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Re-examining the directional-ordering transition in the compass model
with screw-periodic boundary conditions
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We study the directional-ordering transition in the two-dimensional classical and quantum compass models
on the square lattice by means of Monte Carlo simulations. An improved algorithm is presented which builds
on the Wolff cluster algorithm in one-dimensional subspaces of the configuration space. This improvement
allows us to study classical systems up to L=512. Based on this algorithm, we give evidence for the presence
of strongly anomalous scaling for periodic boundary conditions which is much worse than anticipated before.
We propose and study alternative boundary conditions for the compass model which do not make use of
extended configuration spaces and show that they completely remove the problem with finite-size scaling. In
the last part, we apply these boundary conditions to the quantum problem and present a considerably improved
estimate for the critical temperature which should be of interest for future studies on the compass model. Our
investigation identifies a strong one-dimensional magnetic ordering tendency with a large correlation length as
the cause of the unusual scaling and moreover allows for a precise quantification of the anomalous length scale

involved.
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I. INTRODUCTION

The quantum compass model [1] has recently seen a re-
naissance in condensed-matter physics, which was to a large
part triggered by the observation that it may protect g-bits in
a quantum computing setting [2,3]. This observation may be
of actual practical relevance as the quantum compass model
can be realized by a special connection of Josephson junction
arrays, a concept with which first experimental successes
could be reported [4]. A concrete realization in terms of real
materials has also been proposed recently [5]. Apart from the
current interest from the quantum information perspective,
the quantum compass model is relevant as an effective de-
scription for orbital ordering and was originally proposed in
this setting [1]. Due to the diverse interest in the model,
recent contributions in the literature have studied many dif-
ferent aspects, ranging primarily from detailed investigations
of the ground-state properties [2,6] to a study of the possible
low-temperature phases and phase transitions in both the
classical and quantum cases [7-9]. Complementary to that,
recent studies considered modified variants of the compass
model in one-dimensional chains [10-12] or in a magnetic
field [13]. In Ref. [14], two of us have proposed and studied
a two-dimensional (2D) geometric variant of the compass
model. The model is also known to have relevance for other
settings such as p+ip superconductors [15,16], the concept
of dimensional reduction [17], and was recently shown to be
isospectral [18] to Kitaev’s toric code [19] in a field.
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The 2D compass model (CM) is defined on a square lat-
tice of N=L XL sites as a (pseudo-) spin model by the
Hamiltonian

Hem = sz Sic ?+ex + Jvz SzyS?:i-ev’ (1)

where S} and S are components of a two-component spin S;
at site i. The spin can represent both classical and quantum
degrees of freedom. In the latter case, S* and $” are repre-
sented by the usual Pauli matrices, i.e., S=(1/2)(o,,0,). The
classical case is analogous to an ordinary classical XY spin
S=(5*,8") € S'. The interesting feature of Eq. (1) is its an-
isotropy in spin and lattice space.

For J, # J,, the ground state of Eq. (1) can be described
by (weakly) coupled Ising spin chains oriented in the x or y
direction depending on |J,| > |J,| or [J;| > |/ ], respectively.
The quantum phase transition between these differently ori-
ented ground states was shown to be of first order [20,21].
One interesting feature of that work is that Ref. [21] gives
one of the first nontrivial applications of the recently intro-
duced infinite pair-entangled tensor product states (iPEPS)
[22] which aim at providing a new numerical approach to 2D
interacting quantum systems. Following the same line of re-
search, a quantum phase transition in a generalized CM has
also been investigated recently [23] using the related multi-
scale entangled renormalization ansatz (MERA) [24].

Here, we will focus on the symmetric case J,=J,=-1
which allows—due to a discrete x <y symmetry in spin and
lattice space [7]—for a thermal phase transition to a direc-
tionally ordered low-temperature phase without long-range
local magnetic order [7,9]. In Ref. [9], two of us have studied
this transition extensively for both the classical and quantum
CMs. One of the main results of this contribution is the con-
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firmation that the CM suffers from extraordinary finite-size
corrections when studied in a simple canonical ensemble on
the torus, contradicting the naive assumption that generic
periodic boundary conditions are optimal. A solution to alle-
viate this problem had already been suggested in Ref. [7],
where the authors proposed the use of so-called fluctuating
boundary conditions (FBCs) (sometimes also referred to as
“annealed boundary conditions”). These formally place the
CM in a larger configuration space where the partition func-
tion is given by

VAREED [ 1 dS; exp(- BHcw) (2)

{Iy=%1} i

instead of just
Zppc = f [1dS; exp(= BHcw) (3)

for the standard canonical ensemble with periodic boundary
conditions (PBCs). Here, {J,} denotes the set of boundary
bonds on the periodic lattice which are allowed to fluctuate
between —1 and +1 individually [44]. One assumes that the
J,, degrees of freedom become unimportant in the thermody-
namic limit. Indeed, it was shown in Refs. [7,9] that FBCs
lead to very good finite-size scaling (FSS) properties in the
classical case from which we have good evidence that the
directional-ordering (DO) transition in the CM is in the 2D
Ising universality class.

