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Caveats in modeling a common motif in genetic circuits
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From a coarse-grained perspective, the motif of a self-activating species, activating a second species that acts as
its own repressor, is widely found in biological systems, in particular in genetic systems with inherent oscillatory
behavior. Here we consider a specific realization of this motif as a genetic circuit, termed the bistable frustrated
unit, in which genes are described as directly producing proteins. Upon an improved resolution in time, we focus
on the effect that inherent time scales on the underlying scale can have on the bifurcation patterns on a coarser scale.
Time scales are set by the binding and unbinding rates of the transcription factors to the promoter regions of the
genes. Depending on the ratio of these rates to the decay times of both proteins, the appropriate averaging proce-
dure for obtaining a coarse-grained description changes and leads to sets of deterministic equations, which consid-
erably differ in their bifurcation structure. In particular, the desired intermediate range of regular limit cycles fades
away when the binding rates of genes are not fast as compared to the decay time of the proteins. Our analysis illus-
trates that the common topology of the widely found motif alone does not imply universal features in the dynamics.

DOI: 10.1103/PhysRevE.87.062706 PACS number(s): 87.10.Mn, 87.16.dj, 87.16.Yc, 87.18.Cf

I. INTRODUCTION

A frequently found motif in biological networks, in par-
ticular in genetic networks, is the combination of a positive
feedback loop in which one species A activates itself and a
negative feedback loop in which the first species activates
its own repressor, the second species B. In connection with
genetic systems such motifs are realized in the cAMP signaling
system of the slime mold Dictyosthelium discoideum [1],
the embryonic division control system [2–4], the MAPK
cascade [5], or the circadian clock [6,7]. From the physics’
point of view, one is interested in dynamical features that
are common to the many different dynamical realizations of
this motif. One desired feature is the occurrence of regular
oscillations and the possibility of excitable behavior for an
appropriate choice of parameters; these features are captured
by a deterministic description in the form of the bistable
frustrated unit, considered in [8] and references therein. The
question is whether these features are universal for this motif.
It should be emphasized that the different realizations of our
motif differ not only by the biological systems in which they
are realized, but also by the degree to which the representation
in terms of two coupled loops as shown in Fig. 1 amounts to
an effective rather than a one-to-one description. In principle,
a number of intermediate steps may be included in these loops
and these intermediate steps need not be on the same level
in the case of a hierarchical organization. They could amount
to reactions between genes leading to production rates on the
level of proteins or to reactions directly between proteins and
it may make a big difference if protein A is repressed via the
binding of a transcription factor of type B to gene b (design I)
or via a direct repression of protein A via B (design II), as it
was emphasized in [9] including their implications.

When this motif is supposed to describe a genetic circuit,
a possible zoom into the dynamical details would amount to

*h.ortmanns@jacobs-university.de

a description in terms of proteins A and B, their associated
mRNA at an intermediate level, and two types of genes a

and b, respectively. Protein production of type A would result
from transcription factors of type A, activating gene a, which
is transcribed to the corresponding mRNA that leads to the
translation to proteins A. At the same time, protein A leads
to an activation of gene b via binding of the transcription
factor A to gene b, which is then transcribed to mRNA of
type b, and when translated to proteins leads to a repression
of the production of A. As a first step towards a more
realistic description we have analyzed in [8] the effect of
demographic fluctuations, that is, fluctuations in the population
size, and of fluctuations in the reaction times. We studied
simple realizations of this motif, excluding any intermediate
steps. The fluctuations in the number of reactants and in the
reaction times led to the occurrence of so-called quasicycles in
parameter regimes for which the system would be deeply in the
fixed-point regimes in the deterministic limit. In contrast, the
three regimes of the deterministic limit could still be clearly
recognized: As a function of one bifurcation parameter, the
dynamics of the coupled species A and B converges to a
fixed point and shows excitable behavior in a first regime; in
a second regime, regular limit-cycle behavior is observed; and
in a third regime, again a fixed point with excitable behavior is
seen. In a similar spirit, Stamatakis and Mantzaris compared
stochastic and deterministic realizations of the same kind of
motif in [10,11]. The main focus there was the role of intrinsic
noise and effects of the cell division cycle on the oscillatory
behavior, which we do not address here.

Intermediate steps as the production of mRNA and the
binding and unbinding of transcription factors to the promoter
region of genes induce additional time scales: the delay of the
protein production and the switching rate between gene states.
Whether the delay time and the switching rate between gene
states can be ignored compared to the time scales defined by
the protein decay rates of A and B is a matter of relative size.
From results for genetic switches, in particular for the toggle
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FIG. 1. (Color online) Basic motif of a self-activating species A,
activating also its own repressor B. Pointed arrows denote activation
and blunt arrow denotes repression.

switch [12], it is known that in the nonadiabatic limit (a case
we shall later call slow or ultraslow genes), additional fixed
points may show up.

The dynamics of our system is more versatile than that
of a toggle switch, which merely consists of two mutually
repressing genes. In addition to the fixed-point regime, we can
have a regime of regular limit cycles and the decay time of the
two proteins considerably differs (here chosen to be by a factor
of 100) since protein A is considered as the fast variable and
protein B as the slow variable. In former related studies of our
genetic circuit [9] the switching rates of genes were usually
assumed to be so high that their effect could be assumed to
average out in the sense that mRNA and proteins see only
average values of gene activation or repression.

