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Polymer adsorption on curved surfaces
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The conformational behavior of a coarse-grained finite polymer chain near an attractive spherical surface was
investigated by means of multicanonical Monte Carlo computer simulations. In a detailed analysis of canonical
equilibrium data over a wide range of sphere radius and temperature, we have constructed entire phase diagrams
both for nongrafted and end-grafted polymers. For the identification of the conformational phases, we have
calculated several energetic and structural observables such as gyration tensor based shape parameters and their
fluctuations by canonical statistical analysis. Despite the simplicity of our model, it qualitatively represents in
the considered parameter range real systems that are studied in experiments. The work discussed here could have
experimental implications from protein-ligand interactions to designing nanosmart materials.
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I. INTRODUCTION

The interaction of macromolecules with differently shaped
substrates is particularly important for interdisciplinary re-
search and nanotechnological applications including, e.g., the
fabrication of biosensors [1] and peptide adhesion [2] to metals
[3,4] or semiconductors [5–7]. Gaining knowledge of structure
formation for a variety of interfaces has therefore been a
challenging subject of numerous experimental, theoretical, and
computational investigations. This includes thermodynamic
studies of polymers at planar surfaces [8–26], and also under
pulling force [27,28], and at curved surfaces such as nanotubes,
nanostrings, and nanoparticles [29–34]. Polymer adsorption on
substrates plays an important role within a wide perspective.
Due to the many possible applications, these “hard-soft”
hybrid systems have been extensively studied from all aspects.
For instance, employing a single-chain mean-field theory
for polymers grafted to a flat surface has featured different
morphologies for which, by controlling the self-assembly
conditions, nonaggregated chains can coexist with micelles
[35]. Also in the context of self-consistent mean-field theory,
finite chain-length (N ) effects on the elastic properties of the
substrate have been investigated by Skau and Blokhuis [36] to
leading order in 1/N for both flat and curved geometries. The
understanding of the conformational properties of a polymer
requires systematic studies because of the cooperative effect
of the monomers in response to different system conditions.
The structuring effect of an attractive substrate results in
a rich phase behavior caused by the competition between
monomer-monomer and monomer-surface interaction.

By performing Monte Carlo simulations for detailed atom-
istic and generic coarse-grained lattice and continuum models,
many studies have been done to investigate nanoparticle-
polymer interactions for different geometries, such as cylinder
and sphere [37]. Using computer simulations, Barr and
Panagiotopoulos [38] studied a system of polymers grafted
to a spherical nanoparticle in salt solution to gain insight into
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the conformational behavior of polymers on curved surfaces.
Silver and gold nanoparticles have also been considered
experimentally as a catalyst for enhanced amyloid peptide
fibrillation [39–41]. In a recent study, the adsorption of
a semiflexible polymer on flat and curved surfaces has
been considered by Kampmann et al. [42] in the wormlike
chain formulation, neglecting excluded-volume effects and
monomer-monomer interactions. This is a good approximation
in the limit of sufficiently stiff polymers with typically weakly
bent conformations, allowing one to control the interplay of
polymer stiffness, adsorption potential range, and curvature
radius analytically. Taking in addition excluded-volume effects
and monomer-monomer interactions into account, recent
computer simulations for a semiflexible polymer showed a
much richer phase structure already for a flat substrate, strongly
depending on the polymer stiffness [26].

Tanaka et al. [43,44] examined the freezing transition of
compact polyampholytes, for both single and multiple chains.
There have been a number of studies of these systems to
determine the effects of surface charge densities [45] and
solvent conditions on the morphologies of polymer chains.
Furthermore, adsorption of charged chains such as polyelec-
trolytes by oppositely charged surfaces is also an important
aspect in surface and colloidal science [46,47]. Because of the
electrostatic attraction between chains and surfaces, a charged
chain tends to be adsorbed onto the surface. These studies
are also extended to oppositely charged blocks on the chains
[48], and Dobrynin and Rubinstein [49,50] addressed typical
adsorption regimes for a salt-free environment using scaling-
law arguments. The interaction between polyelectrolytes and
small spheres of opposite charge is of interest for many
problems such as interaction between polyelectrolytes and
micelles or formation of the nucleosomal complex between
DNA and proteins [51,52].

Given the plethora of specific applications, it is important
to complement such detailed studies with investigations of
generic models that focus on the most characteristic parameters
of the systems and can hence provide a broad overview
of the involved phenomena. In this spirit we have recently
investigated the purely steric confinement effect of a spherical
cage on a coarse-grained flexible polymer chain to determine
the influence on the location of the collapse and freezing
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transitions [53]. Another hybrid system under consideration
was a polymer chain inside an attractive spherical cage for
which we have constructed the phase diagram depending on the
attraction strength of the sphere inner wall and the temperature
[54,55] and investigated the ground-state properties [56]. We
have also compared the results with the case of an attractive
flat surface [57]. Both systems exhibit a rich phase behavior
ranging from highly ordered, compact to extended, random
coil structures.

