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Approximate ground states of the random-field Potts model from graph cuts
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While the ground-state problem for the random-field Ising model is polynomial, and can be solved using
a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model
corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm
is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees
of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state
problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact
ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts
states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new
technique to analyze the breakup length of the random-field Potts model in two dimensions.

DOI: 10.1103/PhysRevE.97.053307

I. INTRODUCTION

Due to its versatility, the Potts model is one of the central
tools in statistical physics, in particular for the study of phase
transitions and critical phenomena [1,2]. Its many physical
realizations include soap froths, cellular tissues, grain growth,
nucleation, as well as static and dynamic recrystallization.
Disorder is inherent in such experimental systems and needs
to be incorporated for their accurate description. Depending
on the way the disorder couples to the system, this leads
to the q-state random-bond or random-field Potts models.
Experimentally, the latter is particularly relevant for describing
magnetic grains, anisotropic orientational glasses, randomly
diluted molecular crystals [3,4], structural transitions in SrTiO3

crystals [5], and phase transitions in type I antiferromagnets
(such as NdSb, NdAs, CeAs) in a uniform field [6]. While
the random-bond model has received substantial attention in
the past and is relatively well understood in two (2D) [7–9]
as well as in three (3D) dimensions [10–14], little is known
about the behavior of the random-field Potts model (RFPM).
Due to the necessary quenched average over disorder and
the slow relaxation resulting from the frustration introduced
through the competition of exchange couplings and random
fields (of strength �), it is a difficult problem for analytical and
numerical methods alike. Consequently, the nature of phases
and the phase transitions in the (q,�) plane in different spatial
dimensions d are only partially understood, leaving many open
questions for exploration.

There are only a few studies of the q-state RFPM in the
literature [15–21]. These have primarily investigated the phase
diagram in (T ,�) space for different q and d, where T denotes
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temperature. For the pure model, the temperature-driven tran-
sitions are continuous for small q � qc and first-order for large
q > qc, with qc = 4 for the square-lattice model with nearest-
neighbor interactions [22,23] and qc ≈ 2.8 for the simple-
cubic lattice [24]. It is well known that quenched disorder tends
to soften first-order transitions [25], and this has even been
rigorously established for systems in two dimensions [26]. In
the latter case, one hence must have qc → ∞, but in fact the
RFPM does not show a finite-temperature ordering transition in
d = 2 and there are merely crossovers between ferromagnetic
and paramagnetic states for finite systems, much alike to the be-
havior found for the 2D random-field Ising model (RFIM) [27].
For d > 2, on the other hand, one would at least expect for
qc to increase on coupling to the disorder. The only numerical
studies of the problem are due to Eichhorn and Binder [19–21],
who considered the case q = 3 and d = 3 using Monte Carlo
simulations. They proposed a qualitative scenario in the (q,d)
plane which exhibited a shift of the tricritical curves qc(d)
to higher values, consistent with the mean-field predictions
of Blankschtein et al. [16]. The simulation results for q = 3
indicated a continuous transition for the considered disorder
strength. It is clear, however, that these simulations, which
date back to before the advent of modern simulation techniques
for disordered systems such as parallel tempering [28], might
be affected by equilibration problems and strong corrections
to finite-size scaling. Additionally, the question of whether a
softening of discontinuous transitions occurs for all strengths
� of the random fields or only above a certain threshold has
not been addressed to date.

A related system is the RFIM [29] which, up to a rescaling,
can be mapped onto the RFPM for q = 2, see the discussion
in Sec. II. Although this system was studied extensively over
the past decades, it is only recently that large-scale numerical
studies were able to settle a number of important questions

2470-0045/2018/97(5)/053307(10) 053307-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.053307&domain=pdf&date_stamp=2018-05-14
https://doi.org/10.1103/PhysRevE.97.053307


KUMAR, KUMAR, WEIGEL, BANERJEE, JANKE, AND PURI PHYSICAL REVIEW E 97, 053307 (2018)

for this problem [30,31], such as the number (and values)
of independent exponents, the universality of transitions with
respect to the coupling distribution and the issue of dimensional
reduction [32]. An important feature of the renormalization-
group (RG) treatment of this system is that the RG fixed point
that controls the disordered transition is located at T = 0 [33].
As a consequence, a systematic study of ground states in
this case allows us to extract the critical exponents of the
transition at finite temperature so it exists. It is a fortunate
coincidence that the problem of finding the ground state for an
RFIM sample can be mapped to a maximum-flow problem
that is in P [34], i.e., there exist algorithms that solve it
in a time that grows as a polynomial in the size of the
system, including the Ford-Fulkerson algorithm of augmenting
paths [35], the Goldberg-Tarjan push-relabel method [36], and
variants thereof [37]. In the last few years, we have acquired
significant knowledge about the ground-state properties of the
RFIM [38–43]. The situation is different, however, for the case
of the RFPM with q > 2 which corresponds to a multiterminal
flow or, equivalently, graph-cut (GC) problem that is known to
be NP-hard [34,44]. Still, as was shown by Boykov et al. [44],
approximate solutions to such multiterminal flow problems can
be efficiently computed using an embedding of binary degrees
of freedom into the states with more than two labels.