In this paper we want to analyze the effect that the inherent
time scales of binding and unbinding rates of transcription
factors to genes can have on the modeling of coarse-grained
features. In order to project on this effect, we neglect the
intermediate step of mRNA production, but vary the binding
and unbinding rates to values that are no longer high but
of the same order as the decay times of either protein A or
protein B. We shall choose our parameters independently of
the possibility to realize our system in synthetic genetic circuits
or to find it in natural systems since it is also interesting from
the mere physics’ perspective how sensitively the bifurcation
patterns depend on the inherent time scales.

We start from a fully stochastic description in terms of
biochemical reactions directly between genes and proteins or,
equivalently, in terms of master equations (Sec. II). These reac-
tions are simulated via the Gillespie algorithm [13]. In contrast
to [8], we then do not start from a given set of deterministic
equations. Rather the goal is to derive deterministic equations
for the first moments of protein numbers from the underlying
master equations that describe the biochemical reactions. As
it turns out, our derivation is equivalent to a system size
expansion, applied to the master equation, while the derivation
of deterministic equations in [10,11] is based on mass balances
for the interacting species that are subject to conservation
conditions. Furthermore, we analyze the bifurcations of the
deterministic set and compare the results with Gillespie
simulations. We distinguish between three limiting cases to be
defined below: fast genes (Sec. III A), slow genes (Sec. III B),
and ultraslow genes (Sec. III C). This requires an appropriate
averaging procedure over fast fluctuating states on the level
of the master equations and over observables that takes
the inherent time scales into account. The resulting sets of
deterministic equations differ both in their very number and
in distinct features of their predicted bifurcation patterns. In
particular, the desired intermediate regime of limit cycles fades
away for so-called slow and ultraslow genes, as we shall see.
A summary and conclusions are given in Sec. IV.

II. MODEL

In terms of biochemical reactions, we consider the fol-
lowing realization of the motif of Fig. 1 displayed in Fig. 2.
Proteins A and B are produced under different conditions on
the expression level of genes, but we assume in all cases that the
production is proportional to the system size. The system size is
parametrized by a factor N0. For protein A we distinguish three
situations. (i) An activating transcription factor A is bound to
the promoter region of gene a so that gene a is said to be in the
on state and produces proteins A accordingly with rate ga

onN0;
here the superscript a and subscript on indicate that gene a is
responsible for the production of protein A and is itself in the on
state due to the binding of the activating transcription factor A.
(ii) No transcription factor is bound to the promoter region of
gene a, leading to a production of A in the so-called bare state
of the gene with rate ga

bareN0. (iii) A repressing transcription
factor B is bound to the promoter region of gene a and turns
the gene to the lower expression level so that we term the
gene state to be off and the production of protein A proceeds
with rate ga

offN0 accordingly. For simplicity, we leave out a
further possible situation that an activating and a repressing
transcription factor A and B, respectively, are simultaneously
bound to the respective promoter regions of gene a, leading to
a conflicting input of activation and repression.

Since protein B is only activated, but not repressed via A, we
distinguish here only two states: (i) An activating transcription
factor A is bound to the promoter region of gene b, leading to
a production of B with rate gb

onN0 and turning gene b in the
on state, or (ii) no transcription factor is bound, leading to a
production rate of gb

bareN0 of protein B and leaving gene b in
the bare state. Moreover, protein A decays with rate δA and

FIG. 2. (Color online) Zoom of the motif of Fig. 1 with a
realization via genes a and b leading to the production of proteins
A and B with rates ga

on,bare,off and gb
bare,on, respectively, depending

on the bound transcription factors to the promoter region of a and
b. Transcription factors A and B bind with rates ha

AA and ha
BB to the

promoter region of a and unbind with rates f a
AA and f a

BB , respectively.
Transcription factor A also binds to the promoter region of b with
rate ha

A and unbinds with rate f b
A . Proteins A and B decay with rates

δA and δB , respectively. For further explanation see the main text.
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protein B with rate δB . Choosing δB much smaller than δA and
gb

on,bare much smaller than ga
on,bare is a way to implement the

different inherent time scales in the protein dynamics: That of
A is much faster than that of B, the reason why we call A the
fast variable and B the slow variable also in this realization of
the motif. The decay rate of the fast protein A sets our time
scale δA = 1. Throughout this paper we choose δB = 0.01 so
that the slow protein B lives by a factor of 100 longer than
A. The reactions referring to production and decay of proteins
are summarized in the following equations:

aon
ga

onN0−−−→ A + aon,

abare
ga

bareN0−−−→ A + abare,

aoff
ga

offN0−−−→ A + aoff,

A
δA−→ φ, (1)

bon
gb

onN0−−−→ B + bon,

bbare
gb

bareN0−−−→ B + bbare,

B
δB−→ φ.

Next we discuss the binding and unbinding reactions of
transcription factors to the promoter region of genes. We
distinguish between dimer binding of A and B to gene a (corre-
sponding to a Hill coefficient of 2) and monomer binding of A

to the promoter region of gene b (corresponding to a Hill coef-
ficient of 1). (The Hill coefficient provides a quantitative mea-
sure for the binding cooperativity.) The following are the cor-
responding binding reactions along with the unbinding ones:

abare + 2A
ha

AA/N2
0−−−−→ aon,

aon
f a

AA−−→ abare + 2A,

abare + 2B
ha

BB/N2
0−−−−→ aoff,

(2)
aoff

f a
BB−−→ abare + 2B,

bbare + A
hb

A/N0−−−→ bon,

bon
f b

A−→ bbare + A.

