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The tails of the critical order-parameter distribution of the two-dimensional Ising model are investigated
through extensive multicanonical Monte Carlo simulations. Results for fixed boundary conditions are reported
here, and compared with known results for periodic boundary conditions. Clear numerical evidence for “fat”
stretched exponential tails exists below the critical temperature, indicating the possible presence of fat tails at
the critical temperature. Our work suggests that the true order-parameter distribution at the critical temperature
must be considered to be unknown at present.
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[. INTRODUCTION critical order-parameter distribution through a high-precision
Monte Carlo simulationSwendsen-Wang cluster flip algo-
A quantity of central importance for finite-size scaling rithms) of square and simple cubic Ising modelsTat T,
analysis of critical phenomena is the order-parameter distriwith a mixture of free and helical boundary conditions. The
bution [1,2]. Despite many years of research there remaivork concludes that in two and three dimensions the tails of
open questions even for the much studied case of the Isin@i‘e distripution are consistent with Gaussian behavior even
universality clas§3—12]. at the critical point.

Most properties of the critical order-parameter distribu- A More recent high-precision Monte Carlo study] of
tion p(m) are known from computer simulations the probability distribution of the order-parameter for the

[6,11,13,13. Analytical information comes from field theo- three-dimensional Ising modeL &12-58) atT=T, pre-

; o ; _sents a phenomenological formuldifferent from a plain
;g:ﬁ;lezglrénﬂgs:;??ﬁrz%z (;?L%uiﬁgr?]hi’lse’ig;;;g;n dcc?lgssi- Gaussian distributionthat describes well the main peak of
fication th £ oh ' i tiofg8_2 gl Refs.[3 23 the measured distribution but excludes the far tail regime.
ication theory of phase transitiof$8-23. In Refs.[3,23 This simulation based on Swendsen-Wang cluster flip algo-

some of the analytical predictions seem to have been Cofiy, g with periodic boundary condition also reports some
roborated by numerical simulations. On the other hand, th%iscrepancy with earlier estimatfg.

simulations in Refs[3,23] were not able to corroborate the | the present paper we report results of a high-precision
predictions for the tails of the critical order-parameter distri-,iticanonical Monte CarldMCMC) simulation for the
bution. Recording of the very small probabilities in the tails|sing model on square lattices with periodic and fixed.,
requires special techniques such as multicanonical simulgg| houndary spins fixed to- 1) boundary conditions. Our
tions. Even in a multicanonical simulation it is necessary tocentral objective is to study whether the order-parameter dis-
accumulate sufficient statistics in order to probe the tails angéibution obtained from the simulation can be considered to
to be able to distinguish different theoretical predictions.be asymptotic with respect to the number of Monte Carlo
Many different simulationg3,4,9,1q in recent times have steps(MCS convergendeand system sizel( convergence
attempted this, but failed in establishing the true behavior af secondary objective is to study fixéslymmetry breaking
the tails of the critical order-parameter distribution. boundary conditions because the asymmetry of the order-
Detailed investigations of the tails were carried out in oneparameter distribution should give rise to an asymmetry in
of the early multicanonical Monte Carlo simulatiopy for  the far tail behavior. Different boundary conditions are im-
the critical two-dimensional Ising modésquare lattice of portant for the study of critical finite-size scaling functions.
size L=32 andL=64). Even though this work measured We study the two-dimensional Ising model, first because ex-
extremely small tail probabilities with remarkably high pre- act analytical results are available, and second because we
cision, no power law behavior was observed for large magexpect the true tail behavior to emerge more quickly in this
netization. In addition, this simulation could not establishcase.
convincingly the agreement of the finite-size scaling predic- The paper is organized in the following manner. In Sec. Il
tions in the far tail regime. we recall the basic quantities and assumptions from finite-
Given the observations of non-Gaussian “fat tails” in size scaling. In Sec. Il the MCMC simulation method is
many other physical phenomena, and following the predicdescribed and convergence with respect to system size and
tions of the generalized classification theg8y23], a recent number of Monte Carlo steps is discussed briefly. The data
work [9] has tried to ascertain the behavior in the tails ofanalysis, results, and the discussion are presented in Sec. IV.
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Il. CRITICAL FINITE-SIZE SCALING FUNCTIONS and v is the correlation length exponent. For the two-

