inverse temperature, the spins σi live on the sites i of
a D-dimensional cubic lattice of volume V = LD, and the symbol 〈ij〉 indicates
that the lattice sum runs over all 2D nearest-neighbor pairs. We always assume
periodic boundary conditions.

Standard observables are the internal energy per site, e = E/V , with E =
−d lnZn/dβ ≡ 〈Hn〉, and the specific heat,

C/kB =
de

d(kBT )
= β2

(

〈H2
n〉 − 〈Hn〉2

)

/V . (3)

On finite lattices the magnetization and susceptibility are usually defined as

m = M/V = 〈|σav|〉; σav =
∑

i

σi/V , (4)

χ = βV
(

〈σ2
av〉 − 〈|σav|〉2

)

. (5)

In the high-temperature phase one often employs the fact that the magnetization
vanishes in the infinite volume limit and defines

χ′ = βV 〈σ2
av〉 . (6)

Similarly, the spin-spin correlation function can then be taken as

G(xi − xj) = 〈σi · σj〉 . (7)
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At large distances, G(x) decays exponentially and the correlation length ξ can
be defined as

ξ = − lim
|x|→∞

|x|/ ln G(x) . (8)

For n = 1, the partition function Zn(β) describes the standard Ising model

where the spins can take only the two discrete values, σi ≡ σ
(1)
i = ±1. For

n = 2, 3, . . . the spins vary continuously on the n-dimensional unit sphere. Par-
ticularly thoroughly studied cases are n = 2 (XY model) and n = 3 (Heisenberg
model). The limit n −→ ∞ is known to be equivalent to the spherical model of
Berlin and Kac (1952). In three dimensions (3D) the model exhibits for all n
a continuous phase transition from an ordered low-temperature phase to a dis-
ordered high-temperature phase. The associated critical exponents are generic
for the so-called O(n) universality classes. In two dimensions (2D) the situation
is little more complex. For the 2D Ising model the exact solution by Onsager
and later Yang predicts a continuous order-disorder phase transition similar to
3D. For all n ≥ 2, however, the spin degrees of freedom are continuous and,
as a consequence of the Mermin-Wagner-Hohenberg theorem, the magnetization
vanishes for all temperatures. The 2D XY model nevertheless displays a very
peculiar (infinite order) Kosterlitz-Thouless transition (Kosterlitz and Thouless
1973, Berezinskii 1971, Kosterlitz 1974). Due to the O(2) symmetry this model
admits point like topological defects (vortices) which are tightly bound to pairs
at low temperatures. With increasing temperature isolated vortices are entrop-
ically favored, and the transition is usually pictured as the point where vortex
pairs start to dissociate (for a review see, e.g., Kleinert (1989a)). For the 2D
Heisenberg model and all other 2D O(n) models with n > 3, on the other hand,
it is commonly believed that there is no phase transition at finite temperature.1

For later reference we also recall another generalization of the Ising model,
the q-state Potts model (Potts 1952) with Hamiltonian

HPotts = −J
∑

〈ij〉

δσiσj
; σi ∈ 1, . . . , q . (9)

This generalization has in 3D for all q ≥ 3 a first-order transition; and in 2D it
is exactly known to exhibit a second-order transition for q ≤ 4, and a first-order
transition for all q ≥ 5 (Wu 1982, 1983).

2.2 Phase Transitions

In limiting cases like low and high temperatures (or fields, pressure, etc.) the
physical degrees of freedom usually decouple and the statistical mechanics of
even complex systems becomes quite manageable. Much more interesting is the
region in between these extremes where strong cooperation effects may cause
phase transitions, e.g., from an ordered phase at low temperatures to a disordered

1 For an alternative view see, however, Patrascioiu and Seiler (1995) and references to
earlier work therein.



4 Wolfhard Janke

phase at high temperatures. To predict the properties of this most difficult region
of a phase diagram as accurately as possible is the most challenging objective of
all statistical mechanics approaches, including numerical simulations.

The theory of phase transitions is a very broad subject described comprehen-
sively in many textbooks. Here we shall be content with a rough classification in
first-order and second-order (or, more generally, continuous) phase transitions,
and a summary of those properties that are most relevant for numerical simula-
tions. Some characteristic properties of first- and second-order phase transitions
are sketched in Fig. 1.
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Fig. 1. The characteristic behaviour of the magnetization, m, specific heat, C, and
susceptibility, χ, at first- and second-order phase transitions.

Most phase transitions in Nature are of first order (Gunton et al. 1983, Binder
1987, Herrmann et al. 1992, Janke 1994). The best known example is the field-
driven transition in magnets at temperatures below the Curie point, while the
paradigm of a temperature-driven first-order transition experienced every day
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is ordinary melting (Kleinert 1989b, Janke and Kleinert 1986). In general, first-
order phase transitions are characterized by discontinuities of the order param-
eter (the jump ∆m of the magnetization m in Fig. 1), or the energy (the latent
heat ∆e), or both. This reflects the fact that, at the transition temperature T0,
two (or more) phases can coexist. In the example of a magnet at low temperatures
the coexisting phases are the phases with positive and negative magnetization,
while at the melting transition they are the solid (ordered) and liquid (disor-
dered) phases. The correlation length in the coexisting pure phases is finite.2

Consequently also the specific heat, C, and the susceptibility, χ, do not diverge
in the pure phases. Mathematically there are, however, superimposed delta func-
tion like singularities associated with the jumps of e and m.

In this lecture we will mainly consider second-order phase transitions, which
are characterized by a divergent correlation length ξ at the transition tempera-
ture Tc ≡ 1/βc. The growth of correlations as one approaches the critical region
from high temperatures is illustrated in Fig. 2, where six typical configurations
of the 2D Ising model at inverse temperatures β/βc = 0.50, 0.70, 0.85, 0.90,
0.95, and 0.98 are shown. Because for an infinite correlation length fluctuations
on all length scales are equally important, one expects power-law singularities
in thermodynamic functions. The leading singularity of the correlation length is
usually parametrized in the high-temperature phase as

ξ = ξ0+ |1 − T/Tc|−ν + . . . (T ≥ Tc) , (10)

where the . . . indicate subleading corrections (analytical as well as confluent).
This defines the critical exponent ν and the critical amplitude ξ0+ on the high-
temperature side of the transition. In the low-temperature phase one expects a
similar behaviour,

ξ = ξ0−(1 − T/Tc)
−ν + . . . (T ≤ Tc) , (11)

with the same critical exponent ν but a different critical amplitude ξ0− 6= ξ0+ .
An important feature of second-order phase transitions is that due to the

divergence of ξ the short-distance details of the Hamiltonian should not matter.
This is the basis of the universality hypothesis which states that all systems with
the same symmetries and same dimensionality should exhibit similar singularities
governed by one and the same set of critical exponents. For the amplitudes this
is not true, but certain amplitude ratios are also universal.

