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Free-Energy Barrier at Droplet Condensation

Andreas Nußbaumer, Elmar Bittner and Wolfhard Janke
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Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany

We discuss several aspects of a Monte Carlo computer simulation study of the conden-
sation of macroscopic droplets emerging in the two-dimensional Ising lattice-gas model. By
varying the particle density at fixed temperature we monitor the droplet formation in de-
tail and compare our results with recent analytical predictions in the infinite-volume limit.
Three different lattice discretizations are considered which are found to yield very simi-
lar results when presented in properly scaled variables. Particular emphasis is placed on the
free-energy barrier associated with droplet formation and its implication for multimagnetical
simulations.

§1. Introduction

The precise mechanism for the formation of a first large droplet in condensing
systems is one of the fundamental problems in statistical physics. Early studies
date back to the seminal analytical work by Fisher1) and computer simulations by
Binder, Kalos and Furukawa.2),3) Over the years this problem has been taken up
and further advanced in several numerical studies.4) Particularly noteworthy is the
careful analysis of Hager and Neuhaus,5) which stimulated new theoretical6)–8) and
numerical9)–12) work. Here, we follow the mathematical considerations of Biskup et
al.,6),7) which are based on an equilibrium framework and result in largely model
independent scaling predictions for the condensation process in the infinite-volume
limit.

One purpose of the present study is to investigate by how much these asymptotic
predictions are affected by finite-size effects. The second goal is to test the degree
of universality suggested by the analytical treatment. Finally, we also present new
results on the free-energy barrier associated with the droplet formation. After briefly
recalling the Ising model and its lattice-gas interpretation in §2, the theoretical
scaling predictions are summarized in §3. In §4 the results of our quite extensive
Monte Carlo computer simulations are discussed, and in §5 we close with a summary
and a brief outlook to future work.

§2. Model

Throughout this paper we consider the Ising model with Hamiltonian

H = −J
∑
〈i,j〉

σiσj , σi = ±1 , J = 1 , (2.1)

where 〈i, j〉 denotes short-range interactions and the spins σi, i = 1, . . . , V , live on
the sites of a regular lattice with periodic boundary conditions to be specified below.
Denoting in an arbitrary spin configuration the number of spins pointing up (down)
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Fig. 1. Left: Sketch of the probability distribution P (m) of the magnetisation in an Ising model

below the Curie temperature Tc. The marked box indicates the region where the evapora-

tion/condensation transition takes place. Right: Variation of P (m) for next-neighbour inter-

actions on a square lattice in the peak region with increasing system size L. For the larger

systems a cusp develops for m < m0, which signals the transition from the evaporated phase

(low density) on its right towards the maximum to the condensed phase (high density) on its

left side. The two arrows on the x-axis indicate for L = 640 the range of data points used later

in Fig. 5.

by n+ (n−), one obviously has V = n+ + n− and the magnetisation can be written
as

M = V m =
∑

i

σi = n+ − n− = V − 2n− = 2n+ − V , (2.2)

such that ρ− ≡ n−/V = (1−m)/2 and ρ+ ≡ n+/V = (1+m)/2 are the corresponding
densities. By interpreting down spins as particles and up spins as vacancies (or,
due to symmetry, vice versa), one arrives at a lattice gas interpretation with the
magnetisation m controlling the particle density.

Below the Curie temperature Tc, the magnetisation distribution P (m) of large
but finite systems exhibits in zero magnetic field the typical double-peak structure
depicted in the left plot of Fig. 1, with the peak maximum located close to the
infinite-volume magnetisation m0. Due to the Z2 symmetry of the model only the
right peak is shown. The blow-up of the marked box in the right plot of Fig. 1 features
for the larger systems a cusp at a system size dependent magnetisation mc < m0.
This is the signal for the evaporation/condensation point where the particles in the
lattice-gas picture tend to condense into a single large droplet. The Gaussian shape
of the peak to the right of the cusp results from the fluctuations of many small
excitations (low particle density-evaporated phase), whereas the tail to the left of
the cusp is governed by a stretched exponential behaviour, reflecting the presence
of a single large droplet (high particle density-condensed phase) with its interfacial
energy playing here the dominant role.



