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The current understanding of aging phenomena is mainly confined to the study of systems with short-
ranged interactions. Little is known about the aging of long-ranged systems. Here, the aging in the phase-
ordering kinetics of the two-dimensional Ising model with power-law long-range interactions is studied via
Monte Carlo simulations. The dynamical scaling of the two-time spin-spin autocorrelator is well described
by simple aging for all interaction ranges studied. The autocorrelation exponents are consistent with
λ ¼ 1.25 in the effectively short-range regime, while for stronger long-range interactions the data are
consistent with λ ¼ d=2 ¼ 1. For very long-ranged interactions, strong finite-size effects are observed. We
discuss whether such finite-size effects could be misinterpreted phenomenologically as subaging.

DOI: 10.1103/PhysRevLett.125.180601

The time evolution of complex systems after a quench from
a disordered state at high temperature to a low temperature
where the equilibrium state has a nonzero order parameter is
characterized by dynamical scaling laws describing coarsen-
ing and aging phenomena [1–4]. Understanding this non-
equilibrium phase-ordering kinetics is key for predicting
structure formation processes in many fields. Applications
range from statistical and soft-matter physics at mesoscopic
scales [5–15] to biology [16,17], from quantum physics at the
nanoscale [18–22] to astrophysics [23–26] at the cosmic scale.
In many of these systems, an important role is played by long-
range interactions [27–34], which are hard to deal with
theoretically and computationally. For aging of long-range
interacting systems, comparatively little is known theoreti-
cally, with the notable exception of analytical studies of the
long-range spherical model [35,36].
In this Letter, we therefore strive to uncover the most

distinguishing features of aging of long-range interacting
systems when compared to the short-range case. To avoid
distractions from system-specific details as much as
possible, we consider the paradigmatic two-dimensional
(2D) long-range Ising model (LRIM), with Hamiltonian

H ¼ −
1

2

X
i

X
j≠i

JðrijÞsisj and JðrijÞ ¼
1

rdþσ
ij

: ð1Þ

The interaction strength JðrijÞ depends on the distance rij
between the spins at sites i and j that take values si ¼ �1.
The exponent σ governing the power-law decay enables us
to interpolate between the short-range nearest-neighbor
Ising model (NNIM) over intermediate-range to extremely
long-range interactions, encompassing all interaction
patterns encountered in nature.

For quenches of the LRIM into the ordered phase at
temperatures T below the critical temperature Tc, the
system’s long-time behavior is characterized by the exist-
ence of a single time-dependent length scale, lðtÞ, where
for phase-ordering kinetics in any dimension it has been
predicted that [37–39]

lðtÞ ∝ t1=z ¼

8><
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ðt ln tÞ1=2 σ ¼ 1
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with z denoting the dynamical exponent [40]. In Fig. 1, we
show an illustration with σ ¼ 0.6, where lðtÞ has been

FIG. 1. Characteristic length scale lðtÞ versus time t for the 2D
LRIM with σ ¼ 0.6 on L × L lattices quenched to T ¼ 0.1Tc.
The solid line depicts the theoretical prediction in Eq. (2). The
snapshots are obtained from a single run for L ¼ 4096, with spins
pointing up marked in blue.
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extracted as the distance where the equal-time two-point
correlation function has decayed to 50% (for details see the
Supplemental Material [41]).
For a proper understanding of the nonequilibrium

process, along with single-time quantities one needs to
study multiple-time quantities as well, which provide
information about the change in properties of a system
with its growing age, i.e., its aging characteristics. Here,
this is probed via the two-time autocorrelation function

Cðt; twÞ ¼ hψðr⃗; tÞψðr⃗; twÞi; ð3Þ
where ψ is the space- and time-dependent order parameter,
and tw (≤ t) is the waiting time. In our case, the order
parameter is given as ψðr⃗; tÞ ¼ siðtÞ. Simple aging for
quenches to T < Tc is characterized [4] by slow dynamics,
absence of time-translation invariance and dynamical
scaling in the scaling variable y≡ t=tw. In general, for
large y one expects

Cðytw; twÞ ¼ fCðyÞ⟶
y→∞

fC;∞y−λ=z; ð4Þ
where λ is the autocorrelation exponent. It was assumed
that tw ≫ tmicro and t − tw ≫ tmicro, where tmicro is some
microscopic reference timescale.
For the NNIM, a lower bound λ ≥ d=2 [5,47] exists.