. . . . dimensional Ising moded=1.
We consider the two-dimensional Ising model on a square The traditional finite-size scaling hypothesis3,24 for

- . — 2 . 4+ .
lattice .Of side lengifL. The N .L SPInS o =1 interact the critical order-parameter distribution assumes that
according to the Hamiltonian H=—JZ ; 0i0;

—HEiNzlcri , where J>0 is the ferromagnetic coupling T _ gy BIVE Blv
m;T=T.,L)=p(m;L)=L mL~"”), 7
strength andH is an external field. The first summatian; ;, Pl e:L)=p ) Pl ) @)
runs over a_II nearest neighb(_)r pairs on_the lattice. The OrderhereB(x) is the universal scaling function of the order-
parameter is the magnetization per spin parameter distribution an@ is the order-parameter expo-
1 N nent. For the two-dimensional Ising modéb]
m= — iy l
N Z‘l 7 @ B=1. ®
whose value fulfills—1<m=1. In the following we setl  Our scaling variable is then
=1 and also the Boltzmann constant to unity. We denote the 18
temperature byT, and writeh=H/(kgT) for the magnetic x=mL"" ©)
field.
In this paper we focus on the probability dengiym) of
the order-parameter defined as

Using the scaling assumptiof¥) one obtains the absolute
moments of the critical order-parameter distribution

k - k . — | —kpBlviy
Eg(zai,Nm)exq_BH) Iml90)= [ mlfpmudm=L @, a0
o \ima
p(m)= ’ 2 where

% exp — BH)

my = f |x[“p(x)dx. (1)
whereg=1/(kgT), &(i,j)= &;; is a Kroneckew, and where

mis such thafNm/2| is an integer not larger tha/2. The
probability densityp(m) depends parametrically on tem-
peratureT, field h, and system sizdl=L2,

From these one calculates the so called renormalized cou-
pling constang=m,/mj3 or the Binder cumulant

m)=p(m;T,h,L). 3 m
p(m)=p( ) ©) =1 (12
It is also called order-parameter distribution. In the following 3m;
we limit ourselves to the casé=0, and hencep(m)

which are often used in studies of critical behavior because

=p(m;T,L). . T .
The critical order-parameter distribution is obtained in thethey are independent &fat criticality, if all the assumptions

limit L-—se and T—T, where T.=2/arsinh(1) &€ valid.

~2.269183 ... is thecritical temperature. There are differ-

ent ways of taking this limitsee Ref[23] for an overview. lll. SIMULATION METHODS AND BOUNDARY

Traditionally this limit is understood as the finite-size scaling CONDITIONS

limit defined by A. Multicanonical Monte Carlo (MCMC ) simulation
L—ow, T—T, suchthat L/é~1<w, (4) Monte Carlo simulations with simple samplit§S probe

configurations according to their geometrical multiplicity
where §=¢(T) is the temperature dependent spin-spin-and reweight them with their thermodynamic probability
correlation length for the infinite system. Note that in anexp(—gE;), so for an observablé the average is computed
infinite systemé&(T)—o asT—T.. A second way to take as
the limit is the finite ensemble scaling limit defined through

(23] > A expl— BE)
L—o, T—T, suchthat L/&—oo, (5) (Ayss=— . (13)
All other possibilities for taking the limits are discussed in 2. exp(— BEi)
Ref. [23]. It is often postulated thaf fulfills the finite-size
scaling hypothesis Standard importance samplitg) methods such as the Me-
_ tropolis algorithm accept and reject configurations according
E(t,L)=LE1tLY) (6) to their relative thermodynamic probability, so that the ther-

_ o S ) modynamic weight is built into the sampling process instead
in the finite-size scaling limit. Heré=(T—T.)/Tc is the  of the reweighting, and therefore the thermodynamic average
reduced temperature(x) is a universal scaling function, reduces to a simple average
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C. Convergence

> A

7 The objective of our Monte Carlo simulations is to obtain
(14)  information about the equilibrium state$.e., long time
2 1 limit) for an infinite systendi.e., largeL limit).
i We must distinguish between two kinds of convergence.
MCS-convergenceBy this we mean that, at giveln and

(A)is=

. . . with reSpeCt,tQ)rder-parameter distribution. The measured distribution is
their thermodynamic weight, but “important” because their 4o «r,e” distribution for the given system size and tem-
contribution A, is disproportionately large, or because theperature.