402 A. Nußbaumer, E. Bittner and W. Janke

§3. Theory

To give a mathematical basis to this physical picture, imagine that we have pre-
pared the system at inverse temperature β = 1/T > βc in the positively magnetized
phase with m slightly below the infinite-volume value m0(β) > 0. The deviation (or
excess)

δm ≡ m − m0 = −2m0vL/V (3.1)

can be pictured as a (not necessarily connected) volume vL containing the “wrong”
phase of magnetisation −m0 (i.e., of inverted spins with the majority being in the
“−” state). This volume can be decomposed as vL = vd + vb, where vd = λvL is
the size of a large droplet and vb = (1 − λ)vL the integrated volume of many small
bubbles. Correspondingly the (negative) magnetisation excess may be decomposed
as δm = δmd + δmb. This decomposition into one large and many small droplets is
nontrivial but makes sense, since by isoperimetric arguments it can be shown that no
droplets of intermediate size can exist.6) The parameter λ will now be determined
by optimizing the free-energy contributions of these two types of excitations. The
fluctuations of the small bubbles contribute a Gaussian factor,

exp
[
−βV

(δmb)2

2χ

]
= exp

[
−βV

2m2
0(vb/V )2

χ

]
, (3.2)

where χ = χ(β) = βV
[〈m2〉 − 〈m〉2] is the susceptibility in the thermodynamic

limit, whereas for the large droplet the interfacial free energy τW(β) per unit volume
of an optimal Wulff shape13)–15) matters, leading in two dimensions to a contribution

exp [−βτW
√

vd ] . (3.3)

Combining these two factors, we arrive at∗)

exp
[
−β

2m2
0(1 − λ)2v2

L

χV
− βτW

√
λvL

]
= exp [−βτW

√
vLΦΔ(λ)] , (3.4)

where
ΦΔ(λ) =

√
λ + Δ(1 − λ)2 (3.5)

contains the dependence on the parameter λ interpolating between the bubble (λ →
0) and droplet (λ → 1) dominated phase. Which of the two possibilities wins, is
governed by the parameter

Δ = 2
m2

0

χτW

v
3/2
L

V
, (3.6)

which depends on the model specific (infinite-volume) quantities m0, χ, and τW at
the given temperature. To keep Δ fixed when increasing the system size V , one has
to scale δm ∝ vL/V ∝ V −1/3.

At fixed Δ, the favored configuration follows by minimising ΦΔ(λ) with respect
to λ. A glance at Fig. 2 shows a situation reminiscent of a first-order phase transition:

∗) Note that the β-factor in Eqs. (3.2)–(3.4) was inadvertently omitted in Ref. 12).
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Fig. 2. The function ΦΔ(λ) for three characteristic values of the parameter Δ defined in Eq. (3.6).

At Δc = (1/2)(3/2)3/2 ≈ 0.9186 the absolute minimum at λ = 0 for Δ < Δc jumps to a

non-trivial value λ ≥ 2/3 (dashed vertical line) for Δ > Δc.

Fig. 3. Analytic solution λ = λ(Δ) obtained by minimization of Eq. (3.5).

for Δ < Δc the global minimum is reached at λ = 0 (bubble dominated phase),
whereas at the condensation point Δc the optimal value of λ jumps to a nontrivial
solution λ = λ(Δ) > 0 (droplet dominated phase) for Δ > Δc. One obtains Δc =
(1/2)(3/2)3/2 ≈ 0.9186 and a jump to λc = 2/3, cf. Fig. 3 where the solution λ =
λ(Δ) is plotted.