Here, we consider the opposite situation: A nanosphere
whose attractive outer spherical surface is the target for
the adsorbing polymer. This problem could have practical
implications for a broad variety of applications ranging from
protein-ligand binding, designing smart sensors to molecular
pattern recognition [58–61] and for the discovery of new drugs
that bind to specific receptors. Therefore it is interesting to
study the adsorption of macromolecules on different types
of substrates and identify the conformational changes that a
polymer can experience at the interface. In this paper, we are
going to investigate a simple coarse-grained polymer model
interacting with a spherical surface of varying curvature by
means of multicanonical Monte Carlo computer simulations.
This method enables us to give an overview of the different
structural phases of a flexible polymer chain over a wide range
of sphere radius and temperature. In a comparative study, we
consider the two cases of nongrafted and end-grafted polymer
chains.

The rest of the paper is organized as follows. In Sec. II
the model system is described in detail. Our model is a
simple model that enables changing parameters on a broad
scale, which allows mapping to different real systems that
are considered in experiments. The primary parameters that
are scanned to obtain two-dimensional phase diagrams are the
radius of the nanoparticles and the temperature. We kept the
adsorption strength constant in this study (whereas we varied
it in another earlier study). Then, in Sec. III the multicanonical
Monte Carlo simulation method is briefly reviewed and the
measured observables are introduced, where special attention
is paid to invariants of the gyration tensor. Section IV presents
and discusses our main results, the phase diagrams for the two
systems under consideration. Finally, Sec. V concludes the
paper with a summary of our findings.

II. MODEL

A. Bead-stick polymer model

The polymer chain is described by a generic, coarse-grained
continuum model for homopolymers which has also been
used for studies of heteropolymers in the frame of the
hydrophobic-polar model [62,63]. As in lattice models, the
adjacent monomers are connected by rigid covalent bonds.
Thus, the distance is kept fixed and set to unity, fixing the length
scale. The contact interaction of lattice models is replaced by
a distance-dependent 12 − 6 Lennard-Jones (LJ) potential,

ELJ = 4εLJ

N−2∑
i=1

N∑
j=i+2

[(
σ

rij

)12

−
(

σ

rij

)6
]
, (1)

accounting for short-range excluded volume repulsion and
long-range interaction of nonbonded monomers at distance
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FIG. 1. The functional dependence of the attractive sphere po-
tential (2) (with εs = σs = ε = 1) for different values of the sphere
radius Rs.

rij = |�ri − �rj |. Each summand in (1) is minimized for rij =
21/6σ where it contributes −εLJ to ELJ. In the simulations we
set εLJ to unity, fixing the energy scale, and choose σ = 1.
This model was first employed in two dimensions [62,63] and
later generalized to three-dimensional AB proteins [64–66],
partially with modifications taking implicitly into account ad-
ditional torsional energy contributions of each bond. For con-
sistency with our previous work [15,20,21,54–57,66] we kept
a very weak bending energy Ebend = �

∑N−2
i=1 (1 − cos ϑi)

with � = 1/4 and ϑi denoting the angle between adjacent
bonds [cos ϑi = (�ri+1 − �ri) · (�ri+2 − �ri+1)]. For such a small
bending stiffness, however, the statistical properties are hardly
distinguishable from a truly flexible (� = 0) polymer (see,
e.g., Fig. 1 in Ref. [67]).

B. Surface interaction

In this work, we assume that the polymer chain interacts
with an attractive spherical surface. As in our previous work
[54–57] the interaction of the polymer chain monomers and
the attractive sphere is modeled by the surface energy Es =∑N

i=1 Vs(ri) where

Vs(ri) = 4πεs
Rs

ri

{
1

5

[(
σs

ri − Rs

)10

−
(

σs

ri + Rs

)10]

− ε

2

[(
σs

ri − Rs

)4

−
(

σs

ri + Rs

)4]}
. (2)

Here Rs is the radius of the sphere, ri = (x2
i + y2

i + z2
i )1/2 �

Rs is the distance of a monomer to the origin and xi,yi,zi

are the coordinates of monomers, and σs, εs, and ε are set
to unity. The functional dependence of the potential Vs(ri)
is shown in Fig. 1 for selected Rs values which are used in
the simulations. For sufficiently large spheres and ri close to
the surface, ri ≈ Rs, we can neglect the terms (σs/2Rs)10 and
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(σs/2Rs)4 and approximate [57]