In the present paper, we undertake a first exploratory study
into determining ground states of the q-state RFPM using
graph-cut methods. By comparing the results of the heuristic
GC algorithm to those of parallel tempering (PT) simulations
systematically tuned to yield ground states for small systems
in 2D with very high success probabilities, we establish that
the GC approach yields reasonable estimates of ground states
for the q-state RFPM. The run times of the GC approach are
significantly smaller than those of the PT simulations, and they
scale linearly with the system size as well as the number of
states, allowing us to study large system sizes.

The rest of the paper is organized as follows. In Sec. II,
we describe the q-state random field Potts model, the graph-
cut method, and the parallel tempering approach. Section III
provides detailed comparisons between (quasi-) exact ground
states obtained using PT and approximate ground states found
using the GC method. We also demonstrate here that GC
provides a good approximation to the ground states, especially
for small q. In Sec. IV we apply the GC method to study
the breakup length for the q = 3 and q = 4 RFPM in two
dimensions. Finally, in Sec. V, we conclude this paper with a
summary and discussion.

II. MODEL AND METHODOLOGY

In the following, we describe the variant of the RFPM
studied here and introduce two numerical approaches for
determining ground states of samples, the graph-cut method
and parallel tempering.

A. Random field Potts model

The ferromagnetic q-states Potts model is described by the
Hamiltonian [1]

H = −J
∑

〈ij〉
δsi ,sj

, (1)

where the si ∈ {0,1, . . . ,q − 1} are the Potts spins, 〈ij 〉 denotes
summation over nearest neighbors only, and J > 0 is a (ferro-
magnetic) coupling constant. For the purposes of the present
study, we consider systems on square and simple-cubic lattices
with periodic boundary conditions. The coupling of the spins to
random fields can take a variety of different forms [16,18,21].
A symmetric coupling of continuous fields can be expressed
as [16]:

H = −J
∑

〈ij〉
δsi ,sj

−
∑

i

q−1∑

α=0

hα
i δsi ,α, (2)

where {hα
i } denotes the quenched random field at site i, acting

on state α. Hence, in this model, the random field at each site
has q components, and we take each of these to follow a normal
distribution. To separate the disorder strength from the random
instance we define hα

i = �εα
i , and εα

i are then drawn from a
standard normal distribution, i.e.,

P
(
εα
i

) = 1√
2π

exp
(−εα

i
2
/2

)
. (3)

For the case q = 2, the Hamiltonian (2) has two different ran-
dom fields h0

i ≡ h+
i and h1

i ≡ h−
i for the two spin orientations,

in contrast to the usual definition of the RFIM [29]. As is easily
seen, however, in this case Eq. (2) can be written as

H = −J

2

∑

〈ij〉
[σiσj + 1]

− 1

2

∑

i

[(h+
i − h−

i )σi + (h+
i + h−

i )], (4)

where σi = ±1 are Ising spins. It is hence clear that, up to
a constant shift, the q = 2 RFPM of Eq. (2) and with the
distribution (3) at coupling constant J and random field �

is equivalent to the RFIM at coupling J/2 and field strength
�/

√
2.

An alternative model with discrete distribution of the
disorder is given by [18,21]

H = −J
∑

〈ij〉
δsi ,sj

− �
∑

i

δsi ,hi
. (5)

Here, the quenched random variables hi are chosen uniformly
from the set {0,1, . . . ,q − 1}, i.e.,

P (hi) = 1

q

q−1∑

α=0

δhi ,α. (6)

Thus the distribution of random fields is discrete and couples to
any one of the q spin states with equal probability. We note that
for the continuous form (2) we expect a unique ground state,
while the alternative (5) might admit (extensive) degeneracies,
in particular for rational choice of �. While the discreteness
of the form (5) might have certain advantages for the efficient
implementation of simulation codes, we would like to avoid
the possible subtleties associated with degeneracies, and we
will hence use the form (2) here.
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B. Graph-cut method