The free-energy barrier at Δ = Δc (cf. Fig. 2) takes its maximum value ΔF =
Fmax − Fmin = τW

√
vL (ΦΔc,max − ΦΔc,min) = τW

√
vL 3(2 − √

3)/4
√

2 at λmax =
(2 −√

3)/3 ≈ 0.089. Using Eq. (3.6) to express vL in terms of Δc, one obtains

ΔF =
(

1
2

)1/3 3(2
√

3 − 3)
8

τW

(
χτW

2m2
0

)1/3

V 1/3 ≈ 0.1381τW

(
χτW

2m2
0

)1/3

V 1/3 . (3.7)

Inserting the parameters for the square lattice Ising model with nearest-neighbour
interactions at T = 1/β = 1.5 (see Table I below), one ends up with the explicit
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result
βΔF ≈ 0.1522L2/3 . (3.8)

§4. Simulations

Since the theoretical predictions in the last section only apply to the infinite-size
limit and, strictly speaking, only to the square lattice Ising model with nearest-
neighbour (NN) interactions, two questions emerge naturally: (i) How fast do finite
systems approach the limiting behaviour? And (ii) does the Ising model with an
extended range of interaction or on different two-dimensional lattice types behave
similarly? To answer these questions we have performed Monte Carlo computer sim-
ulations for increasing system sizes of (i) square lattices with NN interactions12),16)

and (ii) next-nearest-neighbour (NNN) interactions as well as of triangular lattices
with NN interactions.16) In addition, we also analyzed in case (i) the finite-size
scaling behaviour of the associated free-energy barrier.

Our choice of the simulation temperature T ≈ (2/3)Tc is a compromise between
simulation speed (freezing of the spin-flip dynamics at too low temperatures) and
compactness of the droplet (which becomes a fractal object at Tc). The main ob-
servable is the fraction of excess magnetisation in the largest droplet, λ = vd/vL, as
a function of vL, which can be tuned via (3.1) by varying the magnetisation. Equa-
tion (3.6) then determines the scaling variable Δ = Δ(vL, m0, χ, τW), provided the
infinite-volume parameters m0, χ, and τW are known.

4.1. NN square lattice

Let us first consider the NN square lattice, where the spontaneous magnetisa-
tion is given by the Onsager-Yang formula17),18) m0(β) =

(
1 − sinh−4 (2β)

)1/8 and
τW(β) = 2

√
W follows from the volume of the Wulff plot,19)

W =
4
β2

∫ βσ0

0
dx cosh−1

[
cosh2(2β)
sinh(2β)

− cosh(x)
]

, (4.1)

with σ0 = 2 + ln[tanh(β)]/β denoting the interface tension of an interface running
along one of the two coordinate directions (e.g., (1,0) in standard crystallographic
notation). The susceptibility is not known exactly, but an extremely long series
expansion in u = [2 sinh(2β)]−1, χ(β) = β

∑323
i=0 ciu

2i, gives very accurate results.20)

The critical temperature Tc = 2/ ln(1 +
√

2) and all relevant parameters at the
simulation temperature T = 1.5 ≈ 0.66Tc are collected in Table I.

In a first step we checked the relevant region of the magnetisation. This was done

Table I. Infinite-volume magnetisation m0, susceptibility χ and Wulff interface free energy per unit

volume τW, entering the parameter Δ = Δ(vL, m0, χ, τW) defined in Eq. (3.6).

model T Tc T/Tc m0 χ τW 2m2
0/χτW

NN square 1.500 2.269 0.6610 0.9865 0.02708 4.245 16.93

NN triangular 2.400 3.641 0.6592 0.9829 0.01959 7.507 13.14

NNN square 3.500 5.258 0.6657 0.9741 0.01963 10.298 9.39
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Fig. 4. Sketch of a large droplet containing overturned spins in its interior (left), which must be

counted when measuring its volume vd. This is achieved by a so-called “flood-fill” algorithm

(right).

by performing multimagnetic simulations21)–24) and inspecting the distribution of the
magnetisation as shown in Fig. 1 visually. For the larger system sizes the distribution
exhibits a clear cusp around mc which divides the evaporated and condensed region.