range with small probability contains a “barrier” to cross so * | convergenceBy this we mean the convergence of the
that other, more “important” configurations can be reached.yisyiytion with L at givenT to its form for the infinite
To overcome this problem of sampling “rare events,” Berg system.

and Neuhau$26] proposed a method that modifies the im- = 1o 5 tocorrelation time needed by the algorithm to go

portance sampling procedure in such a way that “artificial” ¢ro ) |arge negative magnetizations to large positive magne-
probabilitiesP; are introduced for each; . Because not @ ;ations increases rapidly as the system size becomes large.
single canonical sampling is used, but each observable livepgrefore it is difficult to obtain fully MCS-converged re-
on its “own” canonical average, the method was called g5 at Jarge system sizes. Because we are interested only in
MCMC. The Metropolis-type averages of EQ4) are then  yhe (4i| hehavior we need to exclude all cutoffs not resulting
modified to from the system size, and hence need fully MCS-converged
results.
Within available resources and with simulation for®10
> AP Monte Carlo steps per iteration and 50 multicanonical itera-
(A) _ ! (15 t|on_s on a Cray-T3E with 128 processors we co_uld .obtam
MCMC : statistics all the way up to the saturation magnetization for
P system size$ =16, 32, 64. Simulations for =128 did not
MCS converge fully within the available computer time. For
L =128 the simulation runs do not reanh=1, and achieve

The weightsP; can be chosen for convenience, e.g., in suciStatistics only uptan=0.95. Although this is a significant
a way that allA; are sampled uniformly, or some part of the Improvement over the tail statistics presented in [R&f.it is

phase space is sampled with higher frequency than anothé&lill not sufficient for our tail analysis. Therefore our results
part[27]. below are limited to system sizés<64.

D. Far tail regime

B. Implementation MCMC simulations of the two-dimensional Ising model

We implemented a Monte Carlo algorithm on a squareprovide far better statistics in the tails than the Swendsen-
grid with Glauber dynamics. The grid has an even number ofVang cluster flip algorithnj9]. As discussed in Sec. Il ad-
sites in each direction, so that we can use the checker-boagtjuate statistics is required in the “far tail regime” close and
update scheme, which has the smallest correlation ff28e  prior to saturated magnetization. This regime is defined as
under all single-spin update schemes in the straightforward
Metropolis algorithm. OUIFORTRAN 90 program using sub- Mypp<mM<1, (16)
arrays allowed a simple implementation of fixed or periodic

boundaries. We choose not to implement bit coding, as th&vherem is the magn_etization per spin amm.P. is the most
bulk of the computer time would be spent in updating theprobable magnetization. We define the position of ({beal

information of the MCMC procedure rather than for the or globa) maxima ofp(m) as the most probable magnetiza-

straightforward algorithm. The implementation using non-tion denoted bymg,,(T,L). For the scaling variable defined

overlapping subarrays also allows vectorization. In additior” Ed- (9) this implies
we parallelized the algorithm.
To sample the magnetizations evenly, the welghin Eq.
(15) is chosen according to the magnetizatiéh=P(M;).
The MCMC proceeds in several iteratiopsduring which E. Boundary conditions

the intermediat®{) are consecutively refined using the pre-  Most previous investigations have concentrated on peri-
viously computed entries so th@)— P, are obtained. odic boundary conditions. These boundary conditions have
ProbabilitiesPi(” are evaluated from the histogram of the the advantage of preserving the fundamental symmetry. In
visited magnetizations during each spin update. Details ofhis paper we present also results for fixed symmetry break-
our algorithm for the magnetization distribution will be pub- ing boundary conditions where all boundary spins are fixed
lished elsewhere. to +1.