As was mentioned above, the problem of finding ground
states for the RFIM on a graph is equivalent to that of finding
the maximum flow [34,45]. This is seen by adding two external
nodes, a source s and a sink t to the original network, where s

is connected by a bond of weight |hi | to each site with random
field hi < 0 and t is connected by a bond of weight |hi | to
the sites with hi > 0. The weights of the original bonds of
the graph are taken to be the couplings Jij . It is then not
very difficult to see [34] that a spin configuration of minimal
energy corresponds to a minimum (s,t) cut of the graph, i.e.,
a minimal subset of the bonds that if removed splits the set
of nodes into two connected components: those that have spin
down (including s) and those that have spin up (including t).
The max-flow–min-cut theorem of optimization theory [46]
establishes that the value of this minimum cut is identical to that
of the maximum flow through the network if the bond weights
are used as edge capacities. Maximum flow, however, is well
known to be a polynomial (P) problem, and it is solved by a
range of methods, including the Ford-Fulkerson algorithm [35]
and the Goldberg-Tarjan push-relabel method [36].

Generalizing these considerations to models with more
than two states leads to multiterminal flow problems that are
NP-hard. Nevertheless, good approximation methods can be
constructed based on the existing algorithms for maximum-
flow–minimum-cut. The method proposed in Ref. [44] for
applications in computer vision considers a general energy
function of the form

E({si}) =
∑

i,j

Vij (si,sj ) +
∑

i

Di(si), (7)

where in the original application si ∈ {0,1, . . . ,q − 1} would
have referred to the color label of the pixels of a (planar) image,
but the function Vij (si,sj ) allows for interactions between any
pair of pixels such that also more general graphs including
three-dimensional systems can be modeled. The function Vij

is assumed to be a metric or a semimetric [44]. The RFPM
Hamiltonian (2) is clearly a special case of this general form.
The function Vij (si,sj ) gives the cost of assigning labels si

and sj to the sites i and j , while the function Di measures
the penalty (or cost) of assigning the label si to site i. The
basic approach taken in Ref. [44] is to consider constraint
optimization problems derived from Eq. (7) in such a way that
the q labels are reduced to an effective two-label problem. As
this is then equivalent to (a slight generalization of) the RFIM,
a ground state for this constraint problem can be determined
exactly and in polynomial time using the established max-
flow–min-cut algorithms. This idea is in the same spirit as
the embedding of Ising variables used in combination with
minimum-weight perfect matching in dealing with continuous-
spin glasses on planar lattices [47,48].

The two approaches of this type proposed in Ref. [44] are
the α-β swap and the α-expansion moves. For the α-β swap
one picks two labels α 
= β ∈ {0,1, . . . ,q − 1} and freezes
all labels apart from α and β. Under this constraint, the
problem (7) is equivalent to a two-label problem on the sites
with labels α or β that can be solved by min-cut–max-flow.
This step is repeated for each pair of labels, resulting in a cycle

of q(q − 1) ≈ q2 steps. For the α-expansion move one picks a
label α which is then frozen. The remaining pixels are given the
alternative of either keeping their current label or being flipped
into the α state, which is again a binary choice, and the resulting
constraint problem can be solved by max-flow–min-cut. A
cycle of the α-expansion takes q steps. Independent of which
of the two algorithms is used, cycles are repeated until the
configurations do not change any further, and the methods
have converged to a local minimum. In total, this leads to the
following algorithm for the case of α-expansion:

1: procedure GRAPHCUTMETHODEXPANSION ({si})
2: initialize {si} at random
3: set success = True
4: while success == True do
5: success = False
6: for each α ∈ {0,1, . . . ,q − 1} do
7: find {ŝi} = arg min E({s ′

i}) among {s ′
i}

within one α-expansion of {si}
8: if E({ŝi}) < E({si}), set {si} = {s ′

i}
and success = True

9: end for
10: end while
11: return {si}
12: end procedure

For the α-β swap, on the other hand, one has:

1: procedure GRAPHCUTMETHODSWAP ({si})
2: initialize {si} at random
3: set success = True
4: while success == True do
5: success = False
6: for each pair (α,β) ⊂ {0,1, . . . ,q − 1} do
7: find {ŝi} = arg min E({s ′

i}) among {s ′
i}

within one α-β swap of {si}
8: if E({ŝi}) < E({si}), set {si} = {s ′

i}
and success = True

9: end for
10: end while
11: return {si}
12: end procedure

While these algorithms are not exact and are hence not
guaranteed to find ground states, they have been reported to
yield excellent approximations to the ground states and are
widely used in computer vision. For the α-expansion move, it
is possible to derive an upper bound on the energy of the local
minima found, which is given by [44]

E(f̂ ) � 2cE(f ∗), where c = maxsi 
=sj
V (si,sj )

minsi 
=sj
V (si,sj )

, (8)

f̂ is the state returned by the α-expansion move and f ∗ is the
global optimum. For the Potts model, Vij (si,sj ) ≡ −Jδsi ,sj