Our good experience with these FBC is unfortunately of
no use for the quantum CM because of the minus-sign prob-
lem. Furthermore, simulations of the quantum CM are quite
demanding and one may currently not reach large lattice
sizes (say L>64) with reasonable effort. In result, our cur-
rent estimate of the critical ordering temperature is not very
precise as it rests on the use of nonoptimal boundary condi-
tions on moderate lattice sizes [9]. Yet, given the large inter-
est in the model, we find it valuable to try to improve the
accuracy of the critical temperature. A better knowledge of
such quantities is necessary in order to tackle more advanced
features such as the influence of disorder, etc. [8]. Apart from
the motivation to improve the available critical data, there
are further unsatisfactory points or open problems regarding
the previous results [7,9]. These especially concern the ad
hoc use of FBC to get precise results at the price of intro-
ducing extra degrees of freedom to the model. Why do these
boundary conditions work so well and why do we observe a
complete failure of the critical Binder parameter on periodic
lattices? In this work, we (re)address those questions and
present improved results on critical properties of the classical
and quantum CM that we obtained with a combination of
algorithmic advances and by employing so-called screw-
periodic boundary conditions.

The outline of the rest of the paper is as follows. In Sec.
II, we start with a revision of our Monte Carlo (MC) ap-
proach and present an improved MC algorithm building on
the Wolff cluster method. The latter will make possible a
much more detailed comparison of FSS properties on peri-
odic vs. fluctuating boundary conditions in Sec. III, going
considerably beyond Ref. [9]. We will show that periodic
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boundary conditions behave even worse than previously an-
ticipated. A solution to this problem is thereafter suggested in
form of screw-boundary conditions. These will allow to re-
cover very good scaling properties without making use of an
extended configuration space (in form of fluctuating bound-
ary conditions). Moreover, they can be readily employed in
quantum Monte Carlo (QMC) simulations which is the topic
of Sec. IV, where improved critical data for the quantum CM
are presented. We end with a summary and conclusions in
Sec. V.

II. OBSERVABLES AND MC APPROACH

In this section, we present the standard approach to simu-
late the classical CM and describe in detail how we can
improve the algorithm by making use of ideas from well-
known cluster MC updates. A short discussion of the QMC
approach for the quantum version of Eq. (1) is postponed to
Sec. IV.

A. Revision of classical MC approach and relevant
observables

In the classical case, we have investigated the ensembles
specified by Egs. (2) and (3) using the METROPOLIS algo-
rithm combined with the parallel tempering (PT) scheme
[25-27] parallelizing simulations at different temperatures.
Technical details of this approach are described in Ref. [9].
During a MC simulation, we measure an order parameter
known to describe directional ordering

1
D= N|Ex_Ey s (4)

with E,=3,5%S"

L z+ex

its susceptibility

and E,=2,57S?,, . We concentrate here on
- y

x=N(D* - (D), (5)

which diverges at the phase transition temperature 7,.. On
finite systems, the divergence in ) is smoothened into a finite
maximum X, (L) at some pseudocritical temperature
Tmax(L). Finite-size scaling predicts the following two fun-
damental scaling relations (see, e.g., Refs. [28-30])

Xmax (L) ~ LY, (6)

T L) =T, +al™"", (7)

which are the primary means used in this paper to obtain the
critical exponents v, y and the critical temperature 7, and to
discuss anomalous scaling. From MC simulations at discrete
temperatures in the vicinity of the phase transition, we obtain
Xmax(L) and T,,.(L) by making use of standard reweighting
techniques [31] and optimization algorithms. Error estimates
for these quantities are obtained by “jackknifing” this proce-
dure [30,32].