The singularities of the specific heat, magnetization, and susceptibility are
similarly parametrized by the critical exponents α, β, and γ, respectively,

C = Creg + C0|1 − T/Tc|−α + . . . , (12)

m = m0(1 − T/Tc)
β + . . . , (13)

χ = χ0|1 − T/Tc|−γ + . . . , (14)

2 For the 2D q-state Potts model with q ≥ 5, where many exact results are known, this
is illustrated by the recent simulations of Janke and Kappler (1994, 1995a, 1995b,
1995c, 1995d); for details see Kappler (1995).
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Fig. 2. From high temperatures (upper left) to the critical region (lower right), char-
acterized by large spatial correlations. Shown are actual 2D Ising configurations for a
100 × 100 lattice at β/βc = 0.50, 0.70, 0.85, 0.90, 0.95, and 0.98.
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where Creg is a regular background term, and the amplitudes are again different
on the two sides of the transition, cp. Fig. 1.

Finite-Size Scaling. For systems of finite size, as in any numerical simula-
tion, the correlation length cannot diverge, and also the divergencies in all other
quantities are then rounded and shifted. This is illustrated in Fig. 3, where the
specific heat of the 2D Ising model on various L×L lattices is shown. The curves
are computed from the exact solution of Ferdinand and Fisher (1969) for any
Lx × Ly lattice with periodic boundary conditions.
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Fig. 3. Finite-size scaling behaviour of the specific heat of the 2D Ising model on L×L
lattices. The critical point is indicated by the arrow on the top axis.

Near Tc the role of ξ in the scaling formulas is then taken over by the linear
size of the system, L. By writing |1−T/Tc| ∝ ξ−1/ν −→ L−1/ν , we see that at Tc

the scaling laws (12)-(14) are replaced by the finite-size scaling (FSS) Ansätze,

C = Creg + aLα/ν + . . . , (15)

m ∝ L−β/ν + . . . , (16)

χ ∝ Lγ/ν + . . . . (17)

More generally these scaling laws are valid in the vicinity of Tc as long as the
scaling variable x = (1 − T/Tc)L

1/ν is kept fixed (Binder 1979, Barber 1983,
Privman 1990, Binder 1992b). In particular this is true for the locations Tmax of
the (finite) maxima of thermodynamic quantities, which are expected to scale
with the system size as Tmax = Tc(1 − xmaxL

−1/ν + . . .). In this more general
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formulation the scaling law for, e.g., the susceptibility reads χ(T,L) = Lγ/νf(x).
By plotting χ(T,L)/Lγ/ν vs the scaling variable x, one thus expects that the
data for different T and L fall onto a kind of master curve. While this is a nice
way to demonstrate the scaling properties qualitatively, it is not particularly
suited for quantitative analyses.

Since the goal of most simulation studies of spin systems are high-precision
estimates of the critical temperature and the critical exponents, one therefore
prefers fits either to the “thermodynamic” scaling laws (12)-(14) or to the FSS
Ansätze (15)-(17).

Similar considerations for first-order phase transitions show that also the
delta function like singularities, originating from the phase coexistence, are
smeared out for finite systems (Fisher and Berker 1982, Privman and Fisher
1983, Binder and Landau 1984, Challa et al. 1986, Privman and Rudnik 1990).
In finite systems they are replaced by narrow peaks whose height (width) grows
proportional to the volume (1/volume) (Borgs and Kotecky 1990, 1992, Lee and
Kosterlitz 1990, 1991, Borgs et al. 1991, Borgs and Janke 1992, Janke 1993).

3 The Monte Carlo Method

Let us now discuss how the expectation values in (3)-(7) can be computed numer-
ically. A direct summation of the partition function is impossible, since already
for the Ising model with only two possible states per site the number of terms
would be enormous: 22500 ≈ 10753 for a 50 × 50 lattice! Also a naive random
sampling of the spin configurations does not work. Here the problem is that
the relevant region in the high-dimensional phase phase is relatively narrow and
hence too rarely hit by random sampling. The solution to this problem is known
since long. One has to use the importance sampling technique (Hammersley and
Handscomb 1965) which is designed to draw configurations according to their
Boltzmann weight,

P eq[{σi}] ∝ exp (−βH[{σi}]) . (18)

In more mathematical terms one sets up a Markov chain,

. . .
W−→ {σi} W−→ {σ′

i}
W−→ {σ′′

i }
W−→ . . . ,

with a transition operator W satisfying the conditions

a) W ({σi} −→ {σ′
i}) ≥ 0 for all {σi}, {σ′

i} , (19)

b)
∑

{σ′

i
}

W ({σi} −→ {σ′
i}) = 1 for all {σi} , (20)

c)
∑

{σi}

W ({σi} −→ {σ′
i})P eq[{σi}] = P eq[{σ′

i}] for all {σ′
i} . (21)

From (21) we see that P eq is a fixed point of W . A somewhat simpler sufficient
condition is detailed balance,

P eq[{σi}]W ({σi} −→ {σ′
i}) = P eq[{σ′

i}]W ({σ′
i} −→ {σi}) . (22)



Monte Carlo Simulations of Spin Systems 9

After an initial equilibration time, expectation values can then be estimated as
an arithmetic mean over the Markov chain, e.g.,

〈H〉 =
∑

{σi}

H[{σi}]P eq[{σi}] ≈
1

N

N
∑

j=1

H[{σi}]j . (23)

A more detailed exposition of the basic concepts underlying any Monte Carlo
algorithm can be found in many textbooks and reviews (Binder 1979, Binder
and Heermann 1988, Heermann 1990, Binder 1992a).

3.1 Estimators and Autocorrelation Times

In principle there is no limitation on the choice of observables. The expectation
value 〈O〉 of any observable O can be estimated in a MC simulation as a simple

arithmetic mean over the Markov chain, Ō = 1
N

∑N
j=1 Oj , where Oj ≡ O[{σi}]j

is the measurement after the j-th iteration. Conceptually it is important to
distinguish between the expectation value 〈O〉, which is an ordinary number, and
the estimator Ō, which is a random number fluctuating around the theoretically
expected value. Of course, in practice one does not probe the fluctuations of
the estimator directly (which would require repeating the whole MC simulation
many times), but rather estimates its variance σ2

Ō
= 〈[Ō−〈Ō〉]2〉 = 〈Ō2〉−〈Ō〉2

from the distribution of Oj . If the N measurements Oj were all uncorrelated
then the relation would simply be σ2

Ō
= σ2

Oj
/N , with σ2

Oj
= 〈O2

j 〉 − 〈Oj〉2. For
correlated measurements one obtains after some algebra

σ2
Ō =

σ2
Ok

N
2τŌ,int , (24)

where the integrated autocorrelation time,

τŌ,int =
1

2
+

N
∑

j=1

A(j)

(

1 − j

N

)

, (25)

turns out to be a sum (“integral”) over the the autocorrelation function,

A(j) =
〈OiOi+j〉 − 〈Oi〉〈Oi〉
〈O2

i 〉 − 〈Oi〉〈Oi〉
. (26)

For large time separations the autocorrelation function decays exponentially,

A(j)
j→∞−→ ae−j/τŌ,exp , (27)

with a being a constant. This defines the exponential autocorrelation time τŌ,exp.
Due to the exponential decay of A(j), in any meaningful simulation with N ≫
τŌ,exp, the correction term in parentheses in (25) can safely be neglected. Notice
that only if A(j) is a pure exponential, the two autocorrelation times, τŌ,int and
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τŌ,exp, coincide (up to minor corrections for small τŌ,int) (Madras and Sokal
1988).