The notation is chosen as follows: The superscript in the
binding and unbinding coefficients hi and f j indicate the
gene whose promoter region is affected in the binding and
unbinding event and the subscripts refer to the monomer (one
index) or dimer (two indices) binding and unbinding of the
transcription factors, respectively. In our Gillespie simulations
we choose the effective binding rates and the corresponding

TABLE I. Fixed parameters.

ga
bare ga

off gb
on gb

bare δA δB

25 0 2.5 0.025 1 0.01

unbinding rates to be of the same order such that

ha
AAN2

A

N2
0

= ha
BBN2

B

N2
0

= hb
ANA

N0
∼ f a

AA = f a
BB = f b

A. (3)

We normalize the binding rates that are proportional to the
number of proteins NA with the appropriate power in N0 to
make them approximately independent of the system size,
assuming that N0 ∼ NA. Our simulations have shown that in
the case of a ratio of binding and unbinding rates different
from one, it is the smaller value of the binding and unbinding
rates that determines the dynamics in the sense that the implied
changes affect only the location of the fixed points and the limit
cycle regime, but do not lead to any qualitative changes.

A. Fast, slow, and ultraslow genes

Given now the common values for the binding and
unbinding rates of transcription factors, we call the switching
of gene states, induced by the binding and unbinding events,
fast if these rates are much higher than the decay rate of the
fast protein (set to one), slow if it is of the order of the fast
protein, and ultraslow if it is of the order of the slow protein.

As we shall argue in Sec. III A, the A-protein production
rate in the on state ga

on is chosen as the bifurcation parameter,
while the production rates in the other states of gene a are kept
fixed such that ga

bare is by an order of magnitude smaller than
the usual values of ga

on and ga
off is set to zero. The production

rates of protein B are also kept fixed and chosen by two orders
of magnitude smaller than the corresponding production rates
of protein A to compensate for the 100 times longer lifetime
of protein B in the competing gain and loss terms in Eq. (25)
(see Sec. III A). Our choice of parameters is summarized in
Tables I and II.

The reactions described by Eqs. (1) and (2) correspond to
a set of master equations that tell us the change in time of the
joint probability to find at time t NA proteins of type A and NB

proteins of type B, while gene a is in one of the three states
(i = on,bare,off) and at the same time gene b is in either the
on state (j = on) or the bare state (j = bare). This probability
is denoted as Pij (NA,NB,t). The six master equations for
Pij (NA,NB,t), resulting from the six combinations of indices,
can be summarized in matrix notation according to

dPi,j (NA,NB ; t)

dt
= −(

ga
i N0 + δANA + gb

j N0 + δBNB

)
Pi,j (NA,NB) + ga

i N0Pi,j (NA − 1,NB )

+ δA(NA + 1)Pi,j (NA + 1,NB ) + gb
j N0Pi,j (NA,NB − 1) + δB(NB + 1)Pi,j (NA,NB + 1)

+ha
AA(i)

N2
A

N2
0

Pbare,j (NA,NB) − f a
AA(i)Pon,j (NA,NB) + ha

BB(i)
N2

B

N2
0

Pbare,j (NA,NB)

− f a
BB (i)Poff,j (NA,NB) + hb

A(j )
NA

N0
Pi,bare(NA,NB) − f b

A(j )Pi,on(NA,NB),

i = on,bare,off, j = on,bare, (4)
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TABLE II. Binding and unbinding parameters for N0 = 1
and NA = NB = 100.

Genes f a
AA = f a

BB = f b
A

ha
AA

N2
0

N 2
A = ha

BB

N2
0

N 2
B

hb
A

N0
NA δA � δB

Fast 100 100 100 �δA � δB

Slow 1 1 1 ∼δA � δB

Ultraslow 0.01 0.01 0.01 ∼δB � δA

if we introduce the definitions

ha
AA(on) = −ha

AA(bare) ≡ ha
AA,

ha
BB(off) = −ha

BB(bare) ≡ ha
BB, (5)

ha
AA(off) = ha

BB(on) = 0

for the dimer binding factors and

f a
AA(on) = −f a

AA(bare) ≡ f a
AA,

f a
BB(off) = −f a

BB(bare) ≡ f a
BB, (6)

f a
AA(off) = f a

BB(on) = 0

for the dimer unbinding, where the argument in parentheses
refers to the state of either gene a or gene b, referred to via i or
j in the master equation, respectively. For monomer binding
and unbinding factors we define

hb
A(on) = −hb

A(bare) ≡ hb
A,

(7)
f b

A(on) = −f b
A(bare) ≡ f b

A.

The first eight terms of the master equation for Pij (NA,NB,t)
for all values of i and j result from the production or decay of
proteins, leading to gain or loss terms as follows. Loss terms
contributing to the change of Pij (NA,NB,t) are due to the
production of protein A with constant rate ga

i N0, or the decay
of A proportional to NA, and the production of protein B with
rate gb

j N0, or the decay of B proportional to NB . Gain terms,
in contrast, are due to the production of A from a state with
NA − 1 proteins A, and the production of B from a state with
NB − 1 proteins B, or the decay of one protein A from a state
with NA + 1 proteins A, or the decay of one protein B from a
state with NB + 1 proteins B.

The last six terms in Eq. (4), of which between four and
six are different from zero, describe changes in the probability
due to the binding and unbinding of proteins to the promoter
regions of gene a and b. For example, a positive contribution
to the probability Pon,j (NA,NB,t) results from a binding of a

dimer of proteins A with rate ha
AA(on)N2

A

N2
0

, given that the system

before the binding event has NA and NB proteins with gene a

being in the bare state; a negative contribution results from an
unbinding of a dimer of A proteins with rate f a

AA(on) = f a
AA,

given that the system contains NA and NB proteins while gene
a is in the on state before the unbinding event. The other terms
are derived similarly.

III. COARSE-GRAINED DESCRIPTION
OF THE GENETIC CIRCUIT

The coarse graining that we intend to achieve refers to a
coarse graining in time rather than in space, averaging over
events on a time scale much shorter than the scale on which

the effective description should hold. In general, a coarse-
grained description goes along with a reduction of the number
of equations that describe the dynamics of the system, but the
amount of reduction one can achieve depends on the limits
that are taken, as we shall see below. Starting from the detailed
stochastic description (4), our main goal is to derive equations
for the first moments of protein numbers and to check whether
these equations reproduce the characteristic features of the
probability distribution functions, as they can be derived from
histograms of the phase portraits, obtained in the Gillespie
simulations.

We shall use two approximations. The first one amounts
to express the joint probabilities Pij (NA,NB,t) as a product
of two kind of events: the event to find the genes a and
b in certain states and the event to find certain numbers
for proteins A and B. This way we replace the conditional
probability P (NA,NB ; i,j,t) to find numbers NA and NB for
the respective proteins, given that gene a is in state i and gene b

in state j , by P (NA,NB,t), as if both events were independent.
The second approximation amounts to neglecting correlations
between average protein numbers 〈NA〉 and 〈NB〉 in replacing
higher-order moments by a product over first moments. There
are no biochemical reasons by which these approximations
can be justified a priori since proteins and genes mutually
influence each other and correlations between proteins exist.
However, as we shall see, it happens for the case of fast
genes that the proteins depend only on the average level of
the gene expression, not on the individual states; also for
ultraslow genes certain results of the numerical simulations
can be reproduced by the equations that we derive under these
simplifying assumptions. So a justification is possible only a

posteriori.
In this spirit we factorize the joint probability Pij (NA,NB,t)

according to

Pij (NA,NB,t) = aibjP (NA,NB,t), (8)

with ai the probability of finding gene a in the i state and bj

the probability of finding gene b in the j state; P (NA,NB,t)
is the probability of finding the respective protein numbers
whatever states the genes are individually in. We then consider
expectation values

〈NS〉ij ≡
∑

NA,NB

Pij (NA,NB,t)NS

=
∑

NA,NB

aibjP (NA,NB,t)NS

= 〈NS〉aibj , (9)

where S stands for the species A or B and the average
represents a summation over all NA and NB values. We have
to postulate∑

i

ai = 1 =
∑

j

bj =
∑

NA,NB

P (NA,NB,t), (10)

so that

ai =
∑

NA,NB,j

Pij (NA,NB,t), bj =
∑

NA,NB,i

Pij (NA,NB,t)

(11)
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and

∑
NANB

dPij (NA,NB)

dt
= d(aibj )

dt
,

∑
j

d(aibj )

dt
= dai

dt
, (12)

∑
i

d(aibj )

dt
= dbj

dt
.

Moreover, using (12) and (9), we have

∑
NANB

dPij (NA,NB,t)

dt
NS = d(〈NS〉aibj )

dt
,

(13)∑
i,j

〈NS〉aibj = 〈NS〉,

and

∑
i,j

d(〈NS〉aibj )

dt
= d〈NS〉

dt
. (14)

Now we multiply the master equation (4) by NA and NB ,
respectively, and sum over all NA and NB . Next we sum the
average value 〈NA〉 only over all states of gene b since the
change in NA is assumed to be independent of the individual
states of gene b, as A is only indirectly dependent on gene b

(via the production of B, binding as the transcription factor to
gene a) but directly dependent on a, and in analogy we sum
〈NB〉 only over all states of gene a by the same reasoning. We
then obtain

d

dt

⎛
⎝ ∑

NA,NB,j

NAPij (NA,NB,t)

⎞
⎠ = d

dt
(〈NA〉ai), (15)

where

d(〈NA〉aon)

dt
= ga

onN0aon + ha
AA

〈NA〉3

N2
0

abare

− f a
AA〈NA〉aon − δA〈NA〉aon, (16)

d(〈NA〉aoff)

dt
= ga

offN0aoff + ha
BB〈NA〉 〈NB〉2

N2
0

abare

− f a
BB〈NA〉aoff − δA〈NA〉aoff, (17)

d(〈NA〉abare)

dt
= ga

bareN0abare − δA〈NA〉abare

−ha
AA

〈NA〉3

N2
0

abare + f a
AA〈NA〉aon

−ha
BB〈NA〉 〈NB〉2

N2
0

abare + f a
BB〈NA〉aoff . (18)

Similarly,

d

dt

( ∑
NA,NB,i

NBPij (NA,NB,t)

)
= d

dt
(〈NB〉bj ), (19)

where

d(〈NB〉bon)

dt
= gb

onN0bon − δB〈NB〉bon

+hb
A

〈NA〉
N0

〈NB〉bbare − f b
A〈NB〉bon, (20)

d(〈NB〉bbare)

dt
= gb

bareN0bbare − δB〈NB〉bbare

−hb
A

〈NA〉
N0

〈NB〉bbare + f b
A〈NB〉bon. (21)

Upon deriving Eqs. (16)–(21), we have replaced the higher-
order moments 〈Nh

S 〉 (S = A,B; h � 2) by 〈NS〉h, neglecting
higher-order correlations between the protein numbers NS .

From Eq. (11) we obtain

daon

dt
= ha

AA

〈NA〉2

N2
0

abare − f a
AAaon,

dabare

dt
= −ha

AA

〈NA〉2

N2
0

abare + f a
AAaon

−ha
BB

〈NB〉2

N2
0

abare + f a
BBaoff,

(22)
daoff

dt
= ha

BB

〈NB〉2

N2
0

abare − f a
BBaoff,

dbon

dt
= hb

A

〈NA〉
N0

bbare − f b
Abon,

dbbare

dt
= −hb

A

〈NA〉
N0

bbare + f b
Abon.

These equations determine the time dependence of the prob-
ability to find the system in any of the five different gene
states. In a stationary state of the genes, the left-hand sides of
Eqs. (22) vanish. This leads to

aon =
ha

AA

f a
AA

〈NA〉2

N2
0

1 + ha
AA

f a
AA

〈NA〉2

N2
0

+ ha
BB

f a
BB

〈NB 〉2

N2
0

,

abare = 1

1 + ha
AA

f a
AA

〈NA〉2

N2
0

+ ha
BB

f a
BB

〈NB 〉2

N2
0

,

aoff =
ha

BB

f a
BB

〈NB 〉2

N2
0

1 + ha
AA

f a
AA

〈NA〉2

N2
0

+ ha
BB

f a
BB

〈NB 〉2

N2
0

, (23)

bon =
hb

A

f b
A

〈NA〉
N0

1 + hb
A

f b
A

〈NA〉
N0

,

bbare = 1

1 + hb
A

f b
A

〈NA〉
N0

,

using
∑

i ai = 1 = ∑
j bj . If the genes change their state

fast enough as compared to other time scales in the system,
they will reach the stationary values of Eq. (23) before the
other processes are completed; therefore, they may be used in
equations such as (16)–(21). Now we are prepared to discuss
the different limiting cases of fast, slow, and ultraslow genes.
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A. Fast genes

In the limit of fast genes we choose all binding and
unbinding rates 100 times larger than the decay rate of the
fast protein A, that is, δA. In this limit the proteins see only
average values of gene expression patterns, averaged over the
five gene states. Therefore, in this limit we sum Eqs. (16)–(18)
to predict the time evolution of NA and Eqs. (20) and (21) for
the time evolution of NB to obtain

d�A

dt
= ga

bare + ga
onx

a
AA�2

A + ga
offx

a
BB�2

B

1 + xa
AA�2

A + xa
BB�2

B

− δA�A, (24)

d�B

dt
= gb

bare + gb
onx

b
A�A

1 + xb
A�A

− δB�B, (25)

where we have defined the concentrations 〈NS〉/N0 ≡ �S

(S = A,B) and xm
n = hm

n

f m
n

with m referring to the respective
gene and n indicating the monomer or dimer binding of the
transcription factors according to the chosen Hill coefficient
in the biochemical reactions.

This set of equations corresponds also to the deterministic
limit, defined as the N0 → ∞ limit in the van Kampen
expansion [14]. Inserting the ansatz (8) into the six master
equations (4), summing 〈NAaibj 〉 over the gene states j of
gene b and 〈NBaibj 〉 over the gene states i of gene a, then
inserting for NA and NB the ansatz

NA = 〈NA〉 +
√

N0ξ,
(26)

NB = 〈NB〉 +
√

N0η,

with fluctuations ξ and η about the respective average values,
and finally using Eqs. (23), we obtain Eqs. (24) and (25) to
leading order of the van Kampen expansion, that is, O(

√
N0).

1. Comparison with the deterministic description of a bistable
frustrated unit

Let us briefly compare Eqs. (24) and (25) with the
deterministic equations formerly used to describe the bistable
frustrated unit in [8,15]

d�A

dt
= α

1 + (�B/K)

(
b + �2

A

1 + �2
A

)
− �A, (27)

d�B

dt
= γ (�A − �B), (28)

where γ is the ratio of the half-life of �A to that of �B , that
is, δB/δA. In these units, the parameter K sets the strength of
repression of �A by �B . The parameter b determines the basal
expression level of A, b < 1. The parameter α is the maximal
rate of production of A for full activation (�2

A � b) and no
repression (�B ≈ 0). If we divide Eqs. (24) and (25) by δA

and define τ = tδA and γ a
on = ga

on
δA , similarly for the other g

parameters, we have

d�A

dτ
= γ a

bare + γ a
onx

a
AA�2

A + γ a
offx

a
BB�2

B

1 + xa
AA�2

A + xa
BB�2

B

− �A, (29)

d�B

dτ
= δB

δA

(
γ b

bare + γ b
onx

b
A�A

1 + xb
A�A

− �B

)
. (30)

In the previous model we used α as a bifurcation parameter,
which multiplies �2

A in the gain term of Eq. (27); a similar

role in Eq. (29) is played by ga
on, which we therefore use

here as the bifurcation parameter. Differently from our former
parametrization, apart from the common prefactor δB/δA,
which sets the slow time scale of �B , the gain term in the
second equation (30) implicitly depends on 1/δB , compared
to the loss term. Therefore, to align the scale of production
with the slow decay, we have to adjust the production by
choosing gb

on,bare each by two orders of magnitude smaller than
the corresponding production rates of ga

on,bare, which explains
our choice in Table I. Thus the slow dynamics of protein B is
realized by both slow decay and slow production rate on the
genetic level.