,
yielding c = 1. So the expansion move provides a local
minimum within a factor of two of the global minimum. In
practice, the approximation is much better than this bound,
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which is hence only of theoretical interest. Since we found
better performance, we exclusively used α-expansion moves
in the Potts model simulations reported here. To check the
effectiveness of their algorithms, the authors of Ref. [44]
experimented on a variety of computer vision problems such
as image restoration with multiple labels, stereo, and motion.
These problems are solved by computing a minimum-cost
multiway cut on the graph. A comparison of their results with
known ground states revealed 98% accuracy [44]. The method
has not previously been applied to the RFPM, and to bench-
mark it there, we need a collection of samples with known
ground states. For this purpose, we use the replica exchange
or parallel tempering (PT) method, which can be used to find
exact ground states with high probability for small systems.

C. Parallel tempering

Ground states of RFPM samples could be generated via
exact enumeration of states. Due to their exponential number
∼ qN this only works for the tiniest of systems, however.
While this situation could possibly be improved with the use of
branch-and-cut techniques [49], we do not follow this approach
here and instead revert to stochastic approximation schemes
based on Markov chain Monte Carlo simulations. Simple
Monte Carlo at a fixed low or even zero temperature will not
lead to ground states. The RFPM has a complicated free-energy
landscape with many minima and maxima. These metastable
states trap the evolving system and impede the relaxation
to the ground state. Any reasonable Monte Carlo sampling
therefore has to overcome energy barriers and cross from one
basin to another to reach the global minimum. Established
approaches to achieve this are simulated annealing [50] and
parallel tempering [28,51]. It has been shown that among
the Monte Carlo methods parallel tempering consistently
outperforms simulated annealing as a tool for ground-state
searches in disordered systems [52]. Note that population
annealing [53,54] might be another interesting contender in
this respect [52,55]. Here, however, we will focus on PT.

Consider NT initially noninteracting replicas of the system
at distinct temperatures. In PT each replica is evolved at its
temperature Tm using canonical Monte Carlo, for example
by employing the single spin-flip Metropolis method [56]. In
an additional step, replicas with neighboring temperatures are
exchanged with the probability

Pex = min[1,e(βm−βm+1)(Em−Em+1)], (9)

where βm = 1/kBTm and Em denotes the configurational
energy of the mth replica. This scheme couples the replicas
and allows copies that are trapped in metastable states at low
temperatures to escape to high temperatures via successive
exchanges with neighboring copies, where they can more
easily relax to then return via the same random walk in
temperature space to low temperatures, typically exploring a
different basin.

The most delicate aspect of PT relates to the choice of
the number and spacing of the replicas in temperature space.
Clearly, neighboring temperatures must be close enough such
that the acceptance probabilities (9) are appreciable, which
essentially means that the energy histograms at neighboring
temperatures must have sufficient overlap [57]. On the other

TABLE I. Optimized values of η according to Eq. (10) and the
number of temperature replicas NT for different lattices with L2 spins
used in the parallel tempering.

L 8 12 16 20 24 32 40

NT 16 16 16 16 16 32 32
η 1.13 1.13 1.13 1.13 1.13 1.14 1.14

hand, too many replicas with consequently high acceptance
rates of swaps are also not ideal as this slows down the
random walk in temperature space through smaller and smaller
temperature steps. A number of different protocols have been
suggested for choosing the optimal set {Tm} [57–66]. Here we
use a simple heuristic scheme based on a generalization of the
widely used geometric progression of temperatures [67] and
choose the temperatures according to

Tm = mηTnorm + Tmin, where Tnorm = Tmax − Tmin

(NT − 1)η
. (10)

The choice of the maximum and minimum temperatures Tmax

and Tmin is guided by the need to select a sufficiently high
Tmax to ensure good relaxation of replicas that arrive there, and
(in our case of using PT as a global optimization algorithm)
a sufficiently low Tmin to allow us to find ground states. From
preliminary tests, we found that Tmax = 1.5 and Tmin = 0.2
are sufficient for our purposes. We first determine the number
of replicas NT by generating the corresponding sequence of
temperatures for η = 1. If a test run shows overall low swap
acceptance rates, then we increase NT . The adjustable param-
eter η is found recursively as follows: (1) The simulations are
performed for a chosen value of η and the set of temperatures
{Tm} is determined using Eq. (10); (2) the tunneling time,
i.e., the average time for a replica to travel from the lowest
to the highest temperature and back, is measured in a test
simulation [68]; (3) steps 1 and 2 are repeated for a modified
value of η. The value of η which minimizes the tunneling time
is selected to yield the optimal set {Tm}. The values of η and NT

for a lattice of lateral size L, after this optimization protocol,
are listed in Table I [69]. For simplicity we used the same
parameters for different numbers of states q, although for best
performance these cases should be separately optimized.