Most simulations [4,48–52] in 2D are compatible with
λ ≈ 1.25, and it has been argued that λ ≤ 1.25 [5]. For the
LRIM, it is a priori unclear if this bound should also apply.
Equation (2) suggests that, for σ > 1, the nonequilibrium
behavior might be in the same universality class as the
NNIM. If that should be the case, the autocorrelation
exponent λ ≈ 1.25 is expected. No prediction for λ exists
for σ ≤ 1.
We study the phase-ordering kinetics of the LRIM on

L × L periodic lattices via Monte Carlo simulations by
quenching to T ¼ 0.1TcðσÞ; for details see the
Supplemental Material [41]. The values of TcðσÞ are from
recent equilibrium studies of this model focusing on the
critical regime [53]. The unit of time t is one Monte Carlo
sweep, corresponding to L × L randomly drawn spin-flip
attempts. All presented results are averaged over at least 30
independent realizations. The error bars are of the order of
the size of the data symbols if not shown.
The long-standing theoretical prediction, Eq. (2), for

lðtÞ has only recently been confirmed by us in 2D [54] and
subsequently in 1D [55]. In Fig. 1, we plot lðtÞ versus t
for σ ¼ 0.6 and L ¼ 1024, 2048 [54] and add new data for
L ¼ 4096. Clear finite-size effects are seen, such that for
t > t×ðLÞ deviations from the infinite system occur.
We estimate the onset of finite-size effects as t×ð1024Þ ≈
100–200 and t×ð2048Þ ≈ 300–500. The exemplary snap-
shots from a single run illustrate how the emergent
structures grow with time.
We now focus on the main part of this Letter: The two-

time correlator Cðytw; twÞ. When plotted against t − tw, we

get curves that relax slower with increasing tw, implying the
absence of time-translation invariance as shown in the
Supplemental Material [41]. We start our quantitative
analysis for a case for which we expect behavior similar
to the NNIM, i.e., the 2D LRIM in the short-range regime
with σ ¼ 1.5. In Fig. 2(a), we test for dynamical scaling by
plottingCðytw; twÞ for L ¼ 2048 against y on a log-log scale
for different waiting times tw. The data collapse well onto a

(a)

(b)

(c)

FIG. 2. Double-log plot of the order-parameter autocorrelation
function Cðytw; tw) against the scaling variable y ¼ t=tw for
the 2D LRIM with (a) σ ¼ 1.5 with L ¼ 2048 and
(b) σ ¼ 0.8 and (c) σ ¼ 0.6 with L ¼ 4096 quenched to
T ¼ 0.1Tc. The solid lines are fits using Eq. (5). In the insets,
we plot the same data on a linear scale but divide out the
asymptotic behavior y−λ=z.
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master curve fCðyÞ, which clearly validates the simple
scaling scenario. For small y, we observe a curvature
indicating corrections to the asymptotic power law
[Eq. (4)], which we assume to be in leading order of the form

Cðytw; twÞ ¼ fC;∞y−λ=z
�
1 −

A
y

�
: ð5Þ

This is a generic ansatz, which is known from the exactly
solved spherical [4,35,36] and 1D Glauber-Ising [4]
models. More generally, this is also known from local scale
invariance [4,56–58] for any phase-ordering system with
z ¼ 2, where it can also be shown that A ≥ d − λ; see the
Supplemental Material [41]. When fitting this ansatz to the
data points, we first systematically vary the lower tmin and
upper tmax boundaries of the fit window. Out of the resulting
100–200 fits, we select a particular fit by demanding
Δt ¼ tmax − tmin to be maximal under the constraint that
the reduced chi-square χ2r (chi-square per degree of freedom)
has no (strong) systematic trend. Effectively, tmin thus
indicates down to which t the data are well described by
the first-order correction A=y and tmax detects the onset of
noticeable finite-size effects. Since the data are (trivially)
correlated in time, the value of χ2r has no absolute inter-
pretation, but a comparison of different fitting ranges is still
meaningful. All fits in the region where χ2r has no clear trend
only show a systematic variation within 1%–2% for λ.
Statistical errors on the fit parameters were estimated from a
Jackknife analysis [59], i.e., we performed an independent fit
for each Jackknife bin (containing all but data from one
seed). For σ ¼ 1.5, we have chosen the data for tw ¼ 50 for
our analysis, since small deviations from the master curve
are visible for tw ¼ 20. This corresponds to a value of
lðtwÞ ¼ 12.51ð2Þ, which is clearly in the scaling regime. In
this case, the lower bound is tmin ¼ 200 and the upper bound
is tmax ¼ 5000, where this is the last available data point
(i.e., up to this point there are no detectable finite-size
effects; see the Supplemental Material [41]). For this fit
window, we find λ ¼ 1.243ð32Þ, A ¼ 0.67ð11Þ, and
fC;∞ ¼ 1.566ð68Þ. This is perfectly consistent with
λ ¼ 1.25 as expected for the NNIM. The solid line in
Fig. 2(a) shows this fit restricted to its range of validity from
tmin to tmax (for σ ¼ 1.5 the largest available time t). For
tw ¼ 50 this range corresponds to ymin ¼ 4 and ymax ¼ 100.
For how the fit extrapolates to larger and smaller y, see
Fig. S4 in the Supplemental Material [41]. In the inset, we
plot the same data with the asymptotically expected power
law y−λ=z divided out, which implies a constant behavior in
the asymptotic limit. From the pronounced curvature for
small y, the 1=y correction in Eq. (5) to the asymptotic power
law, Eq. (4), is evident. The solid line shows again the fit,
here plotted over the full y range.
Next, we consider the case σ ¼ 0.8. According to

Eq. (1), this should be distinct from the short-range
universality class. Our analysis follows the method

developed above for σ ¼ 1.5. In Fig. 2(b), we show the
autocorrelation Cðytw; twÞ for L ¼ 4096 as a function of y,
which collapses onto a master curve for all shown tw. Here,
we use the data with tw ¼ 20 for our fits, as this provides
the longest possible fitting ranges and lðtwÞ ¼ 11.90ð2Þ
is in the scaling regime and compatible with
lðtwÞ used for σ ¼ 1.5. Fits using Eq. (5) show no
systematic trend in the range from tmin ¼ 250 to
tmax ¼ 2500, giving estimates of the fit parameters
as λ ¼ 1.032ð39Þ, A ¼ 0.88ð56Þ, and fC;∞ ¼ 1.63ð16Þ.
Note that the estimate for λ is compatible with
λ ¼ d=2 ¼ 1, the (putative) lower bound on λ. In the
phase-ordering long-range spherical model, one also finds
λ ¼ d=2 [35,36]. The quality of the fit is visually reinforced
by the solid lines in the main plot and the inset. Here tmax is
understood as an estimator for t×, the time where detectable
finite-size effects set in. Data for t > t× decay faster than
the assumed asymptotic power for all tw (see the
Supplemental Material [41]). In general, these finite-size
effects always occur at the same value of t×, thus effectively
at different y. From the inset we see a deviation from the
trend of the data for tw ¼ 20 at y ≈ 150, which indicates
that all data for t⪆3000 need to be disregarded, compatible
with t× ¼ 2500 estimated from the fits.
In contrast, for the data with σ ¼ 0.6 and L ¼ 4096

shown in Fig. 2(c), one observes two problems: (i) there is
apparently no completely satisfactory data collapse and (ii)
there is no pronounced power-law-like scaling regime.
Performing fits using Eq. (5) for tw ¼ 20 [with
lðtwÞ ¼ 16.27ð3Þ] suggests tmax ¼ 1000, while tmin ¼
300 appears suitable as a lower bound. This gives
λ ¼ 0.995ð37Þ, A ¼ 2.02ð40Þ, and fC;∞ ¼ 2.20ð20Þ,
which is once more consistent with λ ¼ d=2 ¼ 1.
However, since Δt is rather short and the visual impression
of the data collapse is not perfect, we analyze this case in
more detail.
Using tmax ¼ 1000 as the estimate for t×, we replot in

Fig. 3(a) the data by omitting all points with t > t×, giving
a much improved impression of data collapse. The estimate
for t× is thus crucial for the visual judgment. To substan-
tiate this, we now estimate the onset of finite-size effects
from the data of lðtÞ shown in Fig. 1 in a more dependable
way. For this, we plot in the inset of Fig. 3(a) lðtÞ=t1=z
versus t1=z=L. The onset of finite-size effects in this
representation is independent of L and happens at the
same value of t1=z=L. Here one could read off values of
t1=z× =L between ≈0.012 and ≈0.020, corresponding for L ¼
4096 to the relatively wide range 510 ⪅ t× ⪅ 1150, com-
patible with t× extracted from the trends of χ2r . The straight
line in Fig. 3(a) shows y−λ=z with λ ¼ 0.995 from the fit. In
Fig. 3(b), we plot Cðytw; twÞyλ=z against 1=y, emphasizing
the asymptotic behavior when compared to the insets of
Fig. 2. For the correct λ the data should approach fC;∞
linearly as 1=y → 0. If λ is too large, the data diverge for
1=y → 0, whereas for a λ too small, a downward tendency
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is expected. From the plot, we observe for λ < 0.995 this
downward tendency, while for λ > 0.995 the curves have
increasing slopes. For λ ¼ 0.995 the approach to 1=y → 0
is indeed linear, with a constant slope over a significant
range, which is verified by the solid line as obtained from
the fit. For an enlarged plot with a smaller 1=y-range and λ
values closer to 0.995, see the Supplemental Material [41].
We should point out, however, that our current data for

σ ¼ 0.6 would also be compatible with the alternative
interpretation of exhibiting subaging behavior. In this
scenario, one considers the scaling ansatz

Cðt; twÞ ¼ f̃C

�
hðtÞ
hðtwÞ

�
; ð6Þ

with hðtÞ≡ exp (ðt1−μ − 1Þ=ð1 − μÞ), where the parameter
μ characterizes the deviation from simple scaling, which is
recovered in the limit μ → 1. Subaging with μ < 1 has been

encountered many times in analytical [13,60], numerical
[61–64], and experimental investigations (see Ref. [4] for a
list of examples). In Fig. 4, we show the scaling with
respect to hðtÞ=hðtwÞ for the untruncated data, where
μ ≈ 0.976 provides the best data collapse. Compared to
Fig. 2(c) showing the same data, the data collapse is greatly
improved. Of course, subaging introduces one additional
tunable parameter and as such one would always expect
better data collapse. On the other hand, we have provided
rather strong evidence that the (slight) downward bending
of the curves in Fig. 2(c) for large y is caused by
finite-size effects [cf., Fig. S2(c) of the Supplemental
Material [41] ]. Assuming asymptotically Cðt; twÞ →
½hðtÞ=hðtwÞ�−λ̃=z, where λ̃ is a modified autocorrelation
exponent, one finds that, for large y (or t for fixed tw),
the subaging ansatz (6) decays faster than any power law,
i.e., proportional to exp ( − ½ðλ̃=zÞ=ð1 − μÞ�t1−μ). When
plotted as a function of y as in Fig. 2(c), this thus models
a downward bending, suggesting that the subaging scaling
collapse just looks so good because this ansatz effectively
“compensates” the finite-size effects. Only on the basis of
the present data for σ ¼ 0.6 on lattices up to 4096 × 4096 is
it, however, not possible to clearly favor one of the two
alternative scaling scenarios. Based on our results for the
other values of σ where we have clear evidence for simple
aging, we side with the interpretation of simple aging also
for σ ¼ 0.6. The Supplemental Material [41] presents,
alternatively, the scaling behavior with respect to t=tμw, a
simpler phenomenological form often used to probe for
subaging.
To conclude, we have performed the first numerical

investigation of aging in long-range systems by system-
atically tuning the interaction range using the paradigmatic
two-dimensional long-range Ising model. We find for all σ
simple aging, where for σ ¼ 0.6 it is shown that strong
finite-size effects may be misinterpreted as subaging. The
autocorrelation exponent is consistent with λ ¼ d=2 ¼ 1

(a)

(b)

FIG. 3. Autocorrelator scaling function for σ ¼ 0.6 and
L ¼ 4096. (a) Cðytw; twÞ versus y, omitting the finite-size
affected data for t > t× ¼ 1000. The straight line shows the
asymptotic power law y−λ=z with the fitted λ ¼ 0.995. The inset
shows a finite-size scaling plot of lðtÞ by plotting lðtÞ=t1=z
versus t1=z=L for different L. (b) Plot against 1=y
of the data for tw ¼ 20, dividing out the asymptotically
expected behavior of y−λ=z. The assumed value of λ is varied
and the solid line is the expected behavior assuming the
correction form in Eq. (5).

FIG. 4. Untruncated Cðytw; twÞ for σ ¼ 0.6 and L ¼ 4096
plotted against scaling variable hðtÞ=hðtwÞ with μ ¼ 0.976,
indicating subaging.
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for σ < 1 and with λ ¼ 1.25 for σ > 1. This implies that the
transition between the short-range and long-range 2D Ising
universality classes occurs at a different value of σ than it
does either at the critical point or else in equilibrium. The
conjecture λ ¼ d=2 is consistent with known results. For
the 1D LRIM at T ¼ 0, one finds λ ¼ 0.5 for σ < 1 [65],
and the phase-ordering long-range spherical model has
λ ¼ d=2 independently of σ [35,36].
An open and interesting question relates to how this

transition in λ happens, i.e., whether it is smooth or is
characterized by a jump. To answer this, even larger
systems would have to be simulated, which is out of scope
for the time being. The more involved case of binary
mixtures, i.e., a conserved order parameter setting, is
enticing as a next step [66]. Crucial also is the investigation
of aging in other models with long-range interactions, as
this could shed new light on our understanding of aging in
liquid crystals [67], active systems [68], or strongly
interacting quantum many-body systems [69].
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