Vs(ri) ≈ 4πεs

[
1

5

(
σs

ri − Rs

)10

− ε

2

(
σs

ri − Rs

)4
]
, (3)

which is a standard 10 − 4 Lennard-Jones potential with
V min

s = −4πεs(3/10)ε5/3Rs/(Rs + σsε
−1/6) at rmin

i = Rs +
σsε

−1/6.
The total energy E = ELJ + Ebend + Es governs the statis-

tical properties at temperature T respectively thermal energy
kBT , where kB is the Boltzmann constant. In the following
we set kB to unity, fixing the temperature scale. The most
interesting phenomena result from the competition of intrinsic
monomer-monomer and monomer-surface wall interactions.
For instance in the case of adsorption of polyelectrolyte chains
onto oppositely charged interfaces, the electrostatic poten-
tial controls the competition of polymer-surface adsorption-
desorption behavior.

Our primary goal of this study is to obtain a broad overview
of the phase diagram in the Rs-T plane. To make contact
to specific experimental polymer-substrate systems one may
identify the empirical (dimensionful) coupling parameters of,
say, the Martini force field [68] with the (dimensionless)
parameters of our coarse-grained model. For instance, from
Table 1 in Ref. [69] we read off that methylene has εphys =
104 × 8.31/1000 = 0.86 KJ/mol which approximately cor-
responds to εLJ = 1.0 in our model. It follows that the
20mer (four methylenes per bead) considered in our study
corresponds approximately to n-C80. Similarly, the substrate
maps approximately onto a polystyrene colloidal sphere, but
its adsorption propensity is weaker than that of carbon or silica.

III. SIMULATION SETUP

A. Multicanonical method

In order to obtain statistical results of sufficient accuracy
we applied the multicanonical (muca) Monte Carlo algorithm
[70–72] (for reviews, see Refs. [73–75]), where the energy
distribution is flattened artificially allowing, in principle, for
a random walk of successive states in energy space. This
flattening is controllable and therefore reproducible. To this
end, the Boltzmann probability is multiplied by a weight factor
W (E), which in our case is a function of the total energy E =
ELJ + Ebend + Es. Then the multicanonical probability for a
state or conformation {x} with energy E({x}) reads pmuca(E) =
exp(−E/kBT )W (E), up to an unimportant multiplicative fac-
tor. In order to obtain a multicanonical or “flat” distribution, the
initially unknown weight function W (E) has to be determined
iteratively: In the beginning, the weights W (0)(E) are set to
unity for all energies letting the first run be a usual Metropolis

simulation which yields an estimate H (0)(E) for the canonical
distribution. This histogram is used to determine the next guess
for the weights; the simplest update is to calculate W (1)(E) =
W (0)(E)/H (0)(E). Then the next run is performed with prob-
abilities p(1)

muca(E) = exp(−E/kBT )W (1)(E) of states with
energy E, yielding H (1)(E) and W (2)(E) = W (1)(E)/H (1)(E),
and so on. The iterative procedure is continued until the
weights are appropriate in a way that the multicanonical
histogram H (E) is “flat.” After having determined accurate
weights W (E), they are kept fixed and following some
thermalization sweeps a long production run is performed,
where statistical quantities O are obtained multicanonically,
〈O〉muca = ∑

{x} pmuca(E({x}))O({x})/Zmuca with the multi-
canonical partition function Zmuca = ∑

{x} pmuca(E({x})). The
canonical statistics is obtained by reweighting the multicanon-
ical to the canonical distribution, i.e., canonical expectation
values are computed as 〈O〉 = 〈OW−1〉muca/〈W−1〉muca. For
recent reviews of these methodological aspects in the context
of polymer simulations, see Refs. [76,77].

B. Observables

To obtain as much information as possible about the
canonical equilibrium behavior, we define the following
suitable quantities O. Next to the canonical expectation values
〈O〉, we also determine the fluctuations about these averages,
as represented by the temperature derivative d〈O〉/dT =
(〈OE〉 − 〈O〉〈E〉)/T 2. We use generic units, in which kB = 1.

In order to identify conformational transitions, the specific
heat (per monomer) CV (T ) = (〈E2〉 − 〈E〉2)/NT 2 with
〈Ek〉 = ∑

E g(E)Ek exp(−E/T )/
∑

E g(E) exp(−E/T ) is
calculated from the density of states g(E). The density of
states was found (up to an unimportant overall normalization
constant) by reweighting the multicanonical energy
distribution obtained with multicanonical sampling to
the canonical distribution. Details are given in Ref. [66].