Xmp<X<L8, (17)
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- A FIG. 2. DifferenceA(T,L) defined in Eq. 19 between the most

>
probable magnetizatiom,,(T,L) and the exact infinite volume
i g magnetizationm,(T) vs temperature for fixed boundary condi-
0.6 periodic
tions. Different curves correspond to system sikes16 (X), L
=32 (O), andL=64 (A). The vertical dashed line marks. .
+{1-[sinh(2/T)]" 48 for T<T,
0.58 1 MeAT)=1 g for T=7,. 19
Therefore we utilize the difference
A(T,L)=mMpy(T,L) —Me(T) (19
0.56 J
as a measure for the convergence to the infinite volume re-
sult. Heremy,, is the most probable magnetization defined

0 0.05 0.1 015  earlier.
/L In Fig. 2 we plot this difference as a function of tempera-
ture for system sized =16,32,64 for the case of fixed
boundary conditions. One sees that 168 T, the difference
is small. ForT>T, the difference is rather large. This is
surprising, as we shall see in more detail below. One also
sees a pronounced maximum around The height of the
maximum is so large that the results are clearly lnaton-

Our motivation for investigating fixed boundary condi- verged aroundl.. The asymptotic value for the maximum
tions comes from Ref23]. In particular, one expects that the value atT=T, is m=0 for all boundary conditions. There is
order-parameter distribution becomes asymmetric, and thigo reason to believe that the shape of the critical order-
raises the question whether or not the left and the right taiharameter distribution has reached its asymptotic limit, if its

FIG. 1. CumulantU, vs 1L for fixed and periodic boundary
conditions. Individual curves correspond T6=2.21, 2.22, 2.23,
2.24, 2.25, 2.26, 2.2691, 2.27, 2.28, 2.29, and 2.3 from(lmp
T) to bottom(high T). The curves foiT . are marked with a special
symbol (+ for periodic andO for fixed boundary conditions

behave in the same way. peak(maximum valug has not reached its asymptotic limit.
In Fig. 3 we plotA(T,L) for the case of periodic bound-
IV. RESULTS ary conditions. In this case there are two local maxima below

T. and in the critical region. Hence there are two curves.
] i ~ Compared to the case of fixed boundary conditions the de-
In Fig. 1 we compare the Binder cumulant for periodic yiations aboveT, appear to be smaller. A more detailed com-
and fixed boundary conditions. We notice that for fixed4ison to Gaussian behavior, to be performed below, shows

boundary conditions the values lie generally above those 1ot the deviations above, are comparable to those in the
the periodic case. They are very close to their upper I|m|tfixed case ¢

U, =2/3, which is expected for a nonvanishing first moment.

A. Results for moments and cumulants

. C. Results for tails
B. Results for maxima

Here we analyze the tails @i{m). First we find numbers

For fixed boundary conditions the functigfm; T,L) has A.B such that the rescaled function

a single maximum as a function of for all values ofT and
L. For periodic boundary conditions, on the other hand, there Po(X)=Ap(B(m—C)), (20)
exists a temperatur€* (L) above which the distribution has

a single maximum, below which it has two local maxima. wherex=B(m—C) andpy=Ap, has mean zero, unit norm,
For L—o the most probable magnetization approaches th@nd unit variance. To facilitate the comparison between pe-
exact infinite volume magnetization given by riodic and fixed boundary conditions the data for periodic
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periodic boundary conditions.

FIG. 3. DifferenceA(T,L) defined in Eq. 19 between the most
probable magnetizatiom,,(T,L) and the exact infinite volume
magnetizatiorm,,(T) vs temperature for periodic boundary condi-
tions. Different curves correspond to system sikes16 (X), L

=32 (O), andL=64 (A). The vertical dashed line markg, . into the left and right tails. More precisely, we find the func-

tions

boundary conditions were treated somewhat differently than
it is normally done. In the periodic case Eqg. 20 is applied not
to p(m) itself but only to its right half, i.e., the data for
m>0. In Fig. 4 we show the rescaled functiopg(x) at
criticality T=T, for fixed and periodic boundary conditions.
The data collapse &t is found to be generally good.

To analyze the tails we split the functiqg(x) at the peak

pOr(X) = Po(X— Xpeak) for X>Xpeakv

Poi(X)= pO(Xpeak_ x) for X<Xpeaks (21
where Xpeqx is the position of the maximum. To exhibit
stretched exponential tails we calculate the functions
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FIG. 5. Tail analysis folT=3.5. The solid lines represent the standard nor@alussiahdistribution given in Eq. 24.
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FIG. 6. Tail analysis foiT=T.. The solid lines in the two upper figures represent the standard n¢Baaksiandistribution given in
Eqg. 24. In the lower figures the solid lines are guides to the eye based on fitting the far right tails,(jk= a[ (x+c)/b] exp{—[(x
+c)/b]16} wherea=1.31,b=28.59, c=7.79 for fixed anda=1.45, b=4.59, c=3.69 for periodic boundary conditions.