As a realization of Markov chain Monte Carlo that satisfies
ergodicity and detailed balance, PT is guaranteed to converge
to the equilibrium distribution [56]. Nevertheless, while it
performs much better than local updates alone, for systems
with complex free-energy landscapes such as the RFPM the
equilibration times can still be very long, and they increase
steeply with system size and with lowering Tmin. For not-too-
large systems, however, we are able to find ground states for
the overwhelming majority of samples. To ensure this, we rely
on the following bootstrapping procedure:

(1) We run all samples for given L and q for some initial
time chosen to ensure equilibration of an average sample
(determined, for example, by measuring the average tunneling
time).

(2) For each sample, we determine the onset time t0 =
t0({hα

i }), i.e., the time when the lowest energy seen in the whole
run is observed first.
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t

E

E
0 t

0 ≥10t
0

FIG. 1. Schematic diagram showing the variation of E with time
t in the PT runs (in MC steps). The first occurrence of the minimum
energy E0 is at onset time t = t0. The corresponding state is accepted
as a ground state if no lower energy is found up to t � 10t0.

(3) We rerun each sample with a run time of t({hα
i }) =

10 × t0({hα
i }).

(4) For samples where a new, lower state is found in the
extended runs, we repeat this procedure until the condition
t = 10 × t0 is met.

This procedure is illustrated in Fig. 1. It is highly reliable in
finding ground states, and we estimate the failure probability
for the system sizes considered to be of the order of 1 in 1000.
For none or the samples considered here was a state lower than
the reference state determined from the procedure above found
in any of the other runs (PT or GC).

We performed such simulations for system sizes 8 � L �
40 and number of states 2 � q � 10 for 1536 configurations
of the random fields each. The resulting average and median
onset times of the ground states are shown in Fig. 2. The shaded
area indicates the level of disorder fluctuations. These plots
are shown on a linear-log scale. In Fig. 2(a), we observe that t0
increases slightly slower than exponentially with the number of

FIG. 2. Disorder-averaged onset times t0 for finding the ground
states of the d = 2 RFPM using parallel tempering. The data is plotted
on a linear-log scale as a function of (a) the number of Potts states q

for L = 16, and (b) the system size L for q = 3. The data are averaged
over 1536 realizations of quenched random fields according to Eq. (3)
with � = 1. The shaded area shows the range that contains the onset
times for 66% of the samples.

Potts states q. In Fig. 2(b), we observe an exponential increase
of t0 for system sizes L � 16. This is what we expect for any
process geared towards ensuring exact ground states as the
problem is NP hard. As the mean values are larger than the
medians, the distribution is asymmetrical and tail heavy for all
values of q and L.

III. BENCHMARKS

We first consider the behavior of the GC method in its own
right before turning to a detailed comparison of this technique
to the PT method. The bulk of our runs were performed in two
dimensions, but some of the timing runs discussed in Sec. III C
were repeated for cubic lattices.

A. Approximate ground states from GC

Let us begin by testing the final states obtained via graph
cuts in the RFPM. We fix the disorder configuration {εα

i } and
obtain the final states from several runs of GC for different
initial spin configurations {si}. The top row of Fig. 3 shows
energy histograms of these states for the q = 3 RFPM. The
simulations are performed on a 642 lattice with 10 000 initial
conditions. For � = 0.5, the system always converges to the
same energy state. Hence the histogram shows a sharp peak
corresponding to that energy. As we increase the disorder
strength �, the distribution spreads over multiple energies. The
bottom row of Fig. 3 shows similar histograms for the q = 4
RFPM, which are even wider. Therefore, the GC method is
not guaranteed to yield a ground state of the RFPM. This is
corroborated by a comparison of the actual states found to the
true ground states as discussed in Sec. III B below.

To quantify the energy spread in the histogram, we deter-
mine the standard deviation in energy,

σE = (〈E2〉 − 〈E〉2)1/2, (11)

where the angular brackets 〈·〉 denote an average over different
initial conditions for a fixed disorder realization. A further
average over independent disorder configurations yields the
disorder-averaged quantity [σE]. In Fig. 4, we plot [σE] vs.
� on a d = 2 lattice (L × L ≡ N ) for L = 32, 64, 128. The
data has been averaged over 100 disorder realizations, and
1000 initial states for each disorder configuration. The energy
spread grows with L. To understand this dependence, we plot
[σE]/

√
N vs. � in the insets. The data collapse shows that

[σE] ∼ √
N , demonstrating the absence of critical fluctuations.