B. Wolff-like cluster update

Up to now, the application of the PT technique has proven
to be quite efficient, enabling a study of the classical (and
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quantum) CM on moderately large lattice sizes [9]. However,
for linear system sizes of about L= 100, we observe that the
method runs into problems as the equilibration times in the
MC simulation become visibly very long. In order to go
efficiently beyond such lattice sizes, a further improved
method is therefore called for.

Indeed, as we shall propose here, a rather straightforward
improvement is possible with a special one-dimensional
Wolff-cluster update [33]. To see this, reconsider the ordi-
nary Wolff-construction for O(N) spin models with Hamil-
tonian H o =J2;S;S;. Following Ref. [33], the operation

R"(S)=8,-2(S;-r)r (8)

denotes a reflection of the [O(N)] spin S; along a hyperplane
defined by the vector r. Given a random r, Wolff clusters are
constructed using the bond activation probability

P;;=1—exp(min[0,- JB[S,;S; - S;R(S,)]) )

for bonds (ij). The spins in each cluster are then flipped by
applying S;— R*(S;) which implements the (nonlocal) MC
move. The principle of detailed balance is satisfied by requir-
ing the invariance

H[Rr(si)’Rr(Sj)] = H(S[’Sj) =H; (10)

of the bond energy H;; (H=2H;;) under reflection of the
spins for each bond (ij) of the lattice. While this is true for
Ho) it is clearly not true for the CM in general. However,
we know that for the CM, the following special reflection
operations R®% and R® with

R%(S7,87) = (= S35, (11)

ReX(Sf’S:) = (Sf’_ S;) (12)
are symmetries on a subset of all bonds (i, j) [2,6], namely,

that
H[Re.v(S,-),Rey(SHex)] = H(Si,Siﬂx), (13)

H[Rex(si)aReX(SHey)] = H(Si’si+ey)' (14)

Thus, we may employ R® and R® to construct one-
dimensional clusters of spins along the x or y direction. Em-
ploying the form of the CM Hamiltonian (1) and the general
relation (9), we obtain the following bond-activation prob-
abilities:

Prive,= 1 = expl= 21, B5IS% ), (15)
Pii+e'V =1-exp(- 2‘])':85';S{+e), (16)

for cluster growth along the x and y directions, respectively.
Note that the cluster construction is really strictly one-
dimensional, i.e., when we build x clusters, we do not at-
tempt to add y bonds to the cluster which would break con-
dition (13). Cluster construction starts as usual by picking a
random start site from which cluster growth proceeds.

An obvious difference to the original Wollf algorithm is
the discrete set of possible spin reflections. Thus, the cluster
update alone does not satisfy ergodicity. This is not a prob-
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FIG. 1. (Color online) (a) Comparison of the autocorrelation
time 7 at the critical point using periodic boundary conditions.
Comparison of 7(L) for the pure METROPOLIS and the combined
METROPOLIS +cluster update. An overall improvement for 7 as
well as better scaling is evident for the cluster variant. (b) Compari-
son of 7 for L=36 as obtained from the pure parallel tempering
approach with the improved parallel tempering variant.

lem as long as ordinary METROPOLIS (as well as PT updates)
are performed in addition. In each MC sweep, we perform on
average L cluster updates in both x and y directions as well
as N local METROPOLIS updates. We have verified by detailed
comparison to existing data that the new algorithm works
correctly. Let us proceed directly to an evaluation of the new
update. In order to examine its performance, we ran several
tests on lattice sizes L=16,24,32,48,64 (96 in case of the
cluster update) in the ensemble Zppc at the pseudocritical
temperatures T, (L) (known from our previous study). In
the first test, we switched off the PT update and compared
the autocorrelation time 7 of the energy time series which
should scale at the critical point like 7~ L?. Figure 1(a) com-
pares the scaling of 7 with and without the above cluster
updates. Clearly, we find that the cluster algorithm behaves
much better. Apart from the expected absolute reduction of 7,
we observe a decrease of z from z=3.5 to z=2.5 which is
apparent from the different slopes in the log-log plot. Next,
we also compared the autocorrelation time 7 in simulations
employing the PT algorithm. Without performing a detailed
scaling analysis, it is evident from Fig. 1(b) that the cluster
update further improves the PT algorithm.

The methodological improvement presented here allows
to study much larger system sizes than before. In the course
of this study, we have performed simulations up to L=512.
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III. CLASSICAL COMPASS MODEL: RESULTS

In this section, we are going to employ the algorithmic
advances to restudy critical properties of the classical CM.
Special focus is given to a more detailed comparison of en-
sembles Zppc and Zpgc. Based on this comparison, we will
thereafter propose the use of alternative boundary conditions
and study their effects on FSS properties.

