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Using a combination of the multicanonical Monte Carlo algorithm and the replica-exchange method, we
investigate the influence of bending stiffness on the conformational phases of a bead-stick homopolymer
model and present the pseudophase diagram for the complete range of semiflexible polymers, from flexible
to stiff. Although it is a simple model, we observe a rich variety of conformational phases, reminiscent of
conformations observed for synthetic polymers or biopolymers. Depending on the bending stiffness, the
model exhibits different pseudophases like bent, hairpin, or toroidal. In particular, we find thermody-
namically stable knots and unusual transitions into these knotted phases with a clear phase coexistence, but
almost constant mean total energy, and hence almost no latent heat.

DOI: 10.1103/PhysRevLett.116.128301

Since the first simulation of knotted polymers in 1975
[1], the occurrence and behavior of knots in polymers has
been studied in various contexts. Scanning through
protein data bases has revealed that several proteins form
knots [2–4]. In particular, in 2006 Virnau et al. [5]
reviewed the whole Protein Data Bank [6] and identified
36 proteins forming relatively simple knots. Today, many
more knotted proteins are known [7], but still only a small
fraction of proteins form knots—somehow evolution tries
to avoid knotted proteins [8].
In contrast, flexible polymers form much more compli-

cated knots by chance in the swollen [9–11] and globular
[11,12] phases, which are present in models with self-
avoidance and attraction of monomers, as already lattice
polymer simulations show [13,14]. In this work we go a
step ahead and investigate the knottedness of semiflexible
bead-stick polymers. There exist a few studies concerning
the more complex phase space of polymers governed by
bending stiffness [15–17]. The most comprehensive work
considered bead-spring polymers with finitely extensible
nonlinear elastic (FENE) bonds [17]. Depending on the
bending stiffness, these models are able to mimic a large
class of polymers, exhibiting, for instance, bent, hairpin, or
toroidal conformations.
Nevertheless, none of the former works considered the

knottedness of a polymer over the full bending stiffness
range, which we will discuss in this Letter. By measuring
the knot type we found pseudophases [18] with thermo-
dynamically stable knotted polymers. The knot type will be
shown to be an ideal topological order parameter to identify
the knotting transition and, moreover, the behavior at the
transition from an unknotted to a knotted phase turns out to
be surprisingly different from all other phase transitions of
the bead-stick polymer in that it does not fit into the
common classification scheme of first- and second-order
phase transitions.
To model a coarse-grained polymer with an adjustable

stiffness, we use a modified version of the bead-stick model

of Refs. [19–21], which consists of N identical monomers
connected by bonds with length 1. Nonadjacent monomers
interact via the Lennard-Jones (LJ) potential
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where rij is the distance between two monomers.
The parameters ϵ and σ are set to 1 for the rest of this
work, i.e., energies are measured in units of ϵ and lengths in
units of σ. The stiffness is introduced through the cosine
potential adopted from the well-known discretized worm-
like chain model [22] and defined by

Ebend ¼
XN−2

i¼1

ð1 − cos θiÞ; ð2Þ

where θi represents the angle between adjacent bonds. The
complete Hamiltonian is then given by E ¼ ELJ þ κEbend,
where κ parametrizes the strength of the bending term
compared to the LJ potential.
Topological barriers between the knotted phases forced