The relative fluctuations in the energy, [σE]/〈E〉 ∼ N−1/2,
vanish in the thermodynamic limit. In the limit � → ∞,
we can neglect the exchange term in Eq. (2), which yields
〈E〉 = −N� and 〈E2〉 = N2�2, i.e., σE → 0 as � → ∞.

The q dependence of the energy spread can be understood
from Fig. 5, where we plot [σE] vs. q. The data sets correspond
to � = 1.0. The increase in number of metastable states with
q implies that the GC approach becomes worse in terms of the
quality of the energy minima. The inset of this figure again
confirms σE ∼ √

N .

B. Comparisons with PT

Having established a database of samples for which the
ground states are known with very high probability through the
PT procedure described in Sec. II C, it is possible to benchmark
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FIG. 3. Energy histograms of final states obtained from GC for the q = 3 RFPM (top row) and the q = 4 RFPM (bottom row) on a 642

lattice. The histograms are obtained from 10 000 initial configurations {si} for a fixed disorder configuration {εα
i }.

the GC method against quasiexact results as well as against PT
runs. In Fig. 6 we show the average success probability P0, i.e.,
the disorder-averaged probability of finding the actual ground
state from the GC technique as a function of q (left panel) and L

(right panel), respectively. These probabilities decay strongly
with increasing q and L, and both plots are consistent with an
exponential behavior that should be expected when applying
a polynomial-time algorithm to an NP-hard problem. Note,
however, that the values of P0 are for GC runs with a single
initial configuration that take only fractions of a second (see the
discussion of run times below in Sec. III C). In real applications
one would normally perform runs for many initial conditions
and pick the state of lowest energy. This approach is a generic
method of improving global optimization algorithms [48,70].
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FIG. 4. Variation of the standard deviation of energy [σE] from
runs of the GC method as a function of disorder amplitude � for
the d = 2 RFPM with (a) q = 3 and (b) q = 4. All data are averaged
over 100 disorder realizations {εα

i } and 1000 initial states {si} for each
disorder realization. Clearly, [σE] grows with lattice size L, and also
with number of states q. The scaled data in the insets demonstrate that
[σE] ∼ √

N = L, i.e., there are no critical fluctuations in this range
of � values.

The success probability of a sequence of m runs with different
initial conditions follows an exponential,

Ps

({
hα

i

}) = 1 − [
1 − P0

({
hα

i

})]m
. (12)

Hence for a certain target success probability Ps , the required
number of runs follows from

m
({

hα
i

}) = ln[1 − Ps]/ln
[
1 − P0

({
hα

i

})]
, (13)

where we write m({hα
i }) and Pn({hα

i }) to indicate that this is
for a single disorder realization. With P0 = 0.00187 for q = 3
and L = 40 shown in the right panel of Fig. 6, for example,
using m = 2460 runs ensures Ps = 0.99 [71].
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FIG. 5. Plot of [σE] vs. q for the d = 2 RFPM with � = 1.0 and
indicated lattice sizes. The statistics is the same as in Fig. 4. The
spread in energy of the GC states increases with q. The inset shows
that [σE] ∼ √

N = L.

053307-6



APPROXIMATE GROUND STATES OF THE RANDOM-FIELD … PHYSICAL REVIEW E 97, 053307 (2018)

10−4

10−3

10−2

10−1

100

2 3 4 5 6 7 8 9 10

GC
PT

P
0

q
10−3

10−2

10−1

100

8 16 24 32 40

GC
PT

P
0

L

FIG. 6. Disorder-averaged success probability of finding the
ground state from GC and PT runs for 2D RFPM as a function of q (left
panel, L = 16) and L (right panel, q = 3). The GC data correspond
to one initial state per disorder sample, while the run time in PT was
adapted to yield exactly the same average success probability as the
corresponding GC run (see main text). All data are averaged over
1536 configurations of the random fields.

In order to compare the performance of GC and PT, we tune
the latter via the number of Monte Carlo steps used to yield the
same average success probability (on the same set of samples)
as GC. Note that on purpose this is a different protocol than
that employed in Sec. II C which was designed to find in much
longer PT runs the true ground states with high probability.
This tuning can be easily achieved without additional calcula-
tions from the onset times determined in Sec. II C: The number
of steps t∗ for all runs is chosen such that the fraction n(t∗)/Ns

of samples with t0 < t∗ exactly equals the success probability
P0 observed for GC, where Ns = 1536 is the total number of
samples studied. This is illustrated by the data points for PT
also shown in Fig. 6 that fall on top of the results for GC.