A. Revisiting periodic and fluctuating boundary conditions

Previous investigations of the DO transition have clearly
shown that the use of ensemble Zgp( is favorable over Zpgc
in terms of FSS properties [7,9], where the most severe “fail-
ure” of Zppc establishes itself in an unconventional behavior
of the Binder parameter. Despite these observed defects, it
was argued [9] that one may still employ PBC to extract the
critical properties given the system sizes L are large enough.
This argument was supported from extrapolations of pseud-
ocritical temperatures Ty, (L) which gave consistent results
for both Zppe and Zpgc of about 7,=0.1464(2).

With the newly available cluster procedure, we will inves-
tigate this issue further to make more quantitative statements
about how ensembles Zpg- and Zpgc- converge toward an-
other asymptotically. We have thus simulated the CM for
system sizes between L=12 and L=512, pushing L a factor
of 5-10 times larger than before. In comparison to Ref. [9],
we have added system sizes L=96,128,164,256,512.

The observables described in Sec. II A were estimated
using about 10° samples. We have taken measurements only
every m MC sweep such that the final autocorrelation time
was small, 7<<10 (m was in the range of 4-100). For a
presentation of the typical temperature dependence of the
order parameter and susceptibility, we refer the reader to the
previous work of Ref. [9]. Here we just present the pertinent
data obtained for the pseudocritical temperature T, (L) and
Xmax(L). Figure 2 summarizes the FSS analysis for the two
different ensembles considered. The partly surprising results
of this comparison can be summarized as follows.

First, we observe that the FSS behavior for Zggc is fully
consistent with earlier results, i.e., data obtained on larger
lattices agree with the extrapolations from smaller lattice
sizes. This further confirms the claim of 2D Ising universal-
ity beyond any reasonable doubt. Indeed, fits to Eq. (7) yield
our estimate of the critical temperature and critical exponent
as

T.=0.14621(2), v=1.00(1), (17)

(with x?/d.o.f=1.4 where d.o.f. denotes the number of de-
grees of freedom) which represents an improvement of
roughly 1 order of magnitude over the previous estimate.
Together with the critical exponent y=1.75(1) obtained from
analyzing the scaling of x.. this is in perfect agreement
with the exactly known critical exponents for the 2D Ising
model.

Second—and this is the surprising result—the scaling for
Zppc reveals a more complicated or stronger anomalous scal-
ing than previously thought. This is especially apparent in
Fig. 2(a) where pseudocritical temperatures for L>96
clearly deviate systematically from the previous extrapola-
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FIG. 2. (Color online) Improved finite-size data for the classical
compass model with PBC and FBC. (a) Extrapolation of the pseud-
ocritical temperatures T, (L). Data for FBC follow a perfect
straight line. The periodic case shows a clear bend for system sizes
L>96 not anticipated before based on the straight line extrapola-
tion in Ref. [9]. (b) The susceptibility maxima divided by N behave
nonmonotonously and indicate a resonance phenomenon at about
L=120 (indicated by the arrow). (c) FSS of ypax in a log-log plot.
For FBC, a power law is evident with y/v=1.75(1). For PBC, a
power-law extrapolation is not justified and different scaling re-
gimes are apparent.

tion [upper (blue) straight line] of Ref. [9] based on the as-
sumption of 2D Ising scaling for L>30. Note that the upper
(blue) line was also justified because it matched exactly with
the result from Zggc-. However, instead of a clear power law
scaling in 1/L, we observe a “double bend” in the FSS curve
which seems to collapse onto the curve from Zggc for very
large system sizes L =256 [inset of Fig. 2(a)].

The same anomalous scaling behavior shows up in the
quantity xma.x(L)/N of Fig. 2(b) which shows a strong non-
monotonic behavior at a length scale of about L= 120. Thus,
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any attempt to extract the critical exponent vy from a log-log
plot as in Fig. 2(c) is doomed to fail on length scales below
L=256. The observed nonmonotonic behavior also shows
up in the Binder parameter but we postpone a discussion on
that to the next subsection.

As a matter of fact, it is thus totally unreliable to obtain
critical exponents and the critical ordering temperature 7,
from simple extrapolations in the ensemble Zpgc on periodic
lattices (at least for L <256). The previous seemingly correct
extrapolation was a matter of coincidence. Turning this ob-
servation around, one might even be tempted to argue for
non-Ising behavior in the CM if one did not have access to
the largest lattice sizes studied here. This situation is most
unsatisfying and calls for a deeper investigation and a
workaround. We will attempt precisely this in the next sub-
section.