The important point is that for correlated measurements the statistical er-

ror ǫŌ ≡
√

σ2
Ō

on the MC estimator Ō is enhanced by a factor of
√

2τŌ,int.

This can be rephrased by writing the statistical error similar to the uncorre-

lated case as ǫŌ =
√

σ2
Oj

/Neff , but now with an effective statistics parameter

Neff = N/2τŌ,int. This shows more clearly that only every 2τŌ,int iteration the
measurements are approximately uncorrelated and gives a better idea of the
relevant effective size of the statistical sample. Since some quantities (e.g., the
specific heat or susceptibility) can severely be underestimated if the effective
statistics is too small (Ferrenberg et al. 1991), any serious simulation should
therefore provide at least a rough order-of-magnitude estimate of autocorrela-
tion times.

Unfortunately, it is very difficult to give reliable a priori estimates, and an
accurate numerical analysis is often too time consuming (as a rough estimate it
is about ten times harder to get precise information on dynamic quantities than
on static quantities like critical exponents). To get at least an idea of the orders
of magnitude, it is useful to record the “running” autocorrelation time

τŌ,int(k) =
1

2
+

k
∑

j=1

A(j) , (28)

which approaches τŌ,int for large k. Approximating the tail end of A(j) by a
single exponential as in (27), one derives (Janke and Sauer 1995)

τŌ,int(k) = τŌ,int −
a

e1/τŌ,exp − 1
e−k/τŌ,exp . (29)

The latter expression may be used for a numerical estimate of both the expo-
nential and integrated autocorrelation times.

To summarize this subsection, any realization of a Markov chain (i.e., MC
update algorithm) is characterized by autocorrelation times which enter directly
in the statistical errors of MC estimates. Since correlations always increase the
statistical errors, it is a very important issue to develop MC update algorithms
that keep autocorrelation times as small as possible. In the next subsection
we first discuss the classical Metropolis algorithm as an example of an update
algorithm which near criticality is plagued by huge temporal correlations. The
discussion of cluster updates in the next subsection then demonstrates that there
indeed exist clever ways to overcome this critical slowing down problem.

3.2 Metropolis Algorithm

In the standard Metropolis algorithm (Metropolis et al. 1953) the Markov chain
is realized by local updates of single spins. If E and E′ denote the energy before
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and after the spin flip, respectively, then the probability to accept the proposed
spin update is given by

W ({σi} −→ {σ′
i}) =

{

exp [−β(E′ − E)] E′ ≥ E
1 E′ < E .

(30)

If the energy is lowered, the spin flip is always accepted. But even if the energy
is increased, the flip has to be accepted with a certain probability to ensure
the proper treatment of entropic contributions. In thermal equilibrium the free

energy is minimized and not the energy. Only at zero temperature (β −→ ∞) this
probability tends to zero and the MC algorithm degenerates to a minimization
algorithm for the energy functional. With some additional refinements, this is
the basis of the simulated annealing technique also discussed in this volume,
which is usually applied to hard optimization and minimization problems.

There are many ways how to choose the spins to be updated. The lattice sites
may be picked at random or according to a random permutation, which can be
updated every now and then. But also a simple fixed lexicographical order is
permissible. Or one updates first all odd and then all even sites, which is the
usual choice in vectorized codes. A so-called lattice sweep is completed when on
the average3 for all spins an update was proposed.

The advantage of this simple algorithm is its flexibility which allows the ap-
plication to a great variety of physical systems. The great disadvantage, however,
is that this algorithm is plagued by large autocorrelation times, as most other
local update algorithms (one exception is the overrelaxation method (Creutz
1987, Adler 1988, Neuberger 1988, Gupta et al. 1988)). Empirically one finds that
the autocorrelation time grows proportional to the spatial correlation length,

τ ∝ ξz , (31)

with a dynamical critical exponent z ≈ 2. Heuristically this can be understood
by assuming that local excitations diffuse through the system like a random walk.
Since ξ diverges at criticality, the Metropolis algorithm thus severely suffers from
critical slowing down. Of course, in finite systems ξ cannot diverge. Then ξ is
replaced by the linear lattice size L, yielding τ ∝ Lz.

The problem of critical slowing down can be overcome by non-local update
algorithms. In the past few years several different types of such algorithms have
been proposed. Quite promising results were reported with Fourier acceleration
(Doll et al. 1985) and multigrid techniques (Goodman and Sokal 1986, 1989,
Mack 1988, Kandel et al. 1988, 1989, Mack and Meyer 1990). A very nice and
pedagogical introduction to these techniques is given by Sokal (1989, 1992).
For the O(n) spin models considered here, however, the best performance was
achieved with cluster update algorithms which will be described in the next
subsection in more detail.

3 This is only relevant in the case where the lattice sites are picked at random.
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3.3 Cluster Algorithms

As we shall see below, cluster update algorithms (Swendsen and Wang 1987,
Wolff 1989a) are much more powerful than the Metropolis algorithm. Unfortu-
nately, however, they are less general applicable. We therefore consider first only
the Ising model, where the prescription for cluster update algorithms can easily
be read off from the equivalent Fortuin-Kasteleyn representation (Kasteleyn and
Fortuin 1969, Fortuin and Kasteleyn 1972, Fortuin 1972a, 1972b),

Z =
∑

{σi}

exp



β
∑

〈ij〉

σiσj



 (32)

=
∑

{σi}

∏

〈ij〉

eβ
[

(1 − p) + pδσiσj

]

(33)

=
∑

{σi}

∑

{nij}

∏

〈ij〉

eβ
[

(1 − p)δnij ,0 + pδσiσj
δnij ,1

]

, (34)

with
p = 1 − e−2β . (35)

Here the nij are bond variables which can take the values nij = 0 or 1, interpreted
as “deleted” or “active” bonds. In the first line we used the trivial fact that
the product σiσj of two Ising spins can only take the two values ±1, so that
exp(βσiσj) = x+ yδσiσj

can easily be solved for x and y. And in the second line

we made use of the “deep” identity a + b =
∑1

n=0 (aδn,0 + bδn,1).

Swendsen-Wang Cluster. According to (34) a cluster update sweep then
consists of alternating updates of the bond variables nij for given spins with
updates of the spins σi for a given bond configuration. In practice one proceeds
as follows:

1. Set nij = 0 if σi 6= σj , or assign values nij = 1 and 0 with probability p and
1 − p, respectively, if σi = σj , cp. Fig. 4.

2. Identify clusters of spins that are connected by “active” bonds (nij = 1).
3. Draw a random value ±1 independently for each cluster (including one-site

clusters), which is then assigned to all spins in a cluster.

Technically the cluster identification part is the most complicated step, but there
are by now quite a few efficient algorithms available which can even be used on
parallel computers. Vectorization, on the other hand, is only partially possible.

Notice the difference between the just defined stochastic clusters and geo-

metric clusters whose boundaries are defined by drawing lines through bonds
between unlike spins. In fact, since in the stochastic cluster definition also bonds
between like spins are “deleted” with probability p0 = 1−p = exp(−2β), stochas-
tic clusters are on the average smaller than geometric clusters. Only at zero tem-
perature (β −→ ∞) p0 approaches zero and the two cluster definitions coincide.
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nij=0 nij=1 nij=0

always p1=p p0=1-p

Fig. 4. Illustration of the bond variable update. The bond between unlike spins is
always “deleted” as indicated by the dashed line. A bond between like spins is only
“active” with probability p = 1 − exp(−2β). Only at zero temperature (β −→ ∞)
stochastic and geometric clusters coincide.