While the success probabilities of one GC run and the PT
simulation with t∗ steps are identical, this does not imply that
both methods find the same states in case they do not arrive at
ground states. To quantify the quality of approximation in these
cases, we consider the relative excess energy of the minimum
energies returned by both algorithms above the ground state,

ε = Emin − E0

E0
. (14)

This quantity, which we call accuracy, is shown in Fig. 7 which
reveals that the accuracy at the same success probability is
approximately comparable as a function of L and for q = 3
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L

FIG. 7. Accuracy [ε] defined in Eq. (14) of GC and PT runs for
the d = 2 RFPM as a function of q (left panel, L = 16) and L (right
panel, q = 3), respectively. Both methods are tuned to have the same
success probabilities, as shown in Fig. 6. The data are averaged over
1536 disorder realizations with � = 1.0.
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FIG. 8. Average overlap [O] [see Eq. (15)] of the states returned
by GC and PT, respectively, with the true ground states for the d = 2
RFPM as a function of q for L = 16 (left) and L for q = 3 (right),
respectively. The averaging is done over 1536 disorder realizations
with � = 1.0.

in the regime considered, but the approximation provided by
the GC approach appears to more rapidly deteriorate as q is
increased than that of PT. Note that [ε] = 0 for GC at q = 2 as
this method finds exact ground states for the RFIM. We also
considered the overlap,

O = 1

N

N∑

i=1

δsi ,s
0
i

(15)

of the minimum-energy configurations {si} found with the true
ground states {s0

i }. This is shown in Fig. 8. As for the accuracy,
the overlap decreases quickly with increasing q. For q = 3, on
the other hand, overlaps are generally high and decrease only
moderately with L. For the GC approach, there is a tendency
of the decay to settle for L � 32, promising to provide states of
high similarity to the true ground states even for larger system
sizes.

C. Run times and computational complexity

Let us now discuss the time taken by the GC method to
find an approximate ground state of the RFPM. We measure
the CPU time r (in seconds) that the α-expansion variant of
GC used here takes to reach its final state. We ran our codes
on an IBM cluster with 2.67-GHz Intel Xeon processors. The
simulations are performed for � = 1.0, and r is averaged over
1000 disorder samples. Figure 9 (top row) shows the run time
[r] for the q-state RFPM in d = 2. We plot [r] as a function of
(a) the total number of spins N = L2 for q = 10, 50, 100 and
(b) q for L = 128, 256. The solid lines are power-law fits with
the specified exponent. Clearly, [r] is linear in N and q for the
q-state RFPM. This is in line with the general discussion of
the time complexity of the method given in Sec. II B. A similar
analysis for the RFPM in three dimensions is summarized in
the bottom row of Fig. 9 which shows that also in this case the
run time is approximately linear with respect to N and q.

We finally consider the scaling of run times of the GC and
PT techniques with the latter scaled to achieve the same success
probability in finding ground states as the former. We compare
the timings of the GC method to two different implementations
of PT, one regular CPU code and a highly optimized implemen-
tation on graphics processing units (GPUs) [72,73]. The GPU
code is about 128 times faster than the CPU implementation.
The corresponding run times for the two-dimensional RFPM
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FIG. 9. Disorder-averaged run time [r] (in CPU seconds) for
determining the final state by the application of the α-expansion
GC method to the RFPM in two dimensions (top row) and three
dimensions (bottom row) as a function of the number of spins N = Ld

and the number of states q, respectively. The data are averaged
over 1000 disorder realizations with � = 1.0. The solid lines are
power-law fits with the specified exponents and demonstrate that the
run time is linear in N and approximately linear in q.

are shown in Fig. 10, using an Nvidia GTX1060 GPU. The
times for the GC approach depend linearly on q and N = L2

to a very good approximation as already seen above. The CPU
variant of PT is always significantly slower that GC at the same
success probability. The GPU code is slightly faster than GC
for small systems, but for larger system sizes the GC approach
becomes more favorable as PT shows a clearly superlinear
increase of run times there. For the system sizes probably
used in practical studies that are significantly larger than the
sizes L � 40 considered with quasiexact ground states here,
we expect a substantial advantage for GC over PT.
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method tuned to achieve the same success probability as a function
of q (left panel, N = 162) and as a function of N = L2 (right panel,
q = 3).
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FIG. 11. Left panel: Disorder-averaged probability PFM(L,�) of
samples of the 2D q = 3 RFPM to have purely ferromagnetic ground
states. The data are averaged over 10 000 disorder realizations for
L � 128 and 5000 realizations for L = 256 and 512. Right panel:
The breakup length scale Lb, defined as the system size L where
PFM(L,�) = 0.5, versus the inverse random-field strength 1/� for
q = 2, 3, and 4. The solid lines show fits of the functional form Lb ∼
eA/� to the data, where A = 3.6 ± 0.03.