B. Screw-periodic boundary conditions

The main message of the discussion so far is that PBC
shows a more complex scaling behavior than previously
thought with the appearance of a clear resonance effect and
at least two different scaling regimes. This disqualifies the
use of PBC to extract critical properties. The FBC ensemble
on the other hand also has—despite its intriguing
performance—a couple of drawbacks. The most important of
all is that we may not easily use it in QMC because fluctu-
ating couplings induce a minus-sign problem. Second, one
may wonder whether it is safe to use them in the first place
as a trustable FSS theory is not available and one is actually
simulating a different model. Here, we would like to ask
whether it is nevertheless possible to deal with the described
problem using only slightly modified boundary conditions
without going to a higher-dimensional configuration space.

It is quite obvious that the torus geometry hides or shields
the true physics going on. One possibility to unveil the true
properties of the CM in the thermodynamic limit is to intro-
duce systematic deformations to the torus. In this way, we
can at least see how the problem is alleviated (or made
worse). Among all such deformations, one may consider a
Mobius strip or so-called screw-periodic boundary condi-
tions. Such deformations are very easy to implement on the
computer and cost no extra updates. We decided to study
screw-periodic boundary conditions (SBC) which are defined
by

(r,y+1) if y<L-1

(xy + 1):{([x+S]mod L0) if y=L—1,

{(x+1,y) if x<L-1

(x+1,y)= . (18)
(0,[y+SJmod L) if x=L-1,

where, e.g., (x,y+1) denotes the nearest neighbor of site
i=(x,y) in y direction. The parameter S is a parameter that
determines how much we deform the clean torus case. Figure
3 illustrates this concept for two cases S=1 and S=2. The
cases S=0 and S=L are obviously identical to the usual PBC.
For a given lattice size, S may take only certain values in
order to satisfy the overall periodicity constraint. The pos-
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FIG. 3. (Color online) Illustration of screw-periodic boundary
conditions along the y axis as defined in Eq. (18). Two examples

with (a) S=1 and (b) S=2 are shown. In our simulations, the same
procedure is applied to the x direction.

sible S values are given by the set of all (distinct) divisors of
L. SBC are discussed in various forms in the literature,
sometimes called helical boundary conditions or shift bound-
ary conditions. Mostly, they have been employed because
they have some advantages regarding implementation issues
[29,34] or to complement FSS analysis [35] as they approach
the thermodynamic limit with (slightly) different pseudocriti-
cal temperatures. A further useful application is the con-
trolled formation of tilted domain walls in the Ising model
[36]. Note that each site still has exactly four neighbors
which distinguish SBC from open boundary conditions.

SBC allows one to put the lattice points into representa-
tion classes which we will call loops. A loop is the set of all
points i that the screw or helix passes until it closes itself.
The length of a loop is called L; and is the number of points
it contains. Each point i is obviously member in exactly two
loops: one for the x and one for the y direction. Given a
lattice size L and compatible screw parameter S, each loop
has length L,=L?/S and for S=1, all points belong to the
same loop. The notation introduced here becomes relevant
when discussing the symmetry properties of the CM and its
ground-state degeneracies.

A simple check confirms that the usual one-dimensional
spin flip operators P;=Il,07, ) and Q,,=Il,07,, ) [2,6] (Which
are related to operations R and R® in Sec. I B) are no
longer symmetries of the (quantum) Hamiltonian (1) if
S+#0. However, they can be generalized to the SBC case
with the following operators:

p=[1a, (19)
jel
0,=11a, (20)

iem

where [ and m now refer to a loop along the x or y direction.
As we can control the number of independent loops via the
parameter S, we can control the number of such symmetry
operators and thus the degeneracy of the ground state. In-
deed, it is possible to change the ground-state degeneracy
from exponential growth 2571(§=0) to a constant 2 (S=1),
an observation which may have interesting physical conse-

066702-5



WENZEL, JANKE, AND LAUCHLI

0.009

0.007

0.005

0.003

0.001

0.14 0.15 0.16 0.17 0.8 0.9 02 021
T

FIG. 4. (Color online) Dependency of the susceptibility x(7) for
L=36 on the choice of the screw parameter S. The case S=36 is
equivalent to periodic boundary conditions. With decreasing S (or
increasing the boundary loop length), a clear shift in the peak is
observed with an apparent resonance at S~ 12. For S=1, the sus-
ceptibility is (nearly) identical to the susceptibility obtained in the
fluctuating bond ensemble Zggc (continuous line without symbols).

quences. The thermal DO transition studied here should not
be affected by this as the relevant global Z, symmetry is not
changed.