_ dlog 10( —10g;0P0i)

(22)

wherei=I,r and plot them against=Ilog;gx. In this way of
plotting the data a tail of the formpy(x)~B(x+c)”
exd —A(x+c)*] corresponds to the function

B cfa—fp+(B1Y)/[a(10V+C)]

aly)=a| 1

fg

(29

where fA4=A(10"+¢)* ! and fg=InB+8In(10"+c). The
exponenta can be easily identified as a plateau at the valugipper row and the right tail in the lower row of the figure.
a. In these plots the far tail regime corresponds to largerixed boundary conditions appear in the left column, and
values of x. A standard normal(Gaussiah distribution
(1/\/27)exp(—x42) corresponds to the function

log,(27)

g(y)=2(1

" 10gyo(€) 107 + logyy 27)

. (29

wherey=log;ox. We note that our choice to spiit,(x) at
the peaks is natural, and we believe, the only reasonableecome visible in the data. The emergence of the Gaussian

choice away fromT.. At T., multiplication of algebraic
prefactors or splitting the distribution differently into right
and left tails does not affect the results of the following
analysis of the far tail region.

In the following we plot the results of our tail analysis for
three selected temperaturés-1.5, T=2.269%T., andT
=3.5. We have chosen these temperatures to demonstrate the
degree of convergence with respectlidelow T, at T,
and aboveT .. Below and abové . the central limit theorem
predicts Gaussian tails which would correspond to a plateau
at 2 in our plots. AfT . theory predicts a right tail of the form
x"exp(=x!% corresponding to a plateau at 16.

In Figs. 5—7 these are presented for three different tem-
peratures. Each of the three figures shows the left tail in the

periodic boundary conditions in the right column.

All the plots in Fig. 5 for the high temperatuile= 3.5 are
similar. All tails approach the solid line from the top kass
increased. The solid line represents a Gaussian distribution
as expected from the central limit theorem. However, all the
data, even those fdr=64, match the Gaussian form over a
relatively narrow range in logx. Note that this match still
means agreement over many orders of magnitudes in the
probability. In our analysis the plateau at 2 is beginning to
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FIG. 7. Tail analysis foif =1.5. The solid lines represent the standard norf@alussiaj distribution given in Eq(24).

tails ~exp(—x4/2) is slow, and system sizes of at least for smallx), the curves approach Gaussian behavior as one
~256 are necessary to clearly show the plateau at 2. would expect from the central limit theoreh3]. However,
Figure 6 shows the results for the tails of the critical there is only a relatively narrow regime over which Gaussian
order-parameter distribution. The curves for the left tails-  behavior is seen. In the intermediate range tife curves for
per row for all the three different system sizes nearly col-the left tail show a plateau occurring at 0.5 corresponding to
lapse. Deviations appear only at larger values of the scaling fat stretched exponential taitexp(—yx). In Fig. 8 we
variable x. The data collapse makes it difficult to see anyshow the full rescaled order-parameter distributionsTat
systematic approach to the limiting function for infinite sys- =1.5. In the upper right hand corner of Fig. 8 one sees a
tems. It should be kept in mind that the scaling function hasharrow Gaussian peak near=0. It is followed by a
not reached its form for infinite systems, because the datstretched exponential tail. For periodic boundary conditions
collapse extends only over a narrow absolute range in ththe stretched exponential tail crosses over into a flat bottom.
scaling variablex. For fixed boundary conditions a plateau For fixed boundary conditions the same stretched exponen-
seems to develop at around 0.75. It would correspond to afial tail is cut off by a cutoff function. The stretched expo-
anomalous stretched exponential tail of the scaling functionnential tail represents the well known droplet regime found
To the best of our knowledge, this has not been observed @nalytically by Shlosmaf29]. We found this stretched ex-
predicted up to now. ponential tail in the distributions for the low temperatures all
Next we turn to the right tail of the order-parameter the way up to the critical temperature. Finally, in the far tail
distribution at T.. This tail is expected to behave as regime the cutoff function lets the curves diverge to infinity
~x"exp(=x% corresponding to a plateau at 16 for large for fixed boundary conditions. In the case of periodic bound-
[3,4]. Our data reveal a shoulder developing with increasingary conditions the order parameter distