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Evidence of aging and dynamic scaling in the collapse of a polymer
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We investigate a newly framed two-time property for the nonequilibrium evolution dynamics during the
collapse of a homopolymer via Monte Carlo simulations of a model polymer. Our results show evidence of aging
effects, as observed in the slow dynamics of structural and spin glasses, along with the presence of a dynamic
scaling of the autocorrelation function ∼x−λc (x being the ratio of the cluster sizes at two different times). We
estimate the value of λc unambiguously by applying a finite-size scaling analysis to the numerical data. The value
thus obtained obeys a bound which we predict via general theoretical arguments. The results presented should
be of general validity and may trigger direct experimental verification in single-polymer dynamics.
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I. INTRODUCTION

The ubiquitous nature of aging makes it a fundamental as
well as a fascinating topic of research in diverse fields [1–6]
including medical science [7,8]. For systems exhibiting slow
dynamics upon quenching, e.g., structural glasses [9] (polymer
melts) and spin glasses [10], the existence of aging has been re-
alized experimentally [11,12] and theoretically [13–15] as well
as numerically [13,16]. Apart from glassy dynamics, aging is
also relevant in nonequilibrium coarsening processes [17,18],
e.g., in ferromagnetic ordering and phase separation kinetics.
In spite of its significant similarities with coarsening processes,
aging effects related to the collapse of a homopolymer have
rarely been explored [19,20]. The collapse transition bears
phenomenological connection with the folding process of a
protein, basically a heteropolymer. In fact there is evidence
from experiments [21–23] and simulations [24] that the
(hydrophobic) collapse precedes the folding of a protein to
a compact native state. These facts motivated us to investigate
the collapse of a homopolymer following a quench from a
good to a poor solvent seeking evidences in favor of aging
phenomena and eventually the existence of dynamic scaling
behavior.

Unlike the other dynamic aspects where one mainly deals
with single-time quantities, aging is probed by multiple-time
quantities, e.g., the two-time autocorrelation of a microscopic
variable Oi as

C(t,tw) = 〈Oi(t)Oi(tw)〉 − 〈Oi(t)〉〈Oi(tw)〉, (1)

where t and tw (�t) are the observation and waiting times,
respectively. Here 〈· · · 〉 denotes averaging over different initial
realizations and thermal noise. Slower decay of C(t,tw) with
an increase of tw is the signature of aging phenomena. For a
nonequilibrium process, Oi(t) is generally a quantity reflecting
the time evolution of the system, e.g., the time- and space-
dependent order parameter in coarsening systems. For spin
glasses, Fisher and Huse (FH) [13] predicted a power-law
decay of C(t,tw) in d dimension as

C(t,tw) ∼ (�/�w)−λ; d/2 � λ � d, (2)
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where � (�w) is the corresponding growing length scale at t (tw)
and λ is the dynamic aging exponent. Understanding of such
scaling for ferromagnetic ordering is richly developed [17,18],
and the FH bound is strictly obeyed [13,25]. There are even
efforts to obtain the full form of such scaling functions using
local scale invariance [26,27] or via an empirical approach us-
ing an effective exponent [28]. However, in fluids the presence
of hydrodynamics may lead to an exponential decay [29].
For glasses in particular, one calculates the nonequilibrium
incoherent scattering functions by using Oi = exp[iq · ri(t)]
in Eq. (1) where q is a wave vector and ri the position
vector. Despite the fact that aging effects in glasses have
been extensively studied, to the best of our knowledge, such
scaling with respect to a growing length scale has rarely
been emphasized [30,31]. The same is the case for the very
few existing studies on aging during single polymer collapse,
mostly [19] done at very low temperatures.

In this work, we study the collapse of a single polymer
via Monte Carlo (MC) simulations and propose an analog of
the density-density autocorrelation to probe aging. Our results
show the presence of a power-law scaling of the autocorrelation
function. We also derive a bound to the aging exponent
from very general scaling arguments and apply finite-size
scaling analyses for an unambiguous numerical estimate of
the exponent.