Let us proceed to study the effect of SBC in actual MC
simulations. To this end, we choose a system size L=36
which allows us to study quite a large number of screw pa-
rameters $=0,1,2,3,4,6,9,12,18. In each case, we mea-
sured the order parameter D and its susceptibility y for a
couple of temperatures close to the phase transition. Figure 4
depicts the drastic effect of SBC on the susceptibility x.
Starting from the periodic case S=0 (or S=36), we observe
that y moves massively toward the curve from Zggc for de-
creasing S>>0 or increasing L;. The case S=1 gives an al-
most identical result to that obtained with fluctuating cou-
plings in the Zpgc ensemble. Second, it is apparent that there
is a resonance at some length scale determined by S~ 12 at
which the fluctuations in the system are strongest.

The above picture thus suggests that S=1 resolves the
FSS problems observed in the CM for the susceptibility al-
most completely. Furthermore, it gives a hint at the order of
the disturbing length scale (L,~36%/12~110) which is
present and which prohibits the extraction of correct critical
data. Any solution that restores good FSS properties should
also repair the behavior of the Binder parameter

1¢D%
- 3 <D2>2 ’

whose normally used power is due to a scale invariance at
the critical point with only leading-order corrections. Thus, if
SBCs really solve the problem, they should also remove the
very unconventional behavior in the Binder parameter which
was observed with PBC in Ref. [9]. Figure 5 shows a com-
parison of the finite-size behavior of B for the cases S=0
(periodic) and S=1 performed close to the critical point
given in Eq. (17). The periodic case shows the expected non-

B=1

(1)
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FIG. 5. (Color online) Finite-size behavior of the Binder param-
eter B at the critical point T=T,. for periodic (S=0) and screw
boundary conditions with S=1. While there is a strong anomaly for
S=0, the case S=1 almost completely removes the defect and is
consistent with a scale-independent value of B at the critical point.
Moreover, it is consistent with the usual 2D Ising value [37,38]
indicated by the horizontal line. Note that the symbol size for S
=1 is bigger than the error bar.

monotonous behavior (with a possible restoration for
L>256). The S=1 screw restores the expected scaling
behavior—up to a small bump for L < 12—completely, i.e., it
is almost a constant for various system sizes and agrees
rather well with the known value of B~=~0.61 [37,38] for the
2D Ising model (constant line in Fig. 5). Note, however, that
the agreement is not expected to be perfect as boundary con-
ditions can have (a small) influence on the (only weakly
universal) critical value of B [39]. For an analysis of the
Binder parameter for FBC, we refer the reader to Ref. [9].
This brings us into the position to claim that SBCs are a
very efficient tool to study critical properties of the CM.
Before we apply these to the quantum CM, let us try to shed
some light onto the origin of anomalous scaling (with PBC).

C. Origin of anomalous scaling: One-dimensional spin
order

It is evident from the MC analysis in Secs. Il A and III B
that there is a second length scale in the CM which influ-
ences fluctuations and which can be overcome by SBC. Let
us now turn to a discussion of possible reasons for this as a
more fundamental understanding of this phenomenon is
clearly desirable.

We know that the low-T (directionally ordered phase) of
the CM is essentially one-dimensional where the spins along
each row or column are essentially decoupled. These spins
thus form a one-dimensional (1D) spin chain. Using this pic-
ture, a plausible explanation for the failure of FSS was actu-
ally suggested in Ref. [7] where it is argued that the magnetic
spin-spin correlation length &, along each chain exceeds the
linear system size L at low temperatures. If this were the
case, all spins would align themselves along each chain al-
though a directionally ordered state can survive even with
domain walls in spin space. Such total magnetic ordering
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FIG. 6. (Color online) Expectation values for one-dimensional
magnetization for several lattice sizes and choices of the screw
displacement S at the critical temperature 7. The x axis is the loop
length L,=L?/S. Data from different lattice sizes collapse onto one
curve (for L;=<100). A clear crossover from a region with finite
magnetization to a disordered spin state is observed on a length
scale L;~100 (indicated by the arrow). This length scale corre-
sponds to those where anomalies are seen in the FSS analysis.

tendency could influence the fluctuations of the true order
parameter, making it more robust against thermal fluctua-
tions and spoiling its FSS properties.