IV. SCALING OF THE BREAKUP LENGTH

We finally consider an application of the methods outlined
above to exploring the physical properties of the RFPM in two
dimensions. Given the absence of finite-temperature ordering
in the 2D RFIM [74], it seems fairly clear that the RFPM also
does not admit order at T > 0 [16,26]. Instead, one expects the
presence of ferromagnetic domains that break up at a length
scale Lb(�) similar to what is observed for the RFIM [74,75].
At very small disorder, the ground state approaches a purely
ferromagnetic state for all but the largest system sizes, while at
large disorder the ground state breaks into domains of q labels.
To determine Lb, we follow Ref. [75] and count the fraction of
samples with a purely ferromagnetic ground state, defining the
probability PFM(L,�). This quantity is shown in Fig. 11(a) as
determined from GC for q = 3 and a number of different lattice
sizes L. The breakup length Lb can then be defined from the
condition PFM(L,�) = 0.5 [75]. A plot of Lb vs. 1/� is shown
for the cases q = 2, 3, and 4 in Fig. 11(b) using a semiloga-
rithmic scale. We find that fits of the simple exponential form

Lb ∼ exp(A/�) (16)

to the data work well, and we arrive at A = 3.6 ± 0.03 as
a q-independent constant that depends only on the disorder
distribution. We note that this scaling is not consistent with
that proposed in Refs. [74,75] for the RFIM, but it is in line
with what was found in numerical simulations of the RFIM
in Ref. [41]. The reason for this discrepancy might be the
presence of only a rather weak curvature in a plot of the type
of Fig. 11(b), and one might need to go to rather small � to
see the asymptotic behavior.

V. SUMMARY AND DISCUSSION

The problem of finding the ground state of the q-state
RFPM corresponds to a multiterminal flow problem that is
known to be NP-hard. Although this model has many physical
realizations, the unavailability of suitable methods has been an
impediment in the study of the RFPM. The energy functions of
such complex spin systems have several deep minima separated
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by high-energy barriers which grow exponentially with the
system size N . In this paper, we have explored the utility of a
graph-cut method proposed by Boykov et al. [44] for finding
approximate ground states of the RFPM. The approach has
the advantage of converging to the final state in polynomial
time. However, there is no guarantee that the states found are
ground states for the q-state RFPM when q � 3. Therefore, it
is crucial to benchmark the quality of this approximation.

We have used a carefully tuned set of very long parallel tem-
pering simulations for creating a benchmark set of instances for
which the ground states are known with an exceedingly high
probability. These allowed to gauge the success probabilities
of finding ground states for the graph-cut method and for short
parallel tempering simulations. It is found that as a function of
system size L the quality of the states returned by graph-cut
and parallel tempering techniques is quite similar for small q

and system sizes up to 40 × 40 spins. For larger systems and
q = 3, there is a tendency of the graph-cut approach to yield a
better approximation. For benchmarking the present algorithm
for larger system sizes, it could be useful to consider samples
with planted solutions [76,77]. For increasing values of q, on
the other hand, the quality of graph-cut results deteriorates
rather quickly. The actual time required for a run of the
graph-cut method for small L and different values of q is
much smaller than that of a corresponding parallel tempering
run performed on CPU and comparable to that of a highly
efficient GPU implementation of parallel tempering. For larger
system sizes there is a crossover and the graph-cut approach
starts to outperform even the GPU implementation of PT
and is likely asymptotically the most efficient approach. The
success probability for the very fast graph-cut method can be
additionally increased by using repeated runs and selecting
the minimum-energy state found among them. Concerning the
comparison of algorithms for the 2D RFPM, we can summarize
our observations as follows:

(1) The PT method guarantees GS in the infinite run-time
limit, but the GC method gives approximate GS in a very short
time ∼O(N ), irrespective of the number of states q.

(2) We find that graph cuts provide an excellent approxi-
mation to the ground states for q = 3, 4. The overlap between
the ground state and the final states obtained from the graph cut
is very high for smaller q (e.g.,�96% for q = 3) and decreases
as q is increased.

(3) For a fixed value of q = 3, the overlap between ground
states and graph-cut configuration saturates to a very high value
of about 91% for L � 40.

The above observations clearly demonstrate that the GC
technique is suitable for the study of the d = 2 RFPM for
lower q values with large system sizes. In particular, for
q = 3 and 4, the returned configurations are very close to
the exact ground states. The q-state RFPM, though of great
physical significance, has received very little attention due to
the unavailability of efficient computational techniques. Our
study sets the stage for investigating this model in particular,
and disordered spin models in general, using methods based
on graph cuts. It will be intriguing to make advances regarding
our understanding of the general phase diagram of the RFPM
as a function of q and field strength �, in particular for the
physically most relevant three-dimensional case.
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