Impact of the Hill coefficient. Moreover, it should be noticed
that we have changed the power of the Hill coefficient in
the binding term of the repressor concentration �B from 1
in Eq. (27) to 2 in Eq. (29), corresponding to the choice

of ha
BB(i)N2

B

N2
0

in the master equation (4). This appears as a

minor difference in the equations. The effect, however, is a
considerable broadening of the intermediate limit cycle regime
in the case of a Hill coefficient of 2. Since we are interested
in the fate of the regular oscillations in the case of slow and
ultraslow genes, it is important not to need a fine-tuning for
seeing oscillations for fast genes.

2. Bifurcation scenarios for fast genes

Furthermore, we would like to compare our Eqs. (29)
and (30) with the deterministic equations as they were derived
for design I in [9]. In common with those equations of [9]
is the limit of fast genes and the realization of the repression
operating on the transcriptional level. The main differences
between both sets of equations are first the power 1 of �A in
Eq. (30), which can be traced back to the monomer (rather than
dimer) binding of the transcription factor A to the promoter
region of gene b in Eq. (4), and second the relative weights
between gain and loss terms. In particular, the bifurcation
parameter affects in our case only the first equation directly
and the second equation indirectly via �A, while it affects both
equations directly in [9]. The combination of these apparently
minor differences leads to different bifurcation patterns: a
saddle-node bifurcation in [9] and Hopf bifurcations in our
case. When increasing our bifurcation parameter ga

on, we
see two fixed-point regimes for low and high values of ga

on,
separated by an intermediate limit-cycle regime due to two
Hopf bifurcations, so that the deterministic equations (29)
and (30) reproduce the phase structure of the bistable frustrated
unit. Our detailed bifurcation analysis of Eqs. (29) and (30) can
be found in Ref. [16]. As shown therein, the analysis requires
a further zoom into the two transition regions, that is, a high
resolution and fine-tuning of the bifurcation parameter.

Naively, one may expect that the actual bifurcation sce-
narios in the deterministic limit are irrelevant for the final
stochastic systems. It is, however, known from the work of [17]
in the context of neural networks and also emphasized in [9]
that the very bifurcation scenario may have a strong impact on
the final biological function of the motif, as the very onset of
oscillations and the embedding in phase space have an impact
on amplitude, frequency, noise resistance, and other stability
properties. It would therefore be interesting to search also here
for manifestations or remnants of these scenarios in a fully
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stochastic description, of which we studied only the gross
features so far: noisy fixed points and noisy limit cycles.

3. Gillespie simulations for fast genes

We present results of Gillespie simulations of the reactions,
listed in Eqs. (1) and (2), for parameter values as in Table I and
the first row of Table II. Figure 3, left column, shows phase
portraits of NB versus NA for three values of the bifurcation
parameter, ga

on = 100 (first row), ga
on = 300 (second row),

and ga
on = 900 (third row), which are typical for the lower

(ga
on = 100) and higher (ga

on = 900) fixed-point regime and
for the limit-cycle regime (ga

on = 300). The phase portraits
are made within a Gillespie time of TG = ∑

i dti = 5000,
where dti refers to the time interval, randomly chosen out
of a Poisson distribution in the ith Gillespie update. The

regimes are termed after their deterministic pendants: In the
deterministic limit N0 → ∞, the clouds of NA and NB values
in the first and third rows would shrink to the lower-value and
higher-value fixed points as predicted from Eqs. (24) and (25),
while the clouds in the second row would contract to a limit
cycle. [The higher density of (NA,NB ) values for small and
large values of NA is due to the fact that also the stochastic
version of a limit cycle spends more time in regions where NB

drastically changes since B is the slow variable, while large
changes in NA happen rapidly since A is the fast variable.] The
probability density functions in the right column of the figures
reflect the probability of finding concrete combinations of
(NA,NB ) values in the phase portraits. They are displayed for
a quantitative comparison of their maxima with the prediction
of the location of the fixed points and the extension of the
limit cycle from the deterministic equations. These locations

FIG. 3. Gillespie simulations for fast genes, that is, ha
AA = ha

BB = 0.01, hb
A = 1.0, and f a

AA = f a
BB = f b

A = 100. Phase portraits of the
numbers of proteins NB versus NA within Gillespie time TG = 5000 (left column) and corresponding probability density functions (PDF) (right
column) of NA (solid line black) and NB (dashed line black); the gray solid and dashed vertical lines indicate the position of the fixed points in
the first and third rows. In the first and third rows ga

on = 100 and 900, respectively; in the left panels we see the stochastic pendant of the fixed
points observed in the deterministic case. For clarity, we do not plot every Gillespie step, but only 5000 of them. The maxima of the PDFs agree
well with the fixed points in the deterministic description. In the second row we see the stochastic version of limit cycles for ga

on = 300. The
vertical lines here mark the maximal and minimal extensions of the limit cycles in �A and �B when integrated as solutions of the deterministic
equations (24) and (25). These plots confirm our former model (27) and (28) as a suitable coarse-grained description.
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FIG. 4. Time series of the number of protein species S [S = A