To test this hypothesis, let us write down an order param-
eter for such one-dimensional magnetic ordering tendency
Mip as

1 1

Mp=— 2> =25V, (22)
NL x(y) loops,lLl iel
I . y
M]DZE(MID'FMID). (23)

Here, N; denotes the number of boundary loops (as intro-
duced above) and L, the length (number of sites) of loop [,
i.e., we already take care for the general screw-periodic case.
The quantity M, probes whether all spins along each chain
(or loop) like to align themselves.

To test whether such possible (long-range) ordering of the
spins exists on top of directional order, we perform a couple
of MC runs at the critical temperature T, obtained in Eq. (17)
for lattice sizes L=8,12,20,36,48. In each case, we simu-
late all possible screw parameters S. In Fig. 6, we plot
the expectation values of Mp vs the screw loop length
L,=L%/S. Remarkably, the data from different system sizes
collapse onto the same curve for L;=< 100 where a finite ex-
pectation value for M, is evident. This magnetic suborder
does not persist in the thermodynamic limit as for L;= 100 it
suddenly approaches 0. We conclude that there is a strong
tendency for the spins to align themselves which is enforced
by PBC. Application of SBC can overcome this problem
because it exceeds the typical length scale along each loop.
The same is true for FBC by artificially introducing kinks in
the spin configurations, which is the basic reason why they
do not show anomalies such as those in Fig. 2(b).
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FIG. 7. (Color online) FSS plot of the pseudocritical tempera-
tures for the quantum CM from the susceptibility comparing peri-
odic (§=0) and screw-periodic boundary conditions (S=1). The
latter clearly leads to a considerable improvement. The line is a fit
using a power law correction in 1/L. The dashed extrapolation of
data from periodic boundary conditions [9] underestimates the criti-
cal temperature as expected from the discussion in Sec. IIT A.

The length scale L. at which the sudden decrease in M p
appears coincides precisely with the nonmonoticities ob-
served in the scaling of 7)., and Y. of Fig. 2. The reso-
nance effect in Fig. 4 can be explained because at L;=L., we
have strong fluctuations in M p in addition to the normal
fluctuations in the directional-order parameter D.

These results essentially confirm the picture of Ref. [7]
and quantify precisely the length scale involved. The quite
large magnetic correlation length can be understood by re-
calling the exponential divergence of the magnetic correla-
tion length at low temperatures in the 1D Ising model.

IV. RESULTS FOR THE QUANTUM CASE

We have now developed everything to proceed to the
main objective of this paper which is to improve the estimate
of the critical ordering temperature 7. for the DO transition
in the presence of quantum fluctuations. Due to the results of
Sec. IIT A, it is probable that the previous result 7,
=0.055(1) in Ref. [9] is slightly off the true critical tempera-
ture due to the presence of the second length scale.

We expect that SBC rectify and improve this value.
Therefore, new QMC simulations in the stochastic series ex-
pansion (SSE) framework using directed loops [40,41] and
PT updates were performed implementing S=1 SBC. Other-
wise, our approach rests on that presented in Ref. [9] where
concrete implementation issues are discussed. A couple of
simulations for lattice sizes L=10,12,16,20,24,28,32,42
were performed and approximately 100 000 statistically in-
dependent samples of the order parameter D were taken in
each case. The pseudocritical temperatures T, (L) were ob-
tained from the peak in the variance of D utilizing the quan-
tum generalization of the multihistogram reweighting idea
[42]. Figure 7 shows the pseudocritical temperatures ob-
tained and compares them to the old data utilizing PBC. As
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FIG. 8. (Color online) Analysis of the one-dimensional magne-
tization M}, for the quantum CM. The result from the classical case
is indicated by the line taken from Fig. 6 (and divided by a factor
2). The magnetic length scale is clearly much larger in the classical
case.

expected, an evidently improved FSS behavior is observed
for the screw-periodic case. This is apparent from the abso-
lute move of T,,, toward the true critical temperature for
small L and the much better power-law scaling in terms of
1/L. Indeed, the SBC data are fully consistent with »=1 and
a straight line fit to

Toax(L) =T, +aL™ (24)
yields our new estimate for the critical temperature as
T.=0.0585(3), (25)

with x?/d.o.f=1.5 using all lattice sizes studied. Even using
only the of smallest systems L=12 to L=20, the extrapola-
tion yields a consistent value of 7.=0.058(1), a property
which is of most practical relevance for studies aiming at
numerically verifying more qualitative effects (see, e.g., Ref.
[8]). Leaving v as a free fit parameter as in Eq. (7), we obtain
T.=0.0586(8) and v=0.97(15) which is consistent with 2D
Ising behavior. Hence, although we have performed much
less simulations and on smaller system sizes, we have ob-
tained a much better and improved result just by an adequate
choice of the boundary conditions. The present result does
not agree within error bars with the previous estimate
T.=0.055(1) because of the anomalous behavior which was
not accounted for in the ordinary Ising extrapolation (dashed
line in Fig. 7) with a L™ correction on periodic lattices.
However, it appears that the effect of the magnetic length
scale is not as severe as in the classical case. This could be
expected due to the presence of quantum fluctuations. On the
other hand, the temperature regime is lower which could in
principle even stabilize the unwanted order. In order to get an
approximate estimate for the length scale involved, we have
finally analyzed the one-dimensional magnetization also for
the quantum case, where we restrict ourselves to measure
M, (which corresponds to the quantization direction) along
y loops. Figure 8 shows the SSE estimates for M7, for vari-
ous system sizes and screw parameters at 7=0.07 (chosen
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TABLE 1. Previous and current estimates of the critical tempera-
ture of the DO transition exemplifying the (previous) difficulty of
its extraction.

System  Boundary
T, sizes cond. Method Ref.
0.075(2) 10-20 Periodic ~ Trotter QMC [8]
0.055(1) 10-96 Periodic SSE+PT [9]
0.058(1) 12-20 Screw SSE+PT This work
0.0585(3) 12-42 Screw SSE+PT This work

for convenience because it is close to 7. and still in the
region where PBC show unusual behavior). It verifies that
quantum fluctuations reduce the overall value of M}, and
that they lead to a clear diminution of pseudomagnetic order
at a scale corresponding to roughly L=~ 50 which is appar-
ently smaller than in the classical case (line in Fig. 8). More-
over, we also arrive at this conclusion by studying the behav-
ior of the susceptibility in dependence on S (similar to that in
Fig. 4) and observe that the resonance is shifted to a smaller
length scale in accordance with the findings just described.
However, even such a moderate scale can still be a formi-
dable challenge to overcome for QMC without SBC.

In summary, the estimate of 7, for the quantum CM has
seen several steps of adjustments on a relatively short time
scale as summarized in Table I. The result of this section
provides an improved benchmark estimate which should be
useful for future studies.

V. SUMMARY AND CONCLUSIONS

Summarizing, we have revisited the directional-ordering
transition in the classical and quantum compass models em-
ploying two types of methodological advances. In the classi-
cal case, we were able to formulate a special one-
dimensional cluster update which in combination with
METROPOLIS and PT methods allowed to investigate much
larger system sizes than before. The following detailed com-
parison between the classical CM with periodic boundary
conditions and a fluctuating bond ensemble showed that pe-
riodic boundary conditions scale much worse than known so
far. Instead of the usual power law, anomalous scaling be-
comes evident with a resonance and nonmonotonic behavior
in the susceptibility and the Binder parameter at length scale
of about L=100-200. In any typical MC simulation, one
would therefore not be able to predict critical properties cor-
rectly when the simulation is done with periodic boundary
conditions. This resonance is argued to be due to a magnetic
correlation length which prohibits the formation of domain
walls at finite temperature on small clusters. To counteract
this problem, we have proposed to employ screw-periodic
boundary conditions. We have shown that they are able to
remove scaling anomalies in the classical case almost com-
pletely.

This concept then proved to be a key step for simulations
of the quantum compass model where we were able to obtain
a more accurate estimate of the critical DO temperature
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based only on the change in boundary conditions. On the
physical side, we have seen that the CM represents a formi-
dable challenge despite its simplicity—even for well-settled
numerical approaches. The right choice of boundary condi-
tions or topology is more essential for numerical studies of
the CM than for many other models.

Technically, it is clear that screw-periodic boundary con-
ditions should be used in future studies of various other as-
pects in the quantum compass model. Moreover, we regard
SBC as a well-suited and general method which deserves
more attention even in studies of other systems. Via the
screw parameter S, one may be able to tune or minimize
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corrections to scaling. We are currently applying them to
further studies of the quantum phase transition in 2D dimer-
ized Heisenberg models (see, e.g., Ref. [43]).
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