Apart from the specific heat, several structural quantities
are of interest. In order to check the structural compactness
of conformations or to identify the possible dispersion of
conformations because of adsorption, the radius of gyration
of the conformations is calculated. The radius of gyration is
a measure for the extension of the polymer and defined by
R2

g ≡ ∑N
i=1(�ri − �rcm)2/N = ∑N

i=1

∑N
j=1(�ri − �rj )2/2N2 with

�rcm = ∑N
i=1 �ri/N being the center-of-mass location of the

polymer.
We also calculated various shape descriptors derived from

the gyration tensor [78–81] which is defined as

S = 1

N

⎛
⎜⎝

∑
i(xi − xcm)2 ∑

i(xi − xcm)(yi − ycm)
∑

i(xi − xcm)(zi − zcm)∑
i(xi − xcm)(yi − ycm)

∑
i(yi − ycm)2 ∑

i(yi − ycm)(zi − zcm)∑
i(xi − xcm)(zi − zcm)

∑
i(yi − ycm)(zi − zcm)

∑
i(zi − zcm)2

⎞
⎟⎠. (4)

Transformation to the principal axis system diagonalizes S,

S = diag(λ1,λ2,λ3), (5)
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where we assume that the eigenvalues of S are sorted in
descending order, i.e., λ1 � λ2 � λ3. The first invariant of
S gives the squared radius of gyration,

Tr S = λ1 + λ2 + λ3 = R2
g, (6)

which agrees with the definition given above. The second
invariant shape descriptor, or relative shape anisotropy, is
defined as

κ2 ≡ A3 = 3

2

TrŜ2

(TrS)2
= 1 − 3

λ1λ2 + λ2λ3 + λ3λ1

(λ1 + λ2 + λ3)2
, (7)

where Ŝ = S − 1
3 (TrS)I with unit tensor I . It reflects both

the symmetry and dimensionality of a polymer conformation.
This parameter is limited between the values of 0 and 1.
It reaches 1 for an ideal linear chain and drops to zero
for highly symmetric conformations. For planar symmetric
objects, the relative shape anisotropy converges to the value of
1/4 [22,78–81].

The distance of the center of mass rcm of the polymer
to the surface also provides clear evidence that the polymer
is freely moving or that it is very close to the surface and
just adsorbed. Another useful quantity is the mean number
of monomers 〈Ns〉 docked to the surface, which plays the
role of an order parameter for the adsorption transition. A
single-layer structure is formed if all monomers are attached
at the sphere; if none is attached, the polymer is desorbed.
The sphere potential is a continuous potential, and in order
to distinguish monomers docked to the sphere from those not
being docked, it is reasonable to introduce a cutoff. We define
a monomer i as being “docked” if ri − Rs < rc ≡ 1.2. The
corresponding measured quantity is the average number 〈Ns〉
of monomers docked to the surface. This can be expressed
as Ns = ∑N

i=1 	(rc − ri), where 	(r) is the Heaviside step
function.

C. Computational details

In our simulations, the polymer chain length is N = 20
and we set ε = 1.0 in the surface potential (2) large enough
to allow adsorption of the polymer to the sphere surface. We
consider two different situations: One is the case where the
polymer is allowed to move freely in the space around the
sphere over a distance L = 60 − Rs from its surface (i.e., the
nanosphere of radius Rs is centered in a spherical container of
radius 60 with a purely steric wall), which is called the “free”
or “nongrafted” case, and in the second case it is grafted with
one end to the surface (“end grafted”).

We have done simulations with different sizes of the sphere.
The random initial configurations for the nongrafted and
end-grafted cases of the simulation are sketched in Figs. 2(a)
and 2(b). The total energy of the system is composed of
the pure polymer chain energy ELJ + Ebend and the polymer
chain attractive sphere interaction energy Es. The initial
configuration of the polymer chain is randomly generated. For
the determination of the multicanonical weights we performed
200 iterations with at least 105 sweeps each. In the production
period, 108 sweeps were generated to have reasonable statistics
for estimating the thermodynamic quantities. Statistical errors
are estimated with the standard jackknife technique [82–84].

FIG. 2. Start configurations of the simulations: (a) non-grafted
and (b) end-grafted polymers of length N = 20.