us to apply relatively complex Monte Carlo (MC) algo-
rithms in order to obtain reliable results. To simulate the
system in the complete ðT; κÞ plane, we used two
complementary MC algorithms. The first is a combination
of the (parallelized) multicanonical (MUCA) method
[23,24] and a replica exchange (RE) [25] in the κ direction
(MUCAþ RE). This means that we run m individual
MUCA simulations, each at a different value for κ.
Within RE the canonical Boltzmann factors in the usual
acceptance probability are replaced with the multi-
canonical weights obtained from the MUCA method.
The second variant is a two-dimensional version of the
replica-exchange (2D RE) method, which runs standard
Metropolis MC simulations at m different parameter
pairs ðT; κÞ. By means of a two-dimensional weighted
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histogram analysis method [26], we are able to calculate
the canonical mean values of observables at any point in
the ðT; κÞ plane within the simulated parameter ranges in
arbitrarily high resolution. Statistical errors are computed
with the jackknife method [27]. To generate well equili-
brated results it was necessary to apply bridge-end and
double-bridging moves [28], which are modified such that
they respect the fixed bond-length constraint, besides the
common crank-shaft, spherical-rotation, and pivot moves.
As a useful cross-check, we performed the simulations
with both methods, MUCAþ RE and 2D RE, and con-
firmed that the results are in good agreement with each
other. For recent reviews of these technical aspects, see
Refs. [29,30] and the Supplemental Material [31].
To determine the structural phases, we measured the total

energy hEi, both subenergies hELJi and hEbendi, the squared
end-to-end distance hR2

eei, the squared radius of gyration
hR2

gi, and the eigenvalues of the gyration tensor hλ1i;
hλ2i; hλ3i. Peaks of their derivatives with respect to temper-
ature for a given κ mark the locations of the different phase
transitions. Additionally, we performed microcanonical
analyses [32] as a complementary approach to identify
the different phase transitions. These are based on the
microcanonical entropy SðEÞ ¼ kB lnΩðEÞ and the inverse
temperature βmicroðEÞ ¼ dSðEÞ=dE, where ΩðEÞ is the
density of states. A peak in the derivative dβmicroðEÞ=dE
signals a phase transition.
To identify the knots, we determined the knot type of

the polygonal line defined by the polymer. In principle, the
knot type, denoted by Cn, defines which smooth closed
curves can be transformed into each other by applying
multiple Reidemeister moves. Practically, this means two
knots are not of the same type if they cannot be deformed
into each other without cutting and rejoining the polygonal
line. The integer number C counts the minimal number of
crossings for any projection on a plane and the subscript n
distinguishes topologically different knots with the same
number of crossings. A detailed exposition of mathematical
knot theory can be found in Ref. [33]. Of course, an open
polymer cannot satisfy the mathematical definition of a
knot, unless the termini are closed virtually. The closure is
only applied during the measurement of the knot type and
does not influence the simulation itself. We used a closure
that pulls the two termini in opposite directions and
connects them outside the polymer as inspired by tying
a real knot, see the Supplemental Material [31] for detailed
instructions. In Refs. [11,34] it is documented that a
reasonably constructed closure should have no significant
influence on the found knots. In fact, in our own tests with
other closures we confirmed this claim [31]. To calculate
the knot type Cn, we employed a technique described in
Ref. [34], which is based on a variant of the Alexander
polynomial ΔðtÞ,

ΔpðtÞ ¼ jΔðtÞ × Δð1=tÞj; ð3Þ

evaluated at t ¼ −1.1. Strictly speaking, the Alexander
polynomial and likewise D≡ Δpð−1.1Þ are not unique
invariants. However, the value for D is unique for all knots
found in this work and thus characterizes topologically
different polymer conformations.
In the simulations we considered chains with N ¼ 14

and 28 monomers, which is motivated by the length range
of recent experiments [35,36]. The stiffness-dependent
behavior of our bead-stick model defined by (1) and (2)
is summed up in the phase diagrams shown in Fig. 1, which
are constructed from the peaks of all measured thermal
derivatives and the results of the microcanonical analysis.
The black lines mark the thermally most active regions and
represent the location of the phase transitions. Estimates
from different observables give slightly different transition
temperatures, due to the finite length of the polymer.
Therefore, the space between the black lines reflects this
variance. The color map encodes the average extension of
the polymer in terms of hR2

gi. For high temperatures, where
the system is entropy dominated and the polymer resembles
a discretized wormlike chain, the conformations are either
gaseouslike and extended (E) or rodlike (R). When the
temperature is lowered, the LJ energy becomes more