II. MODEL AND METHODS

We use the bead-spring model, a prototype for flexible poly-
mers in d = 3 where nonbonded monomers i and j at distance
rij interact with each other via Enb(rij ) = ELJ[min(rij ,rc)] −
ELJ(rc), where

ELJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
(3)

is the standard Lennard-Jones (LJ) potential with σ , the
diameter of the monomers and ε, the interaction strength which
is set to unity for convenience. The cutoff radius rc (=2.5σ )
is introduced in Enb for faster computation. The connectivity
among the successive monomers is maintained via the standard
finitely extensible nonlinear elastic (FENE) potential

EFENE(rii+1) = −K

2
R2 ln

[
1 −

(
rii+1 − r0

R

)2]
(4)
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FIG. 1. Snapshots at different times as indicated, illustrating the
evolution of a polymer with N = 724 after being quenched from
Th = 10 in an expanded coil state to Tq = 1. The main plot shows the
time dependence of the cluster size Cs(t), monitoring the kinetics of
the collapse.

with K = 40, r0 = 0.7, and R = 0.3. We chose σ = r0/21/6

so that the minima of Enb and EFENE coincide. The thermo-
dynamics of this model is well studied, showing nonglassy
crystalline ground states [32–34].

Dynamics in the MC simulations is incorporated via
the single monomer displacement moves, chosen randomly
within [−σ/10,σ/10], and the trial position of a randomly
picked monomer is accepted or rejected according to the
standard Metropolis algorithm [35]. This type of local moves
shall reproduce the Rouse scaling [36] observed for the
dynamics of a polymer chain in viscous solvent neglecting
the hydrodynamics. One Monte Carlo step (MCS) consists of
N (the number of monomers in the polymer chain) such trial
moves which sets the unit of time t . The unit of temperature is
ε/kB , where kB is the Boltzmann constant, also set to unity. We
have used polymers with N = 380,512, and 724, and prepared
the initial configurations at high temperature (Th = 10), which
were then quenched into the globular phase at Tq = 1, well
below the collapse transition temperature, Tθ (�2.24), for the
smallest N . All presented results are averaged over at least 200
independent initial realizations.

III. RESULTS

Figure 1 shows evolution snapshots at different times
during the collapse for a polymer with N = 724. At t = 0
the polymer is in an expanded state where the fluctuations of
monomer densities along the chain lead to the formation of
nucleation clusters which eventually become stable clusters.
Subsequently these clusters withdraw monomers from the
bridge connecting the clusters and this way the clusters
meet each other, which in the long run gives rise to a single
compact globule. The sequence of events observed here is in
accordance with the phenomenological picture of Halperin and

FIG. 2. Plot of C(t,tw) vs t − tw for three different waiting times
tw showing the aging during the collapse of a polymer with N = 724.
The inset shows a double-log plot of the same data plotted against
t/tw depicting the scaling behavior.

Goldbart [37]. In order to monitor the kinetics we have
measured the cluster size Cs(t) [∼�(t)d ] as the characteristic
length scale. A cluster is identified on the basis of the
local density around a monomer by counting the number of
monomers ni = ∑N

j=1 �(rc − rij ), where � is the Heaviside
step function. For ni � nmin, we call it a cluster and remove
the overlap via the corresponding Venn diagram to determine
the actual number of discrete clusters. Note that the method is
independent for any reasonable choice of nmin [38] and all the
subsequent data are calculated using nmin = 10. The graph
in Fig. 1 shows the variation of Cs(t) with t quantifying the
kinetics of cluster growth which is expected to follow a power
law. However, the presence of a crossover cluster size makes it
difficult to quantify the exponent. For a detailed analysis of the
cluster growth we refer to our previous work [38]. Following
that, if we do fitting with the form Cs(t) = C0 + Atα using
data for t � 5 × 105, we get α = 0.98(2) confirming a linear
growth as observed in Ostwald ripening.

Next we move on to the central objective of this paper.
We probe the two-time property during the collapse by
constructing a suitable autocorrelation function that exploits
the cluster identification technique. We define the variable Oi

in Eq. (1) as a parameter based on the local density around
the ith monomer, i.e., Oi takes up the value ±1 depending on
whether the monomer is inside (+1) or outside (−1) a cluster.
Thus we have designed a two-time correlation function C(t,tw)
which is analogous to the usual density-density autocorrelation
function. In Fig. 2, C(t,tw) is plotted against t − tw for different
tw values. The absence of time-translation invariance can be
easily seen which is a substantial evidence of aging. Of course
one could extract the relaxation time (τw) as a function of tw
from these plots to further strengthen this claim. The fact that
the higher the value of tw the larger will be the value of τw, is
the trademark of aging phenomena. However, here we do not
present such an exercise but move on to look for the existence
of scaling with respect to t/tw. The inset of Fig. 2 shows such
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FIG. 3. Plot of C(t,tw) vs Cs(t)/Cs(tw) on a double-log scale for
three different values of tw , as mentioned for N = 724. The solid line
represents a power-law decay with an exponent −1.25.

a plot of C(t,tw) vs t/tw on a double-log scale demonstrating
the scaling behavior. The data for different tw follow each
other until they start deviating at late time due to finite-size
effects. We have also tested the presence of any special aging
by plotting C(t,tw) vs t/tμw where μ is a nontrivial exponent
and μ > 1 (or <1) refers to super- (or sub-) aging. However,
our data do not show any scaling for μ �= 1, discarding the
presence of any special aging. Hence we do not present the
data here.

The scaling of C(t,tw) as a function of t/tw motivated us
to look for the scaling with respect to the ratio of the cluster
sizes, i.e., Cs(t)/Cs(tw). This is executed in Fig. 3 showing a
scaling plot of C(t,tw) as a function of Cs(t)/Cs(tw) which is
analogous to the scaling behavior (2) observed in ordering
kinetics [28]. Here also the late time deviation is due to
the finite-size effects. The steep decay at very early times is
attributed to short-time fluctuations. The solid line there shows
the consistency of the data with a power-law decay

C(t,tw) ∼ [Cs(t)/Cs(tw)]−λc (5)

having λc = 1.25. However, at this point it would be naive
to conclude about the precise value of the aging exponent λc.
Before quantifying this exponent more accurately, here we
first derive a bound on λc from general scaling arguments.
As explained earlier, C(t,tw) is calculated on the basis of
local monomer densities along the polymer chain. Hence,
as for spin-glass and ferromagnetic ordering [13,25] one can
assume C(t,tw) ∼ 〈ρ(t)ρ(tw)〉 where ρ is the average density
of monomers. Now considering a set of Cs monomers at
t (� tw) and assuming that at tw the polymer is more or less in
an expanded coil state, one can write ρ(tw) ∼ Cs/Cs

dν where
ν is the Flory exponent for the radius of gyration (Rg ∼ Cν

s ).
Now there are two possibilities. First, at later time t , ρ(t) = 1,
assuming that all the monomers are inside a cluster. Thus
considering the maximum overlap between ρ(t) and ρ(tw)
we get C(t,tw) ∼ Cs/Cνd

s ∼ C−(νd−1)
s . This gives the lower

FIG. 4. Double-log plot of C(t,tw) vs Cs(t)/Cs(tw) from poly-
mers with N = 380,512, and 724 for tw = 104. The solid line shows
the power-law decay (5) with exponent λc = 1.25.

bound. Second, if the assumption that the polymer is in an
expanded state still holds at time t , then C(t,tw) ∼ C−2(νd−1)

s ,
which gives the upper bound. The obtained bound is thus

(νd − 1) � λc � 2(νd − 1). (6)

The scaling argument presented here is pretty similar to
the argument used to propose the FH bound (2). Now by
putting ν ≈ νF = 3/5 in Eq. (6), where νF is the Flory
approximation for polymers with excluded volume interaction,
one would get 4/5 � λc � 8/5. Inserting the more precise
numerical estimate ν = 0.587 597 [39], we get 0.762 791 �
λc � 1.525 582. The consistency of our data in Fig. 3 with the
line having slope −1.25 shows that this bound is indeed valid.
A more precise estimate of λc based on a finite-size scaling
analysis will be discussed below. Note that our choice of tw in
all the plots is based on the above scaling arguments. We have
chosen tw � 105 following the assumption that the polymer
remaining in a more or less expanded state is still valid, which
can also be appreciated from the snapshots presented in Fig. 1.
The little off behavior of the data for tw = 105 in Fig. 3 is
indeed due to the fact that at t = 105 the formation of stable
clusters has already initiated. Hence for the finite-size scaling
exercise we will use the data for tw = 104 from polymers with
different N .