Next, we chose for each lattice size the same set of 38 values Δ̃i = {0.00, 0.10, ...}
≈ Δi, with an emphasis on the vicinity of Δc. The corresponding values of the to-
tal magnetisation Mi (obtained by first using (3.6) to calculate vL and then (3.1))
must be rounded to the next allowed integer value and then the true vL,i and Δi are
calculated backwards. The constraint of a constant magnetisation Mi (“micromag-
netic ensemble”) was enforced in the simulations by utilising a Metropolis update
with Kawasaki dynamics exchanging pairs of unaligned spins. Every simulation ran
20 000 sweeps for the thermalisation and 200 000 sweeps for measurements, where
one sweeps comprises V attempted spin exchanges. To obtain the statistical error
bars reliably, 10 independent simulations were run for each data point. After every
sweep a cluster decomposition was performed using the Hoshen-Kopelman25) algo-
rithm and the volume vd of the largest droplet was measured yielding for fixed vL

the desired fraction λ. It should be noted that, in the present context, the volume
or size of the cluster does include overturned spins within the cluster (in contrast
to percolation studies or improved estimators in cluster-update simulations26)), cf.
Fig. 4. Our simulations are so sensitive that the proper counting of the cluster
size turned out to be indeed crucial. Technically, this was handled by a so-called
“flood-fill” routine27) that ran after the Hoshen-Kopelman algorithm. In essence, it
starts from an inside spin and stops when a spin that belongs to the background is
reached. Very rarely ambiguous cases can occur at the droplet boundary which can
be detected automatically and were taken care of by inspection.

Our main result, the fraction λ = λ(Δ) for various lattice sizes, is shown in
Fig. 5. The solid line represents the analytical curve obtained by the minimization
of φΔ(λ) in Eq. (3.5), which is the exact result in the infinite-volume limit. In the
simulations we observe rather strong finite-size effects which smear out the transition,
but for the larger lattice sizes the numerical data clearly approach the theoretical
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Fig. 5. Fraction of excess magnetisation λ = vd/vL in the largest droplet for NN square lattices

of linear extent L = 40, 80, . . . , 640 at the temperature T = 1.5 ≈ 0.66Tc. The error bars are

much smaller than the size of the data symbols. The solid line shows the asymptotic analytic

prediction for L → ∞.

curve. The jump from λ ≈ 0 to λ ≈ 2/3 at Δc ≈ 0.9186 confirms the theoretical
prediction that at the evaporation/condensation transition 2/3 of the excess of the
magnetisation goes into the large droplet while the rest remains in the background
fluctuations. The apparent increase of λ for Δ → 0 can be explained by the fact that
the minimal cluster size is 1 and not an arbitrarily small fraction. In contrast, the
excess that can be fixed analytically using Eq. (3.6) can be much smaller than 1.

4.2. NN triangular lattice

Also for the NN triangular lattice all parameters are known exactly or at least to
very high precision. Here the critical temperature is28) Tc = 4/ ln 3, the spontaneous

magnetisation reads29),∗) m0(β) =
{

1 − 16e−12β/
[(

1 + 3e−4β
) (

1 − e−4β
)3

]}1/8
, and

for the susceptibility a sufficiently long series expansion in u = exp(−4β) is avail-
able,30) χ(β) = β

∑21
i=1 ciu

i. The interfacial free energy τW = 2
√

W is more com-
plicated than for the square lattice, but still known exactly in the form W (β) =
6
∫ π/6
0 dθ r2(θ), with r(θ) given as the solution of a β-dependent implicit equa-

tion.31) The numerical values of these quantities at the simulation temperature
T = 2.4 ≈ 0.66Tc are again compiled in Table I.

Due to the geometry of the triangular lattice with its hexagonal unit cells some
care is necessary with the proper normalization.16) When all quantities are normal-
ized to the total number of spins, the Δ parameter requires a geometric correction

factor α =
√

2/
√

3 ≈ 1.075, which is just the inverse square root of the hexagonal

∗) Note an obvious printing error in Eq. (30) of Ref. 16).
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Fig. 6. Fraction of excess magnetisation λ = vd/vL in the largest droplet for NN triangular lattices

of linear extent L = 40, 80, . . . , 640 at the temperature T = 2.4 ≈ 0.66Tc. The error bars are

much smaller than the size of the data symbols. The solid line shows the asymptotic analytic

prediction for L → ∞.

unit cell volume
√

3/2 for links of unit length. Hence, here we have to plot λ against

Δ = 2α
m0

χτW

v
3/2
L

L2
. (4.2)

By employing the same simulation methodology as for the square lattice, we
obtain the result shown in Fig. 6, which very much resembles the NN square lattice
case in Fig. 5.