IV. RESULTS

A. Phase diagrams

To give an overview at the beginning, we start by presenting
in Fig. 3 the main result of our study: The phase structure for
(a) nongrafted and (b) end-grafted polymers derived from all of
our observables as summarized by phase diagrams in the Rs-T
plane. These phase diagrams are constructed by combining
all the information coming from the canonical expectation
values of our observables and their temperature derivatives
described in more detail in the next two subsections. Some
of our observables exhibit a peak at all of the transitions in
the phase diagram, while others are only sensitive to one of
them. For example, the collapse transition line at T ≈ 0.8 is
seen quite clearly from the peak in the temperature derivative
of the canonical expectation value of the radius of gyration
(6) and as a small shoulder in the invariant shape anisotropy
(7). Naturally, this is further complemented by information
coming directly from the eigenvalues of the gyration tensor.
On the other hand, the adsorption transition line running
roughly between T ≈ 1.5 (small Rs) and T ≈ 2.5 (large Rs)
is most clearly constructed by looking at the mean distance
of the center of mass of the polymer to the surface and the
mean number of monomers adsorbed onto the surface, which
plays the role of an order parameter for this transition. As
discussed in more detail, for instance, in Ref. [20], since we
are dealing with a finite system, it is not possible to determine
the transition lines precisely: The transition lines still vary with
chain length N and the observables have broad peaks. Thus
we have a certain bandwidth which approximately covers the
different peaks in the observables (and strictly speaking one
should talk of “pseudotransitions” instead of “transitions” and
“pseudophases” instead of “phases,” but for brevity we will
suppress the attribute “pseudo” in the following). Most of the
transition lines in the phase diagrams (related to adsorption,
collapse in three and two dimensions, freezing) approach strict
phase transitions in the thermodynamic limit of infinitely
long chains. Exceptions are the layering transitions at low
temperatures whose locations are very sensitive to the finite
chain length.

In the phase diagrams the radius of the sphere increases
from left to right and the temperature increases from bottom
to top. The grey bands separate the individual conformational
phases. For high temperature, the polymer behaves in both
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(a) (b)

FIG. 3. The phase diagram of the homopolymer-attractive spherical surface system for (a) a nongrafted and (b) an end-grafted polymer as
obtained from extensive multicanonical simulations. The grey bands separate the individual conformational phases. The bandwidth shows the
variation of the peaks of temperature derivatives of different energetic and structural observables which have been analyzed simultaneously. In
our simulations, the polymer chain length is N = 20 and we set ε = 1.0 for the surface attraction strength.

cases similarly to a free polymer where the typical con-
formations are desorbed and extended random coils. In the
nongrafted case with small sphere radius Rs, decreasing the
temperature causes the (three-dimensional) collapse transition
into globular conformations which are still in the desorbed
phase. But below the freezing transition all the compact
conformations are adsorbed. In contrast, for the end-grafted
case all conformations are already adsorbed below the col-
lapse transition. There is no desorbed globule phase in the
grafted phase diagram. One more difference occurred also in
the high-temperature desorbed phase. In the nongrafted case
some structural observables give an indication for some
changes in the desorbed phase. When we carefully analyze
the conformations we see that those in the “desorbed1” phase
are far away from the sphere surface while the conformations
in the “desorbed2” phase are almost adsorbed. Thus they
feel very strongly the surface effect. Because of the grafting,
this is not the case for an end-grafted polymer. Increasing
the sphere radius approximately to Rs ≈ 7.0 leads to a very
fast increase in the adsorption transition temperature, but
after this value it increases slowly. The adsorption transition
separates the regions of desorbed and adsorbed phases. Besides
the collapse, adsorption, and freezing transitions, the most
pronounced transition is the layering transition which occurs
for low temperatures at Rs ≈ 7.0 and separates the region
of planar conformations which are monolayers of totally
adsorbed conformations from the two-layer conformations.
Another low-temperature transition is coming into play at
Rs ≈ 3.0, where two-layer conformations change to compact
conformations (which look almost like a sphere).

The representative conformations that predominate in the
different structural phases are depicted in Fig. 4 for the case of
a nongrafted polymer. The observed structural phases for this
case can be briefly summarized as follows:

Desorbed1. Random coil structures with no surface con-
tacts. These conformations freely circulate in the simulation
space and are far away from the surface of the sphere
[Fig. 4(a)].

Desorbed2. Desorbed conformations, but they are almost
adsorbed. The conformations feel the influence of the surface
[Fig. 4(b)].

Adsorbed. Partially adsorbed, extended conformations
[Fig. 4(c)].

Adsorbed globule. Partially adsorbed conformations
[Fig. 4(d)].

Globule. Desorbed globule conformations. These con-
formations are only seen in the nongrafted phase diagram
[Fig. 4(e)].

Compact. Partially adsorbed, globular conformations like a
drop on the wall of the sphere [Fig. 4(f)].