(gray) and S = B (black) (top)] and the gene states (bottom), recorded
during the Gillespie steps. The status of gene expression corresponds
to three levels, labeled with ao, ab and af for gene a if a is in the on,
bare or off state, respectively, and to two levels bo and bb if gene b is
in the on or bare state, respectively. A gray vertical line is drawn if
gene a switches between the on and bare or the bare and off levels, a
black vertical line if gene b switches between the on and bare levels.
Small white vertical stripes within the gray and black bands indicate
the absence of switching events. The bifurcation parameter is chosen
as ga

on = 900. The other parameters are chosen as ga
bare = 25, ga

off = 0,
gb

on = 2.5, gb
bare = 0.025, ha

AA = ha
BB = 0.01, hb

A = 1, f a
AA = f a

BB =
f b

A = 100, δA = 1, and δB = 0.01.

are indicated via the vertical lines. The vertical lines hit the
maxima quite well where they correspond to fixed points; the
lines also match the typical extension of the cloud in the case
of the limit cycles. Figure 4 (top) shows the time series of
the numbers of protein A, NA (gray), and of protein B, NB

(black), associated with the phase portrait shown in the bottom
row of Fig. 3. These numbers of proteins are fluctuating about
constant values (NA ∼ 800 and NB ∼ 200). The fluctuations
between the different gene states, in particular between the on
and bare states, is so fast that they appear as a gray and black
band (Fig. 4, bottom), so that the protein values, shown in the
upper part of the figure, only fluctuate about the fixed-point
values, but cannot follow individual gene expression levels.

In the Gillespie simulations of our former realization of
the genetic circuit [8], we identified quasicycles deeply in the
fixed-point regimes. Such cycles, caused by large demographic
fluctuations, are also found in the present realization of the
genetic circuit if we wait sufficiently long for such fluctuations
to happen. The corresponding figures are not displayed.

B. Slow genes

In the limiting case of slow genes, the binding and
unbinding rates are chosen to be of the order of the decay rate
of the fast protein so that they are still fast as compared to the
decay rate of the slow protein B. In this case, a self-consistent
averaging procedure for deriving deterministic equations is not
available. Roughly speaking, the reason is that A sees the gene

FIG. 5. Same as Fig. 4, but for slow genes, that is, ha
AA = ha

BB =
0.0001, hb

A = 0.01, and f a
AA = f a

BB = f b
A = 1.0. Here the switching

between on and bare states is much faster than the indirect switching
between on and off states. The other parameters are the same as in
Fig. 4.

states separately, while B sees only their averages, which is
inconsistent in a coupled set of equations for 〈NA〉 and 〈NB〉.
Figure 5 shows that the switching of gene a between on and
bare states is much faster than the indirect switching between
on and off states, so protein A can follow the corresponding
differences in the expression level, while protein B follows the
switching with delay without reaching plateaus. In particular,
we interpret the clouds of events in the Gillespie simulations,
displayed in the second row of Fig. 6, also as a stochastic
switching between two fixed points rather than a noisy version
of limit cycles since in contrast to the corresponding phase
portrait in Fig. 3 there is no empty space between large
and small NA values; the events jump from the left- to the
right-hand side rather than performing full cycles, in agreement
with the time series of NA in Fig. 5.

C. Ultraslow genes

Independently of the possibility to realize this limit in
natural or synthetic genetic circuits, it is of interest from the
dynamical point of view what the effective coarse-grained
description in the deterministic limit amounts to in the case
of ultraslow genes. This limit refers to a situation in which
the binding and unbinding rates of transcription factors are of
the order of the slow protein B. So the time that genes a and
b spend in one of their possible states is long as compared
to 1/δA, the lifetime of protein A. Therefore, protein A sees
gene a in three distinct states, as shown in Fig. 7. It then no
longer makes sense to further sum Eqs. (16)–(18) over any
states of gene a. Protein B sees still fast switching b genes
during two periods (before t = 2000) in Fig. 7, but also here
it can no longer be justified to average Eqs. (20) and (21) over
any states of gene b, so we are left with these five equations,
which can be summarized as

d(〈NS〉si)

dt
= si

d〈NS〉
dt

+ 〈NS〉dsi

dt
, (31)
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FIG. 6. Same as Fig. 3, but for slow genes, that is, ha
AA = ha

BB =
0.0001, hb

A = 0.01, and f a
AA = f a

BB = f b
A = 1.0. The interpretation

of the phase portrait in the second row remains ambiguous: An
interpretation in terms of a limit cycle is less likely due to the absence
of a white area, which should not be visited by the Gillespie trajectory
in the case of a limit cycle.

with S = A,B, and si = aon,abare,aoff for S = A and bon,bbare

for S = B, respectively. If we insert for dsi/dt Eq. (22) and
solve (31) for d〈NS〉/dt , we arrive at the following set of
uncoupled differential equations for 〈NS〉/N0 =: �S :

d�A

dt
= ga

i − δA�A, i = on,bare,off
(32)

d�B

dt
= gb

i − δA�A, i = on,bare

with solutions that for t → ∞ exponentially decay to the fixed
points gs

i /δ
S with S = A,B; s = a,b; and i = on,bare,off for

s = a and i = on,bare for s = b, leading to six fixed points.
The total number of equations is therefore not reduced as
compared to the original set.

