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Universality from disorder in the random-bond Blume-Capel model
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Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder
in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large
crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the
scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the
universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising
model itself if coupled to weak disorder. While the leading scaling behavior of the disordered system is therefore
identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size
scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L∗ ≈ 32
for the chosen parameters.

DOI: 10.1103/PhysRevE.97.040102

The effect of random disorder on phase transitions is one of
the basic problems in condensed-matter physics [1]. Examples
include quantum Ising magnets such as LiHoxY1−xFx [2,3],
nematic liquid crystals in porous media [4], noise in high-
temperature superconductors [5], and the anomalous Hall
effect [6]. Understanding random disorder in classical, equilib-
rium systems is a crucial step toward solving the more involved
problems in quantum systems [7], for example many-body
localization with programmable random disorder [8], and in
nonequilibrium phase transitions [9].

The case of weak disorder coupled to the energy density of
systems with continuous transitions is rather well understood:
Uncorrelated disorder is relevant and leads to new critical
exponents if the specific-heat exponent α of the pure system
is positive, a rule known as the Harris criterion [10]. If long-
range correlations in the disorder are present, this rule can
be generalized leading to interesting ramifications [11–16].
These effects, and in particular the marginal case of a vanishing
specific-heat exponent as present in the two-dimensional Ising
model, are intriguing and have attracted a large research effort
over the past decades [17–24].

The situation is less clear for systems undergoing first-order
phase transitions that are much more common in nature. The
observation that formally ν = 1/D and α = 1 for such systems
in D dimensions suggests that disorder is always relevant in
this case, and the general observation is that it indeed softens
transitions to become continuous [25]. Such a rounding of
discontinuities has been rigorously established for systems in
two dimensions [26], but is believed to be more general—a
view that is supported by a mapping of the problem onto
the random-field model [27–29]. This general picture is com-
monly accepted, and similar phenomena are recently studied
in quantum systems [30–32] and for nonequilibrium phase

transitions [33,34]. Still, a number of important questions have
not been answered in full generality: Is a finite strength of
disorder required to soften a first-order transition? Is there a
divergent correlation length? What is the universality class of
the resulting continuous transition [29,35,36]?

While a softening must occur for arbitrarily small disorder
strength in two dimensions [26–28], the situation is less clear in
three dimensions [37,38], but in both cases one finds divergent
correlation lengths. The question of the universality class of
softened transitions is perhaps the most intriguing one. This
has been studied in some detail for the random-bond q-state
Potts model [39–41]. It turns out to be difficult to determine
the exponents with sufficient precision to arrive at decisive
statements, but the most likely situation appears to be that
ν ≈ 1 independent of q, while the magnetic ratio β/ν changes
with q, a scenario that has recently also found additional
support in perturbation theory [42].

A fertile testing ground for predictions relating to the be-
havior of first-order transitions under the influence of quenched
disorder is the Blume-Capel model [43,44]. It has been used
to describe the prime nuclear fuel uranium dioxide [43],
Mott insulators [45,46], 3He-4He mixtures [47,48] and more
general multicomponent fluids [49], as well as potentially the
hardest piezomagnet known [50]. The pure system features a
tricritical point separating second-order and first-order lines of
transitions [51]. There are many open questions concerning the
behavior of this model in the presence of quenched disorder,
be it of random-bond type as considered here or in the form of
random (crystal) fields [52,53]. In particular, conflicting results
have been found for the universality class of the ex-first-order
segment of the transition line [54], and some authors have
favored a scenario that contradicts universality [55,56]. In
the following, we present the results of high-statistics Monte

2470-0045/2018/97(4)/040102(6) 040102-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.040102&domain=pdf&date_stamp=2018-04-13
https://doi.org/10.1103/PhysRevE.97.040102


N. G. FYTAS et al. PHYSICAL REVIEW E 97, 040102(R) (2018)

0.5

1

1.5

T0

1 Δ0 = 2

(Δt, Tt)

2nd

1st

T2 = 1.398

T1 = 0.574

T

Δ

FIG. 1. Phase diagram of the pure two-dimensional Blume-Capel
model [51], showing the ferromagnetic (F) and paramagnetic (P)
phases that are separated by a continuous transition for small �

(solid line) and a first-order transition for large � (dotted line). The
line segments meet at a tricritical point, as indicated by the black
diamond. The horizontal arrows indicate the paths of crossing the
phase boundary implemented in the simulations of the present work.

Carlo simulations that demonstrate that the transitions in the
second-order and the first-order segments of the transition
line of the pure system are in the same universality class
after coupling to the disorder, and this class is that of the
two-dimensional (random) Ising model. Hence any doubts
about the universality of critical behavior in this system are
dispelled.

We study the spin-1 or Blume-Capel model [43,44] with
Hamiltonian

H = −
∑
〈xy〉

Jxyσxσy + �
∑

x

σ 2
x = EJ + �E� = E, (1)

where the spin variables σx ∈ {−1,0,+1} live on a square
lattice with periodic boundaries and 〈xy〉 indicates summation
over nearest neighbors. The couplings Jxy are drawn from a
bimodal distribution

P(Jxy) = 1
2 [δ(Jxy − J1) + δ(Jxy − J2)], (2)

where following Refs. [55,56] we choose J1 + J2 = 2 and
J1 > J2 > 0, so that r = J2/J1 defines the disorder strength.
The crystal field � controls the density of vacancies, i.e., sites
with σx = 0. The pure model has been studied extensively (for
a review, see Ref. [51]). The phase diagram in the (�,T )
plane is shown in Fig. 1: For small � there is a line of
continuous transitions between the ferromagnetic and param-
agnetic phases that crosses the � = 0 axis at T0 ≈ 1.693 [56].
For large �, on the other hand, the transition becomes dis-
continuous and it meets the T = 0 line at �0 = zJ/2 [44],
where z = 4 is the coordination number (here we set J =
1, and also kB = 1, to fix the temperature scale). The two
line segments meet in a tricritical point estimated to be at
(�t ≈ 1.966,Tt ≈ 0.608) [57,58]. It is well established that the
second-order transitions belong to the universality class of the
two-dimensional Ising model [51]. As α = 0 there, the Harris
criterion is inconclusive, but explicit studies of the Ising model
indicate that the singularity is only logarithmically modified
[17,59,60]. The first-order transition gets stronger as �0 is
approached and, in fact, the interface tension increases linearly
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FIG. 2. Probability distribution of crystal fieldsE� of the random-
bond Blume-Capel model for T1 = 0.574 at the pseudocritical points.
The data are averaged over R = 256 samples for disorder strength
r = 0.6. With increasing system size, the double peak expected for
a first-order transition changes to a single broad peak typical of a
continuous transition. The inset shows the fraction of disorder samples
exhibiting a double peak.

with decreasing temperature [58]. According to the rigorous
result of Aizenman and Wehr [26], the transitions must soften
under the presence of even arbitrarily weak disorder, and we
expect a second-order transition to emerge in this regime too.

As the phase boundary in the first-order regime is almost
vertical, it is most convenient to cross it by varying the
crystal field � while keeping the temperature constant. To this
end we used a previously developed implementation of the
multicanonical method [61,62] applied only to the crystal-field
energy E� of Eq. (1) [63]. The method iteratively yields a
flat histogram along E� by replacing the canonical Monte
Carlo weights exp(−βE) by exp(−βEJ )W (E�) and adapting
W (E�). Our calculations are implemented in a parallel fashion
following the scheme discussed in Refs. [63–65]. This proce-
dure allows us to directly study the probability distribution
of E�. In Fig. 2 we show disorder-averaged probability
distributions for T1 = 0.574 at the pseudocritical points as
estimated from R = 256 realizations of the random couplings
for r = 0.6. For small system sizes there is a clear double-
peak structure, characteristic of a first-order phase transition.
However, with increasing system size the distribution changes,
exhibiting only a single, symmetric peak, clearly illustrating
the second-order nature of the transition in the limit L → ∞. In
fact, the inset shows that the fraction of disorder samples with
a double peak quickly decays to zero for increasing L, with
R2peaks/R ≈ 0 for L � L∗ ≈ 32. This is clear evidence that
bond disorder with r = 0.6 changes the pure first-order phase
transition for T = 0.574 into a disorder-induced continuous
one, yet, with a crossover behavior for small system sizes.

To reveal the universality class of the continuous transition
resulting from the softening by disorder, we used an additional
array of canonical Monte Carlo simulations, employing a
combination of a Wolff single-cluster update [66] of the ±1
spins and a single-spin-flip Metropolis update [51,67–69].
We restricted these simulations to the two temperature points
indicated by the arrows in Fig. 1: the case T1 = 0.574 crossing
the phase boundary in the first-order regime, and the choice
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FIG. 3. Finite-size scaling of the correlation-length ratios at
their crossing points, (ξ/L)∗, for the pure and random model
and the two temperatures considered in this work. Results
are shown for the following pairs (L, 2L) of system sizes: (8,16),
(12,24), (16,32), (24,48), (32,64), (48,96), (64,128), (96,192), and
(128,256). The horizontal line shows the asymptotic value for the
square-lattice Ising model with periodic boundaries according to
Eq. (3). The colored dashed lines show linear fits in 1/L.

T2 = 1.398 in the second-order part of the transition line
[51,56]. Using this approach, we simulated the system
sizes L ∈ {8,12,16,24,32,48,64,96,128,192,256} for disor-
der strength r = 0.6. The ensemble sizes, R, of disorder real-
izations used are as follows: R = 5 × 103 for L = 8−32, R =
3 × 103 for L = 48−96, and R = 1 × 103 for L > 96. Error
bars were computed from the sample-to-sample fluctuations.

We first discuss the ratio of correlation length and system
size, ξ/L. This is known to be universal for a given choice
of boundary conditions and aspect ratio. For Ising spins on a
square lattice with periodic boundary conditions as L → ∞ it
approaches the value [70](

ξ

L

)
∞

= 0.905 048 829 2(4). (3)

The behavior of the pure, square-lattice Blume-Capel model
in the second-order regime is found to be perfectly consistent
with Eq. (3) [51]. To determine ξ/L, we use the second-
moment definition of the correlation length ξ [71,72]. From the
Fourier transform of the spin field, σ̂ (k) = ∑

x σx exp(ikx), we
determine F = 〈|σ̂ (2π/L,0)|2 + |σ̂ (0,2π/L)|2〉/2 and obtain
the correlation length via [72]

ξ ≡ 1

2 sin(π/L)

√
〈M2〉

F
− 1, (4)

where M = ∑
x σx . To estimate the limiting value of ξ/L we

relied on the quotients method [73–75]: The crystal-field value
where ξ2L/ξL = 2, i.e., where the curves of ξ/L for the sizes
L and 2L cross, defines the finite-size pseudocritical points
�cross. Let us denote the value of ξ/L at these crossing points as
(ξ/L)∗. In Fig. 3 we show results of (ξ/L)∗ for three cases,
namely, the pure and random model at T = 1.398 and the
random model at T = 0.574. The data for the pure case have
been taken from Ref. [51], and the horizontal line shows the
asymptotic value for the Ising model with periodic boundaries
[cf. Eq. (3)].

In the second-order regime of the pure model, for T =
1.398, the effect of the random bonds is extremely weak
for r = 0.6, with the results for (ξ/L)∗ practically falling on
top of the data for the pure system. For stronger disorder
r → 0 we expect numerically more pronounced effects, but
no qualitatively different behavior. As is apparent from the
data in Fig. 3, the results for the disordered and pure systems
have consistent limiting values for L → ∞. For the pure
Blume-Capel model at the same temperature, it was previously
found that (ξ/L)∞ = 0.906(2) [51], perfectly compatible with
Eq. (3). For the disordered case a linear fit in 1/L for L � 12
(as shown by the red dashed line) yields

(
ξ

L

)T =1.398

∞,random

= 0.905(2), (5)

with goodness-of-fit parameter Q ≈ 0.3. This is clearly con-
sistent with the Ising value (3). An additional analysis of the
scaling behavior of the magnetic susceptibility and specific
heat (not shown) is also consistent with Ising universality, in
line with previous studies [55,56].

We now turn to the temperature point T1 = 0.574 in the first-
order regime of the pure model. As can be seen from the data of
Fig. 3 the effect of disorder is very strong there, leading to huge
and nonmonotonous scaling corrections. For smaller lattice
sizes, the ratios (ξ/L)∗ do not show any tendency of converging
to the universal Ising value until L ≈ 32, when (ξ/L)∗ attains a
minimum. Only for larger lattices the correlation length ratios
start to approach the Ising limit approximately linearly in 1/L.
Taking lattice sizes L � L∗ ≈ 32 into account, a linear fit in
1/L (as shown by the blue dashed line) yields

(
ξ

L

)T =0.574

∞,random

= 0.905(22), (6)

with Q ≈ 0.3. The limit is again fully consistent with the Ising
value. Note that the point L ≈ 32 of the minimum corresponds
to the crossover length scale L∗ determined already as the size
where the first-order nature of the transition disappears for the
chosen disorder strength r = 0.6 (see Fig. 2).

While the extrapolated value (6) of the correlation-length
ratio (ξ/L)∗ is strong evidence for Ising behavior, universal-
ity classes are characterized by the entirety of their critical
exponents and universal amplitude ratios. We therefore also
considered the scaling of the pseudocritical points �cross, as
well as the magnetic susceptibility χ and the specific heat C

[76], both evaluated at �cross. We first considered the scaling
for the temperature T1 = 0.574 in the first-order regime of the
pure system. For large system sizes, the crossing points are
expected to scale as

�cross(L) = �c + bL−1/ν, (7)

where ν = 1 for the two-dimensional Ising universality class.
Our data for the pseudocritical points are shown in Fig. 4(a),
and we again observe strong scaling corrections with a pro-
nounced turnaround in the behavior around the crossover
length scale L∗ ≈ 32. As the inset illustrates, however, the
behavior for L � 32 is in perfect agreement with the inversely
linear behavior expected from Eq. (7) with ν = 1. In fact,
a fit of the form (7) for L � 32 with Q ≈ 0.8 yields the critical
crystal-field value �c = 1.987(2) and the estimate ν = 1.0(3).
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FIG. 4. Finite-size scaling in the ex-first-order regime of the
Blume-Capel model. (a) Shift behavior of the pseudocritical points
�cross estimated at the (L, 2L) crossings of the ratio ξ/L shown in
Fig. 3. The inset shows the same data on a double logarithmic scale.
(b) Scaling of the magnetic susceptibility χ∗ = χ (�cross) (main panel)
and specific heatC∗ = C(�cross) (inset) evaluated at the pseudocritical
points for the smaller size of the pairs (L, 2L) considered.

Our results for the magnetic susceptibility χ and the specific
heat C evaluated at the pseudocritical points �cross at T1 =
0.574 are shown in Fig. 4(b). Following the above analysis,
we exclude small system sizes L � 24. For the magnetic
susceptibility, a fit of the form χ∗(L) = χ (�cross(L)) ∼ Lγ/ν

yields γ /ν = 1.76(9) with Q ≈ 0.9, fully compatible within
error bars to the Ising value 1.75. The specific heat, shown in
the inset of Fig. 4(b), is well described by a double logarithm
C∗(L) = C(�cross(L)) ∼ ln [ln (L)] as predicted by Ref. [59],
the corresponding fit quality being Q ≈ 0.9. Similarly strong
corrections to scaling in susceptibility data have also been
reported for the diluted Ising model [21]. An analogous
analysis of our data at the higher temperature T2 = 1.398 in the
second-order regime also yields values compatible to the Ising
behavior, but without the strong scaling corrections observed
for T1 = 0.574.

To summarize, we have used the two-dimensional Blume-
Capel model to investigate the effect of quenched bond disorder
on originally second- and first-order phase transitions. We
particularly focused on the effects in the originally first-order
regime, a topic that has been controversial in the literature
of disordered systems. We find that the disorder-induced
continuous transitions in both segments of the phase diagram
of the model belong to the universality class of the pure Ising
ferromagnet with logarithmic corrections. This appears to be
the physically most plausible scenario given that both transi-
tions are between the same ferromagnetic and paramagnetic
phases (Fig. 1), supporting the strong universality hypothesis
[77–79]. While the leading behavior of the disordered system
is hence consistent across the full transition line, there are
dramatic differences in the scaling corrections which appear
to be minimal for the originally second-order transition but
maximal and nonmonotonic for the case of the originally
first-order transition.

Although universality is a cornerstone in the theory of
critical phenomena, it stands on a less solid foundation for
the case of systems subject to quenched disorder. An explicit
confirmation of the behavior of disordered models in this
respect is therefore of fundamental importance for the theory
as a whole (see also Ref. [75]). In this sense the unambiguous
findings presented here set the stage for studies of similar
systems in three dimensions, where one expects disorder to be
relevant only beyond a finite threshold [27,28,37,38]. A better
understanding of the bond-disordered Blume-Capel model
in three dimensions should be of relevance for a range of
experimental systems including 3He-4He mixtures in porous
media as well as impurities in uranium dioxide. Finally, when
replacing the random bonds by random fields the Blume-Capel
model might hold an answer to the intriguing question of
whether first-order transitions can survive randomness if it
couples to the order parameter instead of to the energy density
[29,52].
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