FIG. 1. Phase diagram for (a) 14 and (b) 28 monomers.
The black transition lines sum up all signals of the thermally
most active regions. The surface plot shows the average size of
the polymer in terms of hR2

gi. The phases are labeled as follows:
E, elongated; R, rodlike; G, globular (AG is an artifact of the
small chain length; both termini of the polymer are aligned); F,
frozen; KCn, knotted phase with the corresponding knot type;
DN, (N − 1) times bent polymers; H, hairpin. We omitted some
subphases of DN, K819, and F, which do not change the overall
picture.
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important and the polymer collapses. One can clearly
distinguish two different regimes. For small κ, the poly-
mer behaves similarly to a flexible chain and undergoes a
continuous phase transition into the globular (G) phase,
which is comparable to a liquid where individual mono-
mers are located close to each other but move relative
freely. Upon further lowering the temperature, in a first-
order-like transition, it enters frozen (F) states where the
distances between the monomers become minimized and
different crystallike conformations occur, e.g., the 14-mer
exhibits in F2 a more pronounced core than in F1. This
contrasts with larger κ, where the polymer undergoes a
first-order-like transition from the rodlike (R) states to
states with differently structured motifs (DN, H, KCn).
The notion “first-order-like” is again a caution in that for
finite systems the Ehrenfest classification is not strictly
applicable but we nevertheless observe phase coexistence
and signals in the microcanonical analysis as for “real”
first-order transitions. For clarity, we omitted in Fig. 1
some subphases where the shape parameters and micro-
canonical analysis suggest additional transitions between
differently shaped conformations of the same motif.

Especially, the frozen phase F subsumes many subphases,
which differ only in minor aspects.
In the knotted phases KCn the probability to find the

corresponding knot is almost 1. This means every polymer
chain is of that specific knot type and implies that the knots
are thermodynamically stable. We want to emphasize that
this is different from the knots found in previous work,
which occur in the swollen and globular phases of flexible
polymers and form by chance. This makes hDi a perfect
topological order parameter to distinguish knotted and
unknotted phases, as is demonstrated in Fig. 2(a) for a
14-mer. We use the minima and maxima of the temperature
derivative hDi0 ≡ dhDi=dT to confirm the phase bounda-
ries. In Fig. 2(b) one can see that the behavior of hE=Ni and
hR2

gi is qualitatively not very different at the freezing
transition G ↔ F2 (κ ¼ 1.0) and the knotting transition
AG ↔ K31 (κ ¼ 3.0). The knot parameter hDi, however,
clearly signals the phase transition and goes from 1
(unknotted polymer) to 9.05463 (31 knot) only in the case
of a transition into a stable knot. As expected, the 28-mer
(and even more the 42-mer [37]) exhibits a richer phase
diagram with more complicated knot types, see Fig. 1(b).
However, the qualitative behavior at the phase boundaries

FIG. 2. (a) Surface plot of hDi for a 14-mer over the same ðT; κÞ
range as in Fig. 1(a). The blue regime, hDi ¼ 9.05463, marks the
K31 knot phase. The orange squares and green circles are the
positions of the minima and maxima of hDi0. The two vertical
lines mark the κ values for which in (b) the temperature profiles of
hR2

gi, hE=Ni, and hDi are shown. The lines are obtained with the
weighted histogram analysis method. The statistical accuracy is
indicated by the data symbols with error bars, which are of the
order of the line width.

FIG. 3. (a) Energy probability distribution pðEÞ of a 14-mer at
κ ¼ 3.9, T ¼ 0.0483 where hDi0 suggests a knotting transition as
indicated in the inset. In (b) the energy is split into the two
subenergies, which reveal the double peak in the two-dimensional
probability distribution pðELJ; EbendÞ, reflecting the knotted state
K31 and the bent state D3. pðEÞ is exactly the projection of
pðELJ; EbendÞ along the line connecting the two peaks; thus, the
phase coexistence is perfectly hidden in pðEÞ.
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turned out to be very similar so that we will focus in the
following discussion on the 14-mer.
The knotting transitions from one structured state to