4.3. NNN square lattice

Whereas for both lattice types with NN interactions analytical values for the
parameters in Table I are available, for the NNN square lattice one first has to
compute numerical estimates. The critical temperature is known to sufficient accu-
racy from independent transfer-matrix studies32) and recent Monte Carlo simulations
combined with finite-size scaling analyses,33) which consistently give Tc = 5.25783.
The magnetisation and susceptibility are rather easily obtained in separate Monte
Carlo simulations, since at T ≈ (2/3)Tc the spatial correlation length is very small
and already for moderate lattice sizes rather precise estimates can be obtained.

Much more demanding is the estimate of the Wulff free energy. Among the var-
ious methods described in Ref. 16) we picked for the present analysis the following
one: for NNN Ising droplets, the low-temperature Wulff shape is an octagon, i.e.,
it is quite close to the high-temperature (low-interface-tension) circular shape. It
is therefore a reasonable approximation to assume an angle independent interface
tension σ0, which can be estimated for a planar interface by finite-size scaling33) and
translated into τW ≈ 2

√
πσ0. Performing this procedure at T = 3.5 ≈ 0.66Tc, we

obtained τW ≈ 2
√

π×2.905 = 10.298. The numerical values of all required quantities
are compiled in Table I. Compared to our previous study16) at the higher temper-
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Fig. 7. Fraction of excess magnetisation λ = vd/vL in the largest droplet for NNN square lattices

of linear extent L = 40, 80, . . . , 640 at the temperature T = 3.5 ≈ 0.66Tc. The error bars are

much smaller than the size of the data symbols. The solid line shows the asymptotic analytic

prediction for L → ∞.
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Fig. 8. Comparison of the fraction λ for the largest size L = 640 of the three considered Ising

models: NN square, NN triangular, and NNN square lattice. In all three cases the simulation

temperature is chosen as T ≈ 0.66Tc.

ature T = 4.0, the differences are quite sizeable. Since the previously considered
temperature corresponds to T ≈ 0.76Tc, we decided here to repeat the whole set of
simulations for T ≈ 0.66Tc, that is for T = 3.5, in order to allow a direct comparison
with the results for the NN square and triangular lattice.

The fraction of excess magnetisation λ = vd/vL in the largest droplet versus
Δ is plotted in Fig. 7. We see that also for the extended range of interactions the
overall finite-size scaling behaviour looks very much the same as for the NN square
and triangular lattices.

A quantitative comparison is shown in Fig. 8 for our largest lattice size L =
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640. When the relative temperature T/Tc has the same value for the three lat-
tice/interaction types, then the λ(Δ) curves can be hardly distinguished. Micro-
scopic details thus do not seem to matter much in this representation even though
Tc of the three models and the parameters entering Δ differ quite considerably, cf.
Table I. The approach of the infinite-volume limit does of course depend on the
chosen temperature. For this reason a similar comparison in Ref. 16) with the NNN
square model simulated at T = 4 looked far less “universal”.

4.4. Free-energy barrier

Having established the insensitivity of the droplet condensation mechanism to
microscopic details such as the lattice structure or the range of interactions, we now
turn to an exploratory analysis of the coexistence region around Δc for the simplest
case of a NN square lattice. Snapshots of actual configurations in the two phases
are shown for a small system in Fig. 9. The probability distributions of λ = vd/vL

obtained in micromagnetic simulations with a fixed value of m (respectively Δ) close
to mc (respectively Δc) plotted in Fig. 10 exhibit for the larger lattice sizes a clear
two-phase signal: the system is either in the evaporated bubble phase where λ ≈ 0 or
in the condensed phase where λ ≈ 2/3, marked by the vertical line. More precisely,
the magnetisation m (or equivalently Δ) was adjusted for each lattice size such that
the two peaks are roughly of equal height.

The minimum between the two peaks corresponds to the free-energy barrier
(3.7), (3.8) depicted in Fig. 2, i.e., the ratio of the minimum to the maximum should
decrease with system size L as exp(−βΔF ) = exp(−cL2/3) with c = 0.1522 at
T = 1.5. This scaling behaviour is tested in Fig. 11. Allowing a power-like prefactor
∝ Lκ, a fit through the data points for L ≥ 90 yields c = 0.211 ± 0.003 with a
goodness-of-fit parameter Q = 0.22. Even though this estimate is quite far off the
expectation, if we fix c1 = 0.1522 and use the fit range L ≥ 170, we obtain a perfectly
compatible fit with a goodness of Q = 0.16. As can be seen in Fig. 11, for the larger
lattice sizes the two fits are hardly distinguishable which makes it so difficult to
estimate the parameter c reliably.

This barrier plays an important role for the understanding of the dynamics

Fig. 9. Two snapshots of a L = 50 NN square lattice for T = 1.5 at the evaporation/condensation

magnetisation mc. Left: Evaporated system with a large number of very small bubbles (1 to

3 spins). Right: Condensed system with a single large droplet that has absorbed most of the

small bubbles.
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Fig. 10. Probability distribution of the fraction λ = vd/vL close to the evaporation/condensation

transition on NN square lattices at T = 1.5, exhibiting a clear two-phase signal. The mag-

netisation m resp. Δ parameter is adjusted such that the two peaks are of equal height. The

minimum between the peaks corresponds to the free-energy barrier in Fig. 2.
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Fig. 11. Ratio of the peak minimum to the maximum in Fig. 10 versus lattice size. The vertical

lines mark the lower bounds of the fit ranges for which the goodness-of-fit parameter Q > 0.1.

of simulations in the multicanonical ensemble or, in this context, more precisely
multimagnetical simulations.21) The main ingredient of this method are iteratively
determined auxiliary weight factors W (m) which, when multiplied with the usual
canonical Boltzmann factor, can be adjusted to produce a flat distribution of the
magnetisation. In such a situation one would naively expect a random walk be-
haviour of the Monte Carlo dynamics and hence only a power-law scaling of the
autocorrelation time τ with the lattice size L.22) The free-energy barrier at the
evaporation/condensation point teaches us, however, that this cannot be true since
the system cannot easily pass through the point mc. Rather, it first has to overcome
the free-energy barrier (3.8) in a direction “orthogonal” to the magnetisation. The
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Fig. 12. Time evolution of a multimagnetical Ising model simulation on a 160 × 160 NN square

lattice at T = 1.5 close to the evaporation/condensation point mc, where the cusp is not yet

very pronounced. One clearly sees, however, that the system’s path through the state space is

usually reflected at m ≈ mc and only every few thousand sweeps the barrier (3.8) is overcome.
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Fig. 13. Left: Flat multimagnetical histogram resulting from the time evolution shown in Fig. 12.

Right: Decomposition of the histogram into the contributions from the condensed (small m)

and evaporated (large m) phase.

time series of a multimagnetical simulation around mc in Fig. 12 shows that this
barrier indeed has a significant impact. Note that despite this barrier the resulting
multimagnetical histogram is perfectly flat. This is demonstrated in Fig. 13, where
it is also shown how the contributions from the condensed and evaporated phase add
up to produce the total histogram.

In micromagnetic simulations with fixed magnetisation m = mc, the measured
(integrated) autocorrelation time τint should reflect this barrier asymptotically in the
scaling behaviour τint 
 exp(βΔF ) = exp(cL2/3). Our results of long simulations
with 10 million sweeps at mc for many lattice sizes up to L = 330 are shown in
Fig. 14. Using the data for L ≥ 140, the ansatz ln(τint) = c0 + κ ln(L) + c1L

2/3
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Fig. 14. (Integrated) autocorrelation times of micromagnetic simulations at constant m = mc ver-

sus lattice size. The vertical lines mark the lower bounds of the fit ranges for which the goodness-

of-fit parameter Q > 0.1.

yields c1 = 0.124 ± 0.008 with goodness-of-fit parameter Q = 0.18. This estimate
is somewhat closer to the theoretically expected value c = 0.1522, but also here it
clearly deviates by 3 − 4 error bars. Similarly to the situation for Pmin/Pmax, by
constraining the fit parameter c1 = c to its theoretical value and fitting only c0 and κ,
we obtain for L ≥ 180 again a perfectly acceptable fit with goodness-of-fit Q = 0.28.
Also here the two fits plotted in Fig. 14 are practically indistinguishable for larger
lattice sizes. We are currently trying to improve the numerical determination of the
parameter c1 by extending the simulations to bigger systems, but this is quite a
time-consuming task.

Finally it should be noted that the magnitude of the autocorrelation time in
Fig. 14 is much smaller than the estimate one can read off from the time evolution
of the multimagnetical simulation on the 160× 160 lattice shown in Fig. 12. This is
because in multimagnetical simulations the system spends a lot of time away from
mc, either in the evaporated or condensed phase. The asymptotic scaling behaviour
with system size, however, should also be governed by the same exponential law as
for the constrained simulations with fixed magnetisation.

§5. Concluding remarks

The results of our Monte Carlo simulations of the droplet condensation pro-
cess in the two-dimensional Ising lattice-gas model clearly confirm the mathematical
predictions of Biskup et al.6) and extend their exact analysis for asymptotically
large systems to practically accessible system sizes. The observed finite-size scaling
behaviour matches with increasing system size perfectly with the predicted infinite-
volume limit. By comparing square and triangular lattices with next-neighbour
interactions and a square lattice with next-nearest-neighbour interactions, we obtain
compelling evidence for the insensitivity of the droplet condensation mechanism on
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microscopic details provided the reduced temperature T/Tc is kept fixed. Strictly
speaking, for technical reasons, the mathematical treatment of Biskup et al.6) is re-
stricted to square lattices with nearest-neighbour couplings only. Our results thus
show that the arguments in Ref. 6) can indeed be carried over to other lattice types
and interactions as well, as expected on physical grounds. All simulations were per-
formed in thermal equilibrium and the suppression of droplets of intermediate size
could be unambiguously verified.

The observed double-peak structure of the distribution of the fraction λ of par-
ticles in the largest droplet at the evaporation/condensation transition implies a
free-energy barrier, similar to a first-order phase transition. Extrapolations of our
results for finite systems to the infinite-volume limit are in qualitative agreement
with the theoretical expectation. By analyzing the ratio of the peak minimum to
the maximum in simulations with fixed magnetisation (adjusted such that the two
peaks are of equal height), we clearly observe with increasing lattice size L an expo-
nential scaling compatible with exp(−c L2/3). A precise numerical determination of
the parameter c, however, turns out to be difficult for the available lattice sizes. Al-
ternatively, by measuring (integrated) autocorrelation times τint in simulations with
the magnetisation fixed directly at the evaporation/condensation point Δc, we also
find a compatible asymptotic scaling behaviour τint 
 exp(c L2/3), but the parameter
c is again difficult to estimate reliably with the present data set. Presumably much
larger lattices are needed to arrive at a firm estimate. In multimagnetical simulations
with a flat magnetisation distribution, this free-energy barrier is not directly visible
when monitoring the magnetisation alone. Rather, it appears as a “hidden” obstacle
in an “orthogonal” direction of phase space, which is, however, clearly reflected by
a slowing down of the performance of the simulations.

Currently we are performing similar simulations and analyses for the three-
dimensional case, where a similar behaviour is expected in the thermodynamic limit.
It appears, however, numerically much harder to reach the scaling region. Once
the relevant length scales are fully understood, off-lattice simulation studies with
Lennard-Jones particles in a similar vein would be a very interesting project with
many applications of practical relevance.
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