As described above, the cluster algorithm is referred to as Swendsen-Wang (SW)
or multiple-cluster update (Swendsen and Wang 1987). The distinguishing point
is that the whole lattice is decomposed into stochastic clusters whose spins are
assigned a random value +1 or −1. In one sweep one thus attempts to update
all spins of the lattice.

Wolff Cluster. Shortly after the original discovery of cluster algorithms, Wolff
(1989a) proposed a somewhat simpler variant in which only a single cluster is
flipped at a time. This variant is therefore sometimes also called single-cluster
algorithm. Here one chooses a lattice site at random, constructs only the cluster
connected with this site, and then flips all spins of this cluster. A typical ex-
ample is shown in Fig. 5. In principle, one could also here choose a value +1 or
−1 at random, but then nothing at all would be changed if one hits the current
value of the spins. Here a sweep consists of V/〈C〉 single cluster steps, where
〈C〉 denotes the average cluster size. With this definition autocorrelation times
are directly comparable with results from the Metropolis or Swendsen-Wang al-
gorithm. Apart from being somewhat easier to program, Wolff’s single-cluster
variant is usually more efficient than the Swendsen-Wang multiple-cluster algo-
rithm, especially in 3D. The reason is that with the single-cluster method, on
the average, larger clusters are flipped.

Embedded Cluster. While it is quite easy to generalize the derivation (32) –
(35) to q-state Potts models, for the O(n) spin models with n ≥ 2 one needs a
new strategy (Wolff 1989a, 1989b, 1990, Hasenbusch 1990). Here the basic idea
is to isolate Ising degrees of freedom by projecting σi onto a randomly chosen
unit vector r,

σi = σ
‖
i + σ

⊥
i ; σ

‖
i = ǫ |σi · r| r; ǫ = sign(σi · r) . (36)
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Fig. 5. Illustration of the Wolff cluster update. Upper left: Initial configuration. Upper
right: The stochastic cluster is marked. Lower left: Final configuration after flipping
the spins in the cluster. Lower right: The flipped cluster. The shown spin configuration
is from an actual simulation of the 2D Ising model at 0.97× βc on a 100× 100 lattice.

If this is inserted in the original Hamiltonian one ends up with an effective
Hamiltonian

H = −
∑

〈ij〉

Jijǫiǫj + const , (37)

with positive random couplings,

Jij = J |σi · r||σj · r| ≥ 0 , (38)

whose Ising degrees of freedom ǫi can be updated with a cluster algorithm as
described above.



Monte Carlo Simulations of Spin Systems 15

For O(n) spin models the performance of both types of cluster algorithms
is excellent. As is demonstrated in Table 1 and Fig. 6, critical slowing down is
drastically reduced. We see that especially in three dimensions the Wolff cluster
algorithm performs better than the i Swendsen-Wang algorithm. Compared with
the Metropolis algorithm, factors of up to 10 000 in CPU time have been saved
in realistic simulations (Baillie 1990, Swendsen et al. 1992).

Table 1. Dynamical critical exponents z for the 2D and 3D Ising model (τ ∝ Lz)

algorithm D=2 D=3 observable authors

Metropolis 2.125 2.03

Swendsen-Wang cluster 0.35(1) 0.75(1) zE,exp Swendsen and Wang (1987)

0.27(2) 0.50(3) zE,int Wolff (1989c)

0.20(2) 0.50(3) zχ,int Wolff (1989c)

0(log L) – zM,exp Heermann and Burkitt (1990)

0.25(5) – zM,rel Tamayo (1993)

Wolff cluster 0.26(2) 0.28(2) zE,int Wolff (1989c)

0.13(2) 0.14(2) zχ,int Wolff (1989c)

0.25(5) 0.3(1) zE,rel Ito and Kohring (1993)

Improved Estimators. A further advantage of cluster algorithms is that they
lead quite naturally to so-called improved estimators which are designed to fur-
ther reduce the statistical errors. Suppose we want to measure the expectation
value 〈O〉 of an observable O. Then any estimator Ô satisfying 〈Ô〉 = 〈O〉 is
permissible. This does not determine Ô uniquely since there are infinitely many
other possible choices, Ô′ = Ô + X̂ , where the added estimator X̂ has zero ex-
pectation, 〈X̂ 〉 = 0. The variances of the estimators Ô′, however, can be quite
different and are not necessarily related to any physical quantity (contrary to
the standard mean-value estimator of the energy whose variance is proportional
to the specific heat). It is exactly this freedom in the choice of Ô which allows
the construction of improved estimators.

For the single-cluster algorithm an improved “cluster estimator” for the spin-
spin correlation function in the high-temperature phase, G(xi − xj) ≡ 〈σi ·σj〉,
is given by (Wolff 1990)

Ĝ(xi − xj) = n
V

|C|r · σi r · σjΘC(xi)ΘC(xj) , (39)

where r is the normal of the mirror plane used in the construction of the cluster
of size |C| and ΘC(x) is its characteristic function (=1 if x ∈ C and 0 other-
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Fig. 6. Double logarithmic plot of the integrated autocorrelation times for the Swend-
sen-Wang (SW) and Wolff algorithm of the 3D XY model near criticality. The squares
(β = 0.45421) are taken from Hasenbusch and Meyer (1990), the circles (β = 0.4539)
and diamonds (β = 0.4543) from Janke (1990).

wise). For the Fourier transform, G̃(k) =
∑

x
G(x) exp(−ik ·x), this implies the

improved estimator

ˆ̃G(k) =
n

|C|





(

∑

i∈C

r · σi coskxi

)2

+

(

∑

i∈C

r · σi sinkxi

)2


 , (40)

which, for k = 0, reduces to an improved estimator for the susceptibility χ′ in
the high-temperature phase,

ˆ̃G(0) = χ̂′/β =
n

|C|

(

∑

i∈C

r · σi

)2

. (41)

For the Ising model (n = 1) this reduces to χ′/β = 〈|C|〉, i.e., the improved
estimator of the susceptibility is just the average cluster size of the single-cluster
update algorithm. For the XY and Heisenberg model one finds empirically that in
two as well as in three dimensions 〈|C|〉 ≈ 0.81χ′/β for n = 2 (Wolff 1989b, Janke
1990) and 〈|C|〉 ≈ 0.75χ′/β for n = 3 (Wolff 1990, Holm and Janke 1993b),
respectively.