another (e.g., K31 ↔ D3) are quite intriguing. At first
glance, one could assume that they behave first-order-like,
similar to other solid-solid-like transitions at low temper-
atures. However, the microcanonical analysis exhibits no
convex intruder in the microcanonical entropy that would
indicate a first-order-like transition. Likewise, the canonical
probability distribution pðEÞ does not exhibit a double-
peak structure, see Fig. 3(a). On the other hand, the two-
dimensional energy distribution pðELJ; EbendÞ points to a
phase coexistence. In Fig. 3(b) one can clearly identify two
separate peaks, one corresponding to the knotted phase and
the other to the unknotted phase. Surprisingly, both phases
have almost identical mean total energy hEi at the coex-
istence point, and there is almost no signal in hEi and the
heat capacity CV ¼ dhEi=dT at the transition, see Fig. 4.
We thus observe almost no latent heat when the polymer
undergoes the transition into theknottedphase.Rather, theLJ
energy and the bending energy are transformed into each
other [38].
This behavior changes if the polymer enters the knotted

phase from an unstructured conformation (e.g.,
AG ↔ K31). For example, crossing the transition line
K31 ↔ D3 of the 14-mer for fixed κ at higher temperatures,
the two peaks in pðELJ; EbendÞ start to merge until they
form a single peak at the transition AG ↔ K31 and the
phase coexistence vanishes. It seems that in that case the
transition into the knot is a continuous one. This holds for
all investigated knotting transitions; the transitions from a
structured (F, DN, KCn) to a knotted phase exhibit phase
coexistence, whereas the transitions from an unstructured
(G, AG) to a knotted phase seem to be continuous.

The reason for the missing knotted phases in Ref. [17] is
not rooted in this intricate behavior with “concealed” signals,
however, but may rather lie in the choice of the bond length
rb and the minimum distance rmin of the LJ potential to
coincide, whereas they differ by a factor of 1.12 in our work.
Test simulations of their model and other common para-
metrizations [39] of bead-spring models suggest that the
regions of thermodynamically stable knots are much smaller
when rb ≈ rmin. The observation that the polymer minimizes
its total energy in bent conformations by maximizing the
number of monomers located in the LJ minima leads to the
following conjecture: if rb ≈ rmin and the bonds are flexible
enough, bent conformations are energetically so strongly
favored that knotted states become unlikely.
In conclusion, we have investigated the complete stiff-

ness-dependent behavior of a semiflexible bead-stick poly-
mer. Besides the conformations already observed in previous
work, we found phase transitions into novel phases with
knots as the predominant conformation. These are consid-
erably different from the knots observed in the swollen or
globular phase of flexible polymers, which form by chance,
whereas the here found knots are thermodynamically stable.
We showed that hDi is a perfect topological order parameter
to distinguish them. The second intriguing observation is that
the transitions into these knotted states from other structured
conformations happen with almost no latent heat, although
we observed a clear phase coexistence. Interestingly, most of
the found knots in this work (31; 51; 819) are so-called torus
knots, which are known to be formed preferentially in viral
DNA [40,41]. A further investigation of this connection may
be illuminating.
At the moment, investigating short single polymer chains

in experiments seems unrealistic, and it appears even more
unrealistic to observe structural properties such as knots.
However, preparation and detection methods for single
polymers at surfaces have recently made quite impressive
progress [35,36], so that one can now resolve polymers of
down to 20 monomers. A sensible next step could be
hence an investigation of the influence of an adsorbing
surface on the occurrence of stable knotted phases for a
generic semiflexible polymer. Later on, this could be
extended to more realistic synthetic polymer models to guide
experiments.
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FIG. 4. Mean total energy hEi and heat capacity CV of a 14-mer
at T ¼ 0.0483. At both knotting transitions, κ ¼ 2.36 ðF2 ↔
K31Þ and κ ¼ 3.9 ðK31 ↔ D3Þ, we found no significant shift in
the energy and therefore no signal in CV that is larger than the
statistical error. The lines are obtained with the weighted
histogram analysis method. The statistical accuracy is indicated
by the data symbols with error bars.
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