In Fig. 4 we have plotted C(t,tw) as function of Cs(t)/Cs(tw)
with tw = 104 for three different N as indicated in the figure.
The data for different N follow each other until they encounter
the finite-size effects and are again consistent with a power-
law decay having the exponent 1.25. Next we introduce the
finite-size scaling analysis, a technique widely used in critical
phenomena [40,41] by using the data from Fig. 4. We construct
our finite-size scaling ansatz by assuming a power-law decay
of C(t,tw) and rewrite Eq. (5) as

C(t,tw) = Ax−λc ; x = Cs(t)/Cs(tw). (7)

We account for the size effect via NC(t,tw) = Y (y) where
Y (y) is the finite-size scaling function and y is the scaling
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FIG. 5. Finite-size scaling plot on a double-log scale using the
data from polymers with different N , as indicated. This plot represents
the optimum data collapse, obtained with λc = 1.25. The solid line
shows y ∼ Y (y)−1/λc .

variable. Now for appropriate choice of y = x(NA)−1/λc one
gets Y (y) ∼ y−λc , i.e., y ∼ Y (y)−1/λc in the scaling regime. In
the finite-size scaling exercise we fix A = 1 and tune the value
of λc to obtain the optimum collapse of data from different
N . We have obtained reasonably good data collapse for λc =
1.25(5), which is consistent with the predicted bound (6). In
Fig. 5 we present a representative of such finite-size scaling
plots with λc = 1.25. The data from different system sizes
nicely collapse with each other and follow the scaling behavior
y ∼ Y−1/λc . The flat nature of the data for smaller values of Y

is due to the onset of finite-size effects. Finally, recalling the
theoretical argument for (6), if one assumes that at time t the
polymer is in a theta state (a Gaussian chain with νθ = 0.5), an
intriguingly matching value of λc = (νd − 1) + (νθd − 1) =
1.262 791 can be obtained.

IV. CONCLUSIONS

In this paper we have presented results for the evolu-
tion dynamics during the collapse of a homopolymer with
particular emphasis on two-time properties. As a probe we
have designed a two-time correlation function C(t,tw) in
analogy to the density-density correlations, based on the
cluster formation during the collapse. Presence of aging
behavior is evident from the dynamic power-law scaling as
C(t,tw) ∼ [Cs(t)/Cs(tw)]−λc . For the exponent λc governing
the decay, we have provided simple scaling arguments to
predict a bound (νd − 1) � λc � 2(νd − 1) in relation to the
universal Flory exponent ν. Our numerical estimate of λc via
finite-size scaling analysis gives λc = 1.25(5), which obeys
the predicted bound. A comprehensive study on the validity
of this bound for different quenching depths is in progress.
Considering the fact that the collapse of the heteropolymer
backbone in the early stages facilitates the folding process of
an unfolded (expanded) protein to its native structure [42],
we feel that a deeper understanding of the collapse based
on the framework of our study may lead to new insights
into the kinetics of protein folding [24,43–46]. In this regard
the simplest task would be to explore heteropolymer models,
which we take as a future endeavor.

Since our results neglect hydrodynamics, at first sight they
may seem difficult to compare with experiments. However,
there are many realistic situations, e.g., polymers adsorbed
on fluid surfaces (lipid membranes) [47,48] and in crowded
environment [49], where hydrodynamic interactions are neg-
ligible. Furthermore recent successful experiments in vacuum
(no hydrodynamics or solvent effects) on structure [50,51] and
dynamics [52] of single polymers open up the possibility of
designing protocols for direct verification of our results.
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