It should be noted that by means of the estimators (39)-(41) a significant
reduction of variance should only be expected outside the FSS region where the
average cluster size is small compared with the volume of the system.
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3.4 Multicanonical Algorithms for First-Order Transitions

Let us finally make a few brief comments on numerical simulations of first-order
phase transitions (Janke 1994). Since here the correlation lengths in the pure
phases are finite, the numerical problems are completely different than in the
case of second-order phase transitions. Here the origin of numerical difficulties
near the transition point can be traced back to the coexistence of two phases
which, for finite systems, is reflected by a double-peak structure of the corre-
sponding order-parameter or energy distribution. The minimum between the two
peaks is governed by mixed phase configurations which are strongly suppressed
by an additional Boltzmann factor ∝ exp(−2σLD−1). Here σ denotes the inter-
face tension at the phase boundaries, LD−1 is the cross-section of the (cubic)
system of size V = LD, and the factor 2 takes into account the usually employed
periodic boundary conditions (Binder 1981, 1982). The problem of numerical
simulations is to achieve equilibrium between the two phases. Most of the time
the system spends in the pure phases. Only very rarely it “tunnels” through
the exponentially suppressed mixed-phase region from one phase to the other.
These rare tunneling events, however, are necessary to achieve equilibrium be-
tween the pure phases. The relevant time scale of equilibrium simulations is thus
given by the inverse of the additional Boltzmann factor, i.e., the characteristic
time τ grows exponentially with the system size, τ ∝ exp(2σLD−1) (Billoire et
al. 1991). Since for an accurate numerical study the simulation (and thus com-
puting) time must be much larger than τ , this phenomenon has been termed the
exponential or super-critical slowing down problem.

A surprisingly simple solution to this problem was discovered by Berg and
Neuhaus (1991). In what they call “multicanonical” simulations one determines
iteratively artificial weight factors which modify the original Hamiltonian in
such a way that the order-parameter or energy distribution is approximately
flat between the two peaks of the canonical distribution. Since then the system
has no longer to pass through an exponentially suppressed region one expects
in multicanonical simulations a drastic reduction of the characteristic time scale
τ . A simple random walk argument suggests a power-law behaviour, τ ∝ V α,
which has indeed been confirmed in numerical simulations of 2D Potts models
(Berg and Neuhaus 1992, Janke et al. 1992, Rummukainen 1993).

The multicanonical technique is strictly speaking not an update algorithm
but a reweighting procedure as discussed in detail in the next section. In prin-
ciple, it can therefore be combined with any legitimate update algorithm. The
earlier studies all employed the Metropolis or heat-bath algorithm. In more re-
cent work it was shown that also combinations with multigrid techniques (Janke
and Sauer 1994, 1995, Sauer 1994) and cluster update algorithms (Rummukainen
1993, Janke and Kappler 1995e, 1995f, Kappler 1995) are feasible and can further
reduce autocorrelation times.
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4 Reweighting Techniques

Even though the physics underlying reweighting techniques is extremely sim-
ple and the basic idea has been known since long (see the list of references by
Ferrenberg and Swendsen (1989a)), their power in practice has been realized
only quite recently (Ferrenberg and Swendsen 1988, 1989a). The best perfor-
mance is achieved near criticality, and in this sense reweighting techniques are
complementary to improved estimators.

If we denote the number of states (spin configurations) that have the same
energy by Ω(E), the partition function at the simulation point β0 can always be
written as4

Z(β0) =
∑

E

Ω(E)e−β0E . (42)

This shows that the energy distribution Pβ0
(E) (normalized to unit area) is

given by

Pβ0
(E) = Ω(E)e−β0E/Z(β0) . (43)

It is then easy to see that, given Pβ0
(E), the energy distribution is actually

known for any β,

Pβ(E) = cPβ0
(E)e−(β−β0)E , (44)

where c is a normalization constant (which in practice is trivially determined
by enforcing the condition

∑

E Pβ(E) = 1. Formally, one easily finds that c =
1/
∑

E Pβ0
(E)e−(β−β0)E = Z(β0)/Z(β).) Knowing Pβ(E), expectation values of

the form 〈f(E)〉 are easy to compute,

〈f(E)〉(β) =
∑

E

f(E)Pβ(E) . (45)

Since the relative statistical errors increase in the wings of Pβ0
(E) one expects

(44), (45) to give reliable results only for β near β0. If β0 is near criticality, the
distribution is relatively broad and the method works best. In this case reliable
estimates from (44) can be expected for β values in an interval around β0 of width
∝ L−1/ν , i.e., just in the FSS region. As a rule of thumb the reweighting range
can be determined by the condition that the peak location of the reweighted
distribution should not exceed the energy values at which the input distribution
had decreased to one third of its maximum value (Alves et al. 1992). In most
applications this range is wide enough to locate from a single simulation, e.g.,
the specific-heat maximum by using any standard maximization routine.

This is illustrated in Figs. 7 and 8, again for simplicity for the 2D Ising
model. In Fig. 7 the filled circle shows the result of a MC simulation at βc =
log(1 +

√
2)/2 ≈ 0.440686 . . ., using the Swendsen-Wang cluster algorithm with

5000 sweeps for equilibration and 50 000 sweeps for measurements. The results

4 For simplicity we consider here only models with discrete energies. If the energy
varies continuously, sums have to be replaced by integrals, etc.. Also lattice size
dependencies are suppressed to keep the notation short.
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Fig. 7. Specific heat of the 2D Ising model computed by reweighting (◦) from a single
MC simulation at β0 = βc (•). The continuous line shows for comparison the exact
result of Ferdinand and Fisher (1969).
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Fig. 8. The energy histogram at the simulation point β0 = βc, and reweighted to
β = 0.375 and β = 0.475. The black dots show histograms obtained in additional
simulations at these temperatures.

of the reweighting procedure are shown as open circles (recall that the spacing
between the circles can be made as small as desired, here it was chosen quite large
for clarity of the plot) and compared with the exact curve (Ferdinand and Fisher
1969). We see that even with this rather modest statistics the whole specific-heat
peak can be obtained with reasonable accuracy from a single simulation. But we
also notice significant deviations in the tails of the peak. To understand the origin
of the deviations it is useful to have a look at the energy histograms in Fig. 8. The
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curve labeled β0 = βc is the histogram of the MC data at the simulation point,
and the other two histograms at β = 0.375 and β = 0.475 are computed from
this input histogram by reweighting. For comparison we have also included the
histograms obtained from additional MC simulations (with the same statistics)
at the two β-values, indicated by the black dots. We see that the reweighted
histogram at β = 0.475 looks smooth to the eye - and indeed agrees very well
with the “direct” result of the additional MC simulation at this temperature.
In Fig. 7 this is reflected by the still very good agreement of the numerical and
the exact result. For β = 0.375, on the other hand, already visually one would
not trust the reweighted histogram. While the tail on the right-hand side is still
in reasonable agreement with the “direct” simulation, the left tail is obviously
hopelessly wrong. By recalling that the reweighted histograms are computed by
multiplying the input histogram with exponential factors, this is no surprise at
all: For −e <∼ 1 there are hardly any entries in the input histogram and hence
the relative statistical errors (∝ 1/

√
counts) are huge. This is the source for the

large deviations from the exact curve in Fig. 7 for β <∼ 0.4.
The information stored in Pβ0

(E) is not yet sufficient to calculate also the
magnetic moments 〈mk〉(β) as a function of β from a single simulation at β0.
Conceptually, the simplest way to proceed is to record the two-dimensional his-
togram Pβ0

(E,M), where M = mV is the total magnetization. Because of disk
space limitations one sometimes prefers to measure instead the “microcanonical
averages”

〈〈mk〉〉(E) =
∑

M

Pβ0
(E,M)mk/Pβ0

(E) , (46)

where the relation
∑

M Pβ0
(E,M) = Pβ0

(E) was used. In practice one simply
accumulates the measurements of mk in different slots or bins according to the
energy of the configuration and normalizes at the end by the total number of
hits of each energy bin. Clearly, once 〈〈mk〉〉(E) is determined, this is a special
case of f(E) in (45), so that

〈mk〉(β) =

∑

E〈〈mk〉〉(E)Pβ0
(E)e−(β−β0)E

∑

E Pβ0
(E)e−(β−β0)E

. (47)

Similar to Ω(E) in (42), theoretically also the microcanonical averages 〈〈mk〉〉(E)
do not depend on the temperature at which the simulation is performed. Due to
the limited statistics in the wings of Pβ0

(E), however, there is only a finite range
around E0 ≡ 〈E〉(β0) where one can expect reasonable results for 〈〈mk〉〉(E).
Outside of this range it simply can happen (and does happen) that there are no
events to be averaged. This is illustrated in Fig. 9, where 〈〈m2〉〉(E) is plotted for
the 3D Heisenberg model as obtained from three runs at different temperatures.
We see that the function looks smooth only in the range where the statistics
of the corresponding energy histogram is high enough. To take full advantage
of the histogram reweighting technique it is therefore advisable to perform a
few simulations at slightly different inverse temperatures βi. Instead of spending
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Fig. 9. Energy histograms and microcanonical magnetization squared of the 3D Heisen-
berg model at the three simulation points for L = 48.

all computer time in a single long run, it is usually more efficient to perform
three or four shorter runs. To find the best solution, however, is a very difficult
optimization problem, which depends on many details of the model under study!

Now the question arises how to combine the data from different runs most
efficiently. A very clear way is to compute for each simulation (at βi) the β-
dependence of Oi ≡ O(βi)(β) plus the associated statistical error ∆Oi, using
jack-knife techniques (Miller 1974, Efron 1982), say. A single optimal expression
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for O ≡ O(β) is then obtained by combining the values Oi in such a way that
the relative error ∆O/O is minimized (Holm and Janke 1993b),

O =

(

O1

(∆O1)
2 +

O2

(∆O2)
2 +

O3

(∆O3)
2

)

(∆O)
2

, (48)

with

1

(∆O)
2 =

1

(∆O1)
2 +

1

(∆O2)
2 +

1

(∆O3)
2 . (49)

A different procedure at the level of distribution functions was discussed by
Ferrenberg and Swendsen (1989b). For the specific heat the two methods were
found (Holm and Janke 1993b) to give comparable results within the statistical
errors. The optimization at the level of observables, however, is simpler to apply
to quantities involving constant energy averages such as 〈〈m〉〉(E), and, more
importantly, minimizes the error on each observable of interest separately.

5 Applications to the 3D Heisenberg Model

Let us now turn to applications of the just described techniques to the 3D clas-
sical Heisenberg model (n = 3), focussing on an accurate determination of the
transition temperature and the critical exponents. To this end the cluster up-
date algorithm proved to be a very important tool. Previous studies (Peczak
and Landau 1990a, 1990b, 1993, Peczak et al. 1991) employing the Metropolis
algorithm reported for the magnetization an exponential autocorrelation time
of τm,exp = aLz, with a ≈ 3.76 and z = 1.94(6). In simulations with the single-
cluster algorithm we obtained for the susceptibility values of τχ,int ≈ 1.5 − 2.0
(Holm and Janke 1993a, 1993b, 1994). As for the 3D Ising and 3D XY model
critical slowing down is thus almost completely eliminated. Compared to the
Metropolis algorithms this implies for a 803 lattice an acceleration of the simu-
lation by about four orders of magnitude.

In the paper by Holm and Janke (1993b) two sets of MC simulations are
reported. The first set of data consists of 18 simulations for T > Tc in the range
β = 0.650 to 0.686 ≈ 0.99βc, with typically about 105 (almost uncorrelated)
measurements. The correlation length varies in this β-range from ξ ≈ 3 to ξ ≈ 12
(see Fig. 11 below). Here the use of improved estimators was very useful and led
to a further reduction of the statistical errors by a factor of about 2 − 3.

The second set of simulations was performed near criticality. For each lattice
size typically three independent runs with more than 105 measurements each
at different β values around βc were combined using the optimized reweighting
technique, which is the most important additional tool in the finite-size scaling
region.
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5.1 Simulations for T >
∼

Tc

The conceptually easiest way to measure critical exponents are simulations in
the high-temperature phase. In principle one simply has to fit the MC data
for ξ, C, m, χ, . . . with the expected power-law divergencies (10), (12)-(14) at
criticality. For high-precision estimates, however, the procedure is far from be-
ing trivial. The problem is to locate the temperature range in which a simple
power-law Ansatz like (10) is valid. Clearly, since the omitted correction terms
are positive powers of T/Tc − 1, at first sight, one would like to perform the
simulations as close to Tc as possible. But very close to Tc the correlation length
gets very large, and on finite lattices one starts seeing finite-size corrections.
The only way around these correction terms are large enough lattice sizes. In
many models one finds empirically that the thermodynamic limit is approached
when the linear lattice size satisfies L >∼ (6− 8)ξ. But since the amplitude ξo+ is
non-universal, this estimate is not guaranteed to be always true. Therefore this
question must be investigated very carefully for each model separately. With in-
creasing temperature the correlation length decreases and finite-size corrections
are no longer a problem, but then it is for a different reason again not clear if
the simple power-law Ansatz is valid. Very far away from Tc the lattice structure
becomes important and the observables show a completely different behaviour.
In an intermediate range one sees the confluent and analytic correction terms
which are very difficult to take into account in the fits. So in essence the problem
is to locate a temperature window in which 1 ≪ ξ ≪ L.

There are many ways to extract the correlation length ξ from the asymptotic
decay of the spatial correlation function,

G(xi − xj) = 〈σi · σj〉 ∝ exp (−|xi − xj |/ξ) . (50)

One way is measuring the Fourier transform, G̃(k) =
∑

x
G(x) exp(−ik · x), for

a few long-wavelength modes and performing least-square fits to

G̃(k)−1 = c

[

3
∑

i=1

2(1 − cos ki) + (1/ξ)2

]

≈ c
[

k2 + (1/ξ)2
]

, (51)

where c is a constant and ki = (2π/L)ni, ni = 1, . . . , L. Recall that for zero
momentum the susceptibility is recovered, G̃(k = 0) = χ′/β. As an example
Fig. 10 shows the data for the 3D Heisenberg model [n = (0,0,0), (1,0,0), (1,1,0),
(1,1,1), (2,0,0), and (2,1,0)] at β = 0.686 ≈ 0.99βc. By repeating this analysis
for different temperatures one obtains the data shown in Fig. 11. The solid lines
are fits according to

ξ(T ) = ξ0+(T/Tc − 1)−ν , (52)

with

βc = 0.69281 ± 0.00004 , (53)

ν = 0.698 ± 0.002 , (54)

ξ0+ = 0.484 ± 0.002 , (55)
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Fig. 10. Fit to the inverse of the Fourier transformed correlation function to compute
the correlation length ξ.

and a goodness-of-fit parameter Q = 0.92, and

χ′(β)/β = χ̄′
0(1 − β/βc)

−γ , (56)

with

βc = 0.69294 ± 0.00003 , (57)

γ = 1.391 ± 0.003 , (58)

χ̄′
0 = 0.955 ± 0.006 , (59)

and Q = 0.93. Notice that the correlation length in (52) is written as a function
of T and the susceptibility in (56) as a function of β. The high quality of the
fits a posteriori justifies this choice and indicates that in the chosen temperature
range confluent as well as analytic correction terms are negligible. If we rewrite
T/Tc − 1 = 1 − β/βc + (1 − β/βc)

2 + . . . and consider ξ(β) instead of ξ(T ), we
expect (and indeed confirmed) an analytical correction to asymptotic scaling.
There is, however, so far no theoretical understanding why for the particular
choice of arguments the analytical correction terms should vanish.