Two layer. Partially adsorbed, compact conformations.
These are two-layer structures. The lower layer of the
conformations is adsorbed and lies on the wall of the sphere
[Fig. 4(g)].

Monolayer. Completely adsorbed, compact conformations.
These single-layer structures lie on the surface of the sphere
and fit the sphere wall perfectly [Fig. 4(h)].

In the following two sections we will discuss in more detail
how these phase diagrams have been obtained by analyzing
energetic and structural observables.

B. Energetic fluctuations

Figure 5 displays the specific-heat curves CV (T ) as a
function of temperature T for different values of sphere
radius Rs for (a) the nongrafted and (b) the end-grafted
case. In both cases the specific heat signals two transitions:
One is the low-temperature transition which is almost at the
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FIG. 4. Typical conformations for the regions (a) desorbed1, (b) desorbed2, (c) adsorbed, (d) adsorbed globule, (e) globule, (f) compact, (g)
two layer, and (h) monolayer in the phase diagram for a nongrafted polymer.

same temperature (T ≈ 0.3) for all different Rs values. This
is the freezing transition which does not differ much for
nongrafted and end-grafted chains. The second transition is
quite pronounced in the nongrafted case but exhibits only a
weak signal (a shoulder at T ≈ 2.0) for the grafted polymer.
This is the adsorption transition, which separates desorbed
and adsorbed conformations. It comes into play at higher
temperatures than the freezing transition and depends quite

strongly on the sphere radius. This is consistent with previous
observations that for nongrafted polymers of finite length this
transition has a first-order-like signature (which eventually
crosses over to second-order-like in the infinite chain-length
limit) [8,21,52], whereas for grafted polymers it always looks
like a continuous transition. In both cases, increasing the
sphere radius causes an increase in the adsorption transition
temperature.

FIG. 5. Specific heat as a function of temperature for different sphere radii Rs for the (a) nongrafted and (b) end-grafted case (polymer
length N = 20, surface attraction strength ε = 1.0).
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FIG. 6. The canonical expectation value of the radius of gyration 〈Rg〉 for the (a) nongrafted and (b) end-grafted case, and (c) and (d) the
corresponding temperature derivatives, for different sphere radii Rs (polymer length N = 20, surface attraction strength ε = 1.0).

C. Structural parameters and fluctuations

1. Radius of gyration Rg

The radius of gyration 〈Rg〉 (the first invariant of the
gyration tensor) and its temperature derivative d〈Rg〉/dT

are shown in Fig. 6 as a function of temperature for both
the nongrafted and end-grafted cases, respectively. For small
values of the sphere radius Rs = 0.5,1.0, the most compact
conformations occur in the low-temperature region with an
average 〈Rg〉 ≈ 1.23 (data not shown). Slightly increasing
the Rs value causes an increase in the average 〈Rg〉 value
to about 1.4. Increasing the Rs parameter further, the curve for
Rs = 7.0 of Fig. 6(a) in the nongrafted case has a minimum
behavior at low temperatures. As a function of temperature
the radius of gyration is monotonically increasing for all Rs

values except beyond Rs = 7.0, where the layering transition
occurs. Supporting information is also gained from the relative
shape anisotropy parameter in Fig. 7. If we now look at the
temperature derivative of the radius of gyration in Fig. 6(c),
we detect three maxima for each Rs curve. The first peak

at low temperatures (T ≈ 0.3) indicates the freezing transition
quite clearly, the second peak around T ≈ 0.8 can be identified
with the (two-dimensional) collapse transition, and the third,
strongly moving peak in the region T ≈ 1.5–3.0 signals the
adsorption transition. For the end-grafted case these signals are
generally weaker. In Fig. 6(d), the first two maxima are still
discernible, but the adsorption transition is hardly reflected.

2. Invariant shape anisotropy parameter κ2

Also the relative shape anisotropy parameter 〈κ2〉 (the
second invariant of the gyration tensor) presented in Fig. 7
gives rich information and supports our findings derived from
〈Rg〉. As discussed above, in the nongrafted case, the desorbed
phase is divided into two regions which are called “desorbed1”
and “desorbed2.” The boundary between these two regions is
emerging in the temperature derivative d〈κ2〉/dT displayed
in Fig. 7(c) (and also in d〈Rg〉/dT ) as a second peak at high
temperatures, since the peaks are going to become invisible
with increasing Rs values and also are smaller than the peaks
at low temperatures. We have investigated the conformations
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FIG. 7. The canonical expectation value of the relative shape anisotropy parameter 〈κ2〉 for the (a) nongrafted and (b) end-grafted case,
and (c) and (d) the corresponding temperature derivatives, for different sphere radii Rs (polymer length N = 20, surface attraction strength
ε = 1.0).

in both regions in detail and concluded that the conformations
in the desorbed1 phase are far away from the surface. On
the other hand, the conformations in the desorbed2 phase are
almost adsorbed to the sphere boundary, which indicates the
influence of the surface on the desorbed phase. Additionally,
the relative shape anisotropy parameter 〈κ2〉 clearly gives the
phase boundaries at very low temperatures (below the freezing
transition at T ≈ 0.3). The curves in Fig. 7(a) belonging to
different Rs values are grouped at very low temperatures into
different κ2 values, indicating the boundaries from compact
to two-layer phase, and from two-layer to monolayer phase in
the phase diagrams.

3. Center-of-mass distance rcm and number of adsorbed
monomers Ns

The adsorption transition can be best detected by the
distance of the center of mass of the polymer to the substrate

rcm − Rs and by the number of adsorbed monomers Ns, where
a monomer is defined to be adsorbed onto the surface if
ri − Rs < 1.2. The behavior of these two observables, in
particular the peaks in their temperature derivative, build the
adsorption line in the phase diagrams. Figures 8(a) and 8(b)
give the distance of the center of mass of the polymer to
the sphere surface for the nongrafted and end-grafted cases,
respectively. As can be seen in Fig. 8(a), for high temperatures
the nongrafted polymer can move freely within the simulation
space and the influence of the surface is minimal for large Rs

values, whereas for small Rs the influence is mainly steric.
Thus, the average center-of-mass distance of the polymer
above the surface is nearly half of the simulation space.
In contrast, at low temperatures the polymer favors surface
contacts and the average center-of-mass distance converges
to the minimum location of the potential (cf. Fig. 1). One
can clearly detect a quite pronounced peak in its temperature
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FIG. 8. The canonical expectation value of the distance of the center of mass of the polymer 〈rcm〉 from the sphere surface for the (a)
nongrafted and (b) end-grafted case (polymer length N = 20, surface attraction strength ε = 1.0).

derivative (see the Appendix) that divides the phase space
into adsorbed and desorbed phases. Consistently with our
discussion above, the pronounced tendency of the polymer
to make surface contacts can also be identified from the mean
number of adsorbed monomers to the surface 〈Ns〉 shown in
Fig. 9 and the (negative) minima in its temperature derivative
(see the Appendix). They are in good agreement with the sharp
peaks in the temperature derivative of the distance of the center
of mass of the polymer which together draw the adsorption line
in the phase diagram. By comparing the end-grafted with the
nongrafted case, the main difference is found at the adsorption
transition: A crossover occurs from low temperature, where
the polymer is adsorbed and the conformations of an end-
grafted and a nongrafted polymer are very similar, to high
temperatures, where the nongrafted polymer approaches the
behavior of a polymer in bulk solution while that of an

end-grafted polymer is always affected by the attractive sphere
surface. Because of this effect, the adsorption transition for
the end-grafted chain is much smoother which can be clearly
seen in the 〈rcm〉 and 〈Ns〉 parameters in Figs. 8(b) and 9(b).
In contrast, the adsorption of a nongrafted chain exhibits a
first-order-like signature which is also clear from the same
structural parameters. Because in the nongrafted case these
quantities change sharply as soon as the polymer desorbs,
it leaves the influence of the surface field. An end-grafted
polymer, on the other hand, cannot leave the surface field.

4. Eigenvalues of the gyration tensor

Finally, the eigenvalues of the gyration tensor which
measure the extensions in the principle axis system are
extracted to complement the picture. In Figs. 10(a)–10(c) they
are displayed for different values of Rs for the nongrafted
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FIG. 9. The canonical expectation value of the mean number of docked monomers 〈Ns〉 for the (a) nongrafted and (b) end-grafted case
(polymer length N = 20, surface attraction strength ε = 1.0).
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FIG. 10. The canonical expectation values of the three eigenvalues 〈λ1〉, 〈λ2〉, and 〈λ3〉 of the gyration tensor and the ratio of the largest
to the smallest eigenvalue 〈λ1/λ3〉 for a nongrafted polymer in the presence of an attractive sphere with different radii Rs (polymer length
N = 20, surface attraction strength ε = 1.0).

case. For high temperatures they are in good agreement with
the results in our previous study [55], showing the same limit
values of the three eigenvalues for random-coil structures,
and overall they all support our earlier findings described
above. For low temperatures, the curves in Figs. 10(a)–10(c)
belonging to different Rs values are also grouped into different
〈λ1〉, 〈λ2〉, and 〈λ3〉 values, indicating the boundaries (grey
bands) in the phase diagrams which are detected from the other
structural quantities. The most important result deducible from
the eigenvalues is that the third eigenvalue of the gyration
tensor 〈λ3〉 converges to small values which means that the
extension in the third direction vanishes and the conformations
are two-dimensional objects signaling the layering transition.
To highlight this finding we show in Fig. 10(d) the ratio
of the largest to the smallest eigenvalue 〈λ1/λ3〉. For low
temperatures below T ≈ 0.3, this ratio assumes relatively
small values until Rs ≈ 6.0. Above Rs ≈ 7.0 the ratio of the

eigenvalues jumps to very much larger values, confirming
that the layering transition occurs at this Rs value, which
separates the conformational space from planar conformations.
This signal is also reflected in the corresponding temperature
derivatives which are compiled in the Appendix.

V. CONCLUSION

In this paper, we have reported results from extensive multi-
canonical Monte Carlo computer simulations for investigating
the full conformational behavior of a generic coarse-grained
finite polymer chain near an attractive spherical surface. In
a systematic analysis, over a wide range of sphere radius
Rs and temperature T , we have constructed the entire phase
diagrams for both nongrafted and end-grafted polymers. For
the identification of the conformational phases, we have
examined several energetic and structural observables and their
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fluctuations by canonical statistical analysis. The transition
lines in the phase diagrams show the best match of all
observables analyzed simultaneously in our study. In the
thermodynamic limit of infinitely long chains the transitions
are expected to occur at sharp values of the parameters. For
finite chains, on the other hand, the transition lines still vary
with chain length N and are not well defined because of
broad peaks in the observables that also have small differences
in between. Therefore the locations of the phase boundaries
should be considered as a rough guide. However, even for the
rather short chains considered here, we can clearly identify
different phases which show distinguishing features, so that a
reasonable picture is obtained. Most of the phases are believed
to still persist for longer chains. An exception are the layered
phases which depend very sensitively on the finite chain length.
All our results obtained from the different observables are
summarized in the phase diagrams in the Rs-T plane which
for a convenient overview are displayed at the beginning of
the results section in Fig. 3(a) for nongrafted and in Fig. 3(b)
for end-grafted polymers, respectively.

It is clear that, for longer chains, the desorbed, glob-
ule, and compact phases will survive. Additionally, filmlike
(monolayer) and semispherical conformations (two layer) as
well as surface attached globular shapes will dominate the
respective phases. On the other hand, as long as surface effects
are as influential as volume effects the compact adsorbed
conformations differ noticeably for polymers with different
but small lengths. But, for the majority of phases we find
qualitative coincidence with a simple coarse-grained model.

In this study, we kept the adsorption field constant (whereas
we varied the adsorption strength in another earlier study)
and varied the radius of the nanoparticles and observed
qualitatively the described scenarios. As a result, our model
system can be mapped in the considered parameter range to
real systems considered in experiments. For example, based on
early experimental results [85,86], Feng and Ruckenstein [45]
examined the adsorption of a specific polyampholyte chain

on a single spherical nanoparticle with three different radii.
In this application, the charge density at the particle surface
regulates the strength of the adsorption field (corresponding
to our parameter ε) and the polymer composition regulates
the location of the coil-globule transition (corresponding to
εLJ). Compared with experimental findings, computational
studies of generic coarse-grained models have the advantage
that different combinations of parameters can be varied over
wide ranges. In this way, a specific detailed system can be put
into a broader context and a deeper understanding based on
fundamental principles of statistical physics can be gained.
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APPENDIX

Next to the expectation values 〈O〉 of all structural
quantities discussed in our main text, we also determined the
fluctuations of these structural quantities, as represented by the
temperature derivative d〈O〉/dT = (〈OE〉 − 〈O〉〈E〉)/T 2.
We use generic units, in which kB = 1. The fluctuations of all
structural quantities not discussed in the main text are shown
in Figs. 11–13.
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FIG. 11. The fluctuations of the distance of the center of mass of the polymer from the sphere surface for (a) the nongrafted and (b) the
end-grafted case.
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FIG. 12. The fluctuations of the number of adsorbed monomers for (a) the nongrafted and (b) the end-grafted case.
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FIG. 13. The fluctuations of the three eigenvalues (a) 〈λ1〉, (b) 〈λ2〉, (c) 〈λ3〉 of the gyration tensor and (d) the fluctuations of the ratio of
the largest eigenvalue to the smallest eigenvalue 〈λ1/λ3〉 for different sphere radii Rs for the nongrafted case.
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