Again we may interpret Eq. (32) as the deterministic limit
of Eq. (4) for ultraslow genes. Inserting (26) into (4) and
summing 〈NAaibj 〉 over the gene states j of gene b and
〈NBaibj 〉 over the gene states i of gene a, we obtain to

FIG. 7. Same as Fig. 4, but for ultraslow genes, that is, ha
AA =

ha
BB = 0.000 005, hb

A = 0.0001, and f a
AA = f a

BB = f b
A = 0.01. Pro-

tein A sees gene a in three different states, while there are periods
during which protein B still may see averages over on and bare
states, here visible in two time intervals before t = 2000, where gene
b switches frequently between on and bare.

leading order [O(
√

N0)] of the van Kampen expansion the
three equations for �A and the two for �B as in (32), here
without making use of Eq. (23) since the genes cannot be
assumed to reach their stationary states due to their slow
dynamics.

1. Gillespie simulations for ultraslow genes

In the stochastic realization of this limit of ultraslow genes
we expect the system to switch between three possible states
with respect to NA and two with respect to NB , so between six
fixed points in the deterministic limit. The former oscillations
in the limit-cycle regime are clearly gone. For NA we see in
both the phase portraits and the probability density functions
remnants of three distinct fixed-point values of NA, while the
remnants of two possible fixed-point values of NB are only
vaguely visible as two maxima in the probability distribution
in Fig. 8. Obviously the ultraslow genes are still not slow
enough to allow protein B to follow protein A and to adjust to
the different states of gene b.

It should be noticed that in spite of the two crude
approximations, entering the derivation of Eqs. (16)–(21), the
deterministic equations (32) correctly reproduce the stochastic
pendants of the fixed points (for NA) and the location of the
maxima of the probability distribution functions, measured
via the Gillespie simulations. As soon as the binding rates are
even smaller by a factor of 10 than the decay rate of the slow
protein B, B settles to the fixed-point regimes as predicted by
Eqs. (32).

IV. CONCLUSION

The motif of the self-activating species that activates its
own repressor is found in many realizations in biological
systems. From the physics’ point of view one would like to
identify universal features of the dynamical behavior. Certainly
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FIG. 8. Same as Fig. 3, but for ultraslow genes, that is, ha
AA = ha

BB = 0.000 005, hb
A = 0.0001, and f a

AA = f a
BB = f b

A = 0.01. In all three
rows, left column, we see remnants of three fixed points in the deterministic limit with respect to values of NA, while the values of NB are
broadly spread, since B is too slow to follow the different states of gene b. The vertical lines from the deterministic prediction of the fixed
point values (right column) match well the maxima of the PDFs for NA and only roughly for NB . The insets zoom into the (NA,NB ) values of
the two fixed points for lower NA values.

regimes of excitable and oscillatory behavior are common
features found over a wide range of parameters. Also in
our current realization we have recovered three regimes of
excitable, oscillatory and excitable behavior, respectively, as a
function of one bifurcation parameter, which we have chosen
as ga

on, the production rate of protein A if gene a is in the on
state. However, as we have pointed out, these three distinct
regimes are only obtained in our realization if the binding and
unbinding rates of genes are fast as compared to the other
inherent time scales, here the decay rates of the fast A and
the slow B proteins. For this case we derived a reduced set
of only two deterministic equations, equivalent to the former
ones of [15].

As soon as the binding and unbinding rates are no longer
high but of the same order as the decay time of either protein,
the averaging procedure for deriving a deterministic limit has
to be changed or even abandoned; the proteins see no longer
average values of the gene states but tend to follow the distinct
states unless their own production is too slow to reach the

appropriate state in time. These features were demonstrated
by our Gillespie simulations of the six master equations. For
the ultraslow genes they were also visible in the derived
description in terms of five deterministic equations. In both
cases of slow and ultraslow genes, the intermediate regime of
stable regular oscillations is absent.

The deterministic equations fit best the numerical results for
the limit of fast genes. For the ultraslow genes they correctly
reproduce the absence of limit cycles as well as the number
and locations of the noisy pendants of fixed points in the
concentrations of protein A, while for protein B it is the
number and roughly the location of maxima of the probability
density functions of NB that are correctly predicted by the
deterministic equations.

In view of universal features one should keep in mind
that we have to deal with systems of nonlinear dynamics.
Therefore, one should be aware that apparently minor changes
such as the value of the Hill coefficient may have pronounced
effects. Even if the qualitative picture after such a minor change
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remains the same, quantitative features such as the extension
of the limit-cycle regime can drastically change, as we have
seen. Such a change can finally determine the relevance of
the model for the real biological system. For real systems
stable oscillations would probably not be observed if they
were restricted to a tiny interval of the bifurcation parameter.

Although we have chosen our parameters independently
of their possible realization in concrete genetic circuits, the
conclusion from our analysis is generic and applies to natural
biological systems: It is not only the gross features of the
topology of the motifs and the couplings that determine the
dynamical performance. In particular, if different time scales

are inherent, the gross bifurcation patterns may depend on their
ratios and coarse-grained descriptions depend on them.
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