5.2 Simulations near Tc

The second set of data consists of simulations near Tc on lattices of size up to
483 (Holm and Janke 1993a, 1993b). In a later study focussing on topological
defects the maximal size could even be increased to 803 (Holm and Janke 1994).
In the vicinity of Tc, finite-size corrections are dominant and one has to employ
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Fig. 11. Scaling behaviour of the correlation length and susceptibility. The solid lines
are fits to ξ(T ) and χ′(β) according to the asymptotic power laws.

finite-size scaling (FSS) concepts to analyze the data. Usually one starts with
an analysis of ratios of magnetization moments (Binder 1981), e.g.,

UL(β) = 1 − 1

3

〈m4〉
〈m2〉2 , (60)

which leads to estimates of βc and the critical exponent ν. In the spontaneously
broken low-temperature phase the magnetization distribution develops a double-
peak structure with peaks at ±m0 6= 0. Since the width of the peaks decreases
with increasing lattice size one expects that UL approaches 2

3 for all T < Tc.
In the disordered high-temperature phase the magnetization vanishes and the
moments are determined by fluctuations alone. In the infinite volume limit the
fluctuations become Gaussian and a simple calculation yields UL −→ 2(n −
1)/3n = 4/9 for n = 3. Only at the transition point one expects a non-trivial
limiting value which has been estimated by field theoretical methods (Brézin
and Zinn-Justin 1985) to be U∗ = 0.59684 . . . for n = 3. For finite systems,
FSS predicts that the curves UL(β) for different L intersect around (βc, U

∗)
with slopes ∝ L1/ν , apart from confluent corrections explaining small systematic
deviations. This allows an almost unbiased estimate of βc, U∗ and the critical
exponent of the correlation length ν.

The data for the 3D Heisenberg model in Fig. 12 clearly confirm the theoret-
ical expectations with a pronounced intersection point at (βc, U

∗) = (0.6930(1),
0.6217(8)). The final numbers are actually obtained from a little more elaborate
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Fig. 12. The Binder parameter of the 3D Heisenberg model for various lattice sizes.
The intersection points determine the inverse critical temperature βc = 0.6930(1).

analysis taking into account also the confluent corrections to asymptotic FSS
(Holm and Janke 1993a, 1993b).

Also the slopes dUL/dβ at β = 0.6930 ≈ βc in Fig. 13 show the expected
behaviour and a fit to the FSS prediction dUL/dβ ∝ L1/ν yields ν = 0.704(6),
consistent with (54) and in very good agreement with estimates obtained by field
theoretical methods or from series expansions, cp. Table 2.

In the analysis of the magnetization and susceptibility one proceeds similarly.
The fit to the magnetization data reweighted to β = 0.6930 ≈ βc shown in
Fig. 14 yields β/ν = 0.514(1), and from the FSS of the susceptibility one reads
off γ/ν = 1.9729(17). By multiplying the exponent ratios with the estimate of
ν = 0.704(6), we finally arrive at the values for the critical exponents β and γ
given in Table 2.

The analysis of the specific heat is much more complicated since the critical
exponent α is usually quite small and therefore the singularity in C not very
pronounced. For the 3D Heisenberg model α is actually negative, so that we do
not expect a divergence at all. By using the additional data on lattices up to 803

(Holm and Janke 1994), we obtained from the fit C = Creg + C0L
α/ν shown in

Fig. 15 an estimate of α/ν = −0.225(80), resulting in α = −0.158(59). Due to
the rather large statistical error this estimate is still consistent with the value
obtained from hyperscaling, α = 2 − 3ν = −0.112(18). Actually a much more
precise result was obtained from the corresponding FSS fit to the energy at βc.
Using the Ansatz e = ereg + e0L

(α−1)/ν , we obtained α/ν = −0.166(31), trans-
lating into α = −0.117(23). Obviously this value is in a much better agreement
with the hyperscaling prediction.
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Fig. 13. FSS of the Binder parameter slopes at β = 0.6930 ≈ βc. The linear fit yields
an estimate of the correlation length exponent, ν = 0.704(6).
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Fig. 14. FSS of the magnetization at β = 0.6930 ≈ βc. The linear fit yields an estimate
of the exponent ratio, β/ν = 0.514(1).
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Fig. 15. FSS of the specific heat at β = 0.6930 ≈ βc. The non-linear fit taking
into account a regular background term yields an estimate of the exponent ratio,
α/ν = −0.225(80).

Table 2. Critical coupling and critical exponents of the 3D classical Heisenberg (n = 3)
model

method βc ν γ β α δ

g-expansiona - 0.705(3) 1.386(4) 0.3645(25) −0.115(9) 4.802(37)

ǫ-expansionb - 0.710(7) 1.390(10) 0.368(4) −0.130(21) 4.777(70)

MCc 0.6929(1) 0.706(9) 1.390(23) 0.364(7) −0.118(27) 4.819(36)

MCd 0.6930(1) 0.704(6) 1.389(14) 0.362(4) −0.112(18) 4.837(11)

MCe 0.693035(37) 0.7036(23) 1.3896(70) 0.3616(31) −0.1108(69) −

seriesf 0.6929(1) 0.712(10) 1.400(10) 0.363(10) −0.136(30) 4.86(10)

a Le Guillou and Zinn-Justin 1977, 1980
b Le Guillou and Zinn-Justin 1985
c Peczak et al. 1991
d Holm and Janke 1993a, 1993b
e Chen et al. 1993
f Adler et al. 1993
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6 Concluding Remarks

The intention of these lecture notes was to give an elementary introduction to the
basic concepts of modern Monte Carlo simulations and to illustrate their useful-
ness by applications to one typical model. Since the choice of the 3D Heisenberg
model was obviously biased by my own work in this field, I want to conclude
with at least a few remarks on the 3D Ising and 3D XY model, for which also
quite a few high-precision simulations have been performed.

Due to its relative simplicity, the 3D Ising model is the best studied model
of all O(n) spin systems. Apart from finite-size scaling analysis as described
here, also many other techniques have been applied, including the Monte Carlo
renormalization group (MCRG) and the finite-size scaling of partition function
zeros. This has led to quite a few very accurate estimates of critical exponents.
Some of them are compiled in Table 3, where for comparison also field theory
and series expansion estimates are given. As an amusing side remark it is worth
mentioning the Rosengren (1986) conjecture that the critical coupling of the 3D
Ising model is given by βc = tanh−1[(

√
5 − 2) cos(π/8)] = 0.221 658 637 . . . –

a value which is indeed in impressive agreement with the most precise Monte
Carlo estimates!

Table 3. Critical coupling and selected critical exponents of the 3D Ising (n = 1)
model

method βc ν γ

g-expansiona - 0.6300(15) 1.241(2)

ǫ-expansionb - 0.6310(15) 1.2390(25)

MCRGc 0.221 652(3) 0.624(2) -

MCd 0.221 6595(26) 0.6289(8) 1.239(7)

seriese 0.221 655(5) 0.631(4) 1.239(3)

a Le Guillou and Zinn-Justin 1977, 1980
b Le Guillou and Zinn-Justin 1985
c Baillie et al. 1992
d Ferrenberg and Landau 1991
e Adler 1983

A similar accuracy could also be reached for the 3D XY model, the sim-
plest model of the O(2) universality class which governs the critical behaviour
of the λ-transition in liquid helium. Some recent results of Monte Carlo simu-
lations employing the Swendsen-Wang and Wolff cluster update algorithm, as
well as estimates using series expansions and field theory methods are compiled
in Table 4.
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Table 4. Critical coupling and selected critical exponents of the 3D classical XY
(n = 2) model

method βc ν γ

4He experimenta - 0.6705(6) -

g-expansionb - 0.669(2) 1.3160(25)

ǫ-expansionc - 0.671(5) 1.315(7)

MCd 0.45421(8) - 1.327(8)

MCe 0.45408(8) 0.670(2) 1.316(5)

MCf 0.45417(1) 0.662(7) 1.324(1)

seriesg 0.45406(5) 0.67(1) 1.315(9)

seriesh 0.45414(7) ≈0.673 ≈1.325

a Goldner and Ahlers 1992
b Le Guillou and Zinn-Justin 1977, 1980
c Le Guillou and Zinn-Justin 1985
d Hasenbusch and Meyer 1990
e Janke 1990
f Gottlob and Hasenbusch 1993
g Butera et al. 1993
h Adler et al. 1993

By comparing the various Monte Carlo estimates collected in Tables 2-4 with
results from field theory and series expansions it is fair to conclude that for O(n)
spin models modern Monte Carlo techniques are at the present time superior
to series expansion analyses. The recently derived critical exponents are in fact
competitive in accuracy with estimates obtained with the best and very elaborate
methods of field theory.
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Appendix: Program Codes

The accompanying diskette contains five FORTRAN codes (is clu.f, reweight.f,
rew his.f, 1dis ex.f, 2disnm ex.f) and two data files (3d e004.plo, 3d c004.plo)
which can be used to reproduce Figs. 3, 7, and 8, and to generate an Ising model
analog of Fig. 9. The output files denoted by ...plo are kept as simple as possible
to allow easy plotting, e.g. with the standard utility gnuplot .

is clu.f is a Monte Carlo simulation program for the nearest-neighbor Ising
model with subroutines for the Wolff single-cluster (sc), Swendsen-Wang multiple-
cluster (sw), Metropolis (me), and heat-bath (hb) update algorithm, which can
be selected in the main parameter statement. All subroutines are set up to
work for general D-dimensional (hyper-) cubic lattices of size LD with periodic
boundary conditions. The dimension, lattice size, simulation temperature, and
the statistics parameters are also defined in the main parameter statement (the
dimension and lattice size have to be changed globally in all subroutines as well).
With the choice of parameters as given in is clu.param example, the 2D Ising
(multiple-cluster) Monte Carlo data of Figs. 7 and 8 can be reproduced within
about one minute run-time. Of course the detailed timing depends on the type of
PC or workstation, but it should always be possible to run the simulation inter-
actively. The average energy, magnetization, specific heat, susceptibility, Binder
parameter, and cluster averages are written on standard output. Furthermore,
the energy and magnetization histograms, and the “microcanonical” magnetiza-
tion averages 〈〈|m|〉〉 and 〈〈m2〉〉 (cp. (46)) at the simulation temperature are saved
in the files ehis b0.plo, mhis b0.plo, malis b0.plo, and m2lis b0.plo for easy plot-
ting, and in e b0.his for further reweighting analyses (containing the necessary
parameter informations). With these output files it is straightforward to produce
for the Ising model a plot similar to Fig. 9. If desired the time evolution of the
energy and magnetization measurements can be saved in the files e series.plo

and m series.plo, respectively, by turning on the corresponding logical switches
in the parameter statement.

For simplicity the standard UNIX random number generator RAND( ) is
called in the MC program. For illustration purposes this generator is good
enough, but for a serious simulation study it should at any rate be replaced
by a more reliable random number generator. Again only for simplicity all sta-
tistical error analysis subroutines are omitted. For a sensible MC study this is
clearly unacceptable.

reweight.f takes as input the energy histogram and the “microcanonical” mag-
netization lists stored in e b0.his and computes by reweighting the energy and
specific heat, the susceptibilities χ/β and χ′/β, and the Binder parameter as a
function of inverse temperature β. The desired β-range can be set in the param-
eter statement, and the dimension and lattice size parameters must be the same
as in is clu.f . The results are written into the files e016 mc.plo, c016 mc.plo,
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sus016 mc.plo, chi016 mc.plo, and U016 mc.plo, respectively, where 016 indi-
cates the linear lattice size.

The MC data for the one-dimensional Ising chain can be tested against the
exact results provided by 1dis ex.f for any chain length. The two-dimensional
MC results can be used together with the output from 2disnm ex.f to reproduce
Fig. 7. Further comparison data for a 162 lattice from high-statistics single-
cluster simulations at βc = ln(1+

√
2)/2 are 2+e = 0.546 85(10), C = 1.4978(10),

χ = 139.669(31), 〈|C|〉 = 139.656(29), and U = 0.611 537(50). In three dimen-
sions the MC data can be compared with the exact energy and specific heat
curves for a 43 lattice contained in the data files 3d e004.plo and 3d c004.plo.

rew his.f reads again as input the energy histogram stored in e b0.his, computes
reweighted histograms, and stores them in, e.g., ehis b4750.plo. The dimension
and lattice size parameters must be the same as in is clu.f . Here b4750 indicates
that the histogram is reweighted to β = 0.4750. The new inverse temperature is
inquired interactively by the program. In this way Fig. 8 can be reproduced. If
gnuplot is used for plotting the histograms, then by using the escape character
”!” the reweighting program can be called and the new histogram immediately
displayed without leaving the plot session.

1dis ex.f computes the exact temperature dependence of the energy, specific
heat, and susceptibility of the one-dimensional Ising chain with periodic bound-
ary conditions of arbitrary length L. For e.g. L = 16, the results are stored in
the files 1d e016.plo, 1d c016.plo, and 1d chi016.plo.

2disnm ex.f implements the exact solution of Ferdinand and Fisher (1969)
for the 2D nearest-neighbor interaction Ising model on finite Lx × Ly lattices
(Lx, Ly = even) with periodic boundary conditions. The desired lattice size and
inverse temperature range can be chosen in the parameter statement of the
main program. The output are two data files, e.g. 2d e016.plo and 2d c016.plo

for Lx = Ly = 16, containing minus the internal energy per site, −E/V , and the
specific heat per site, C, as a function of the inverse temperature β. By running
this code for various lattice sizes, Fig. 3 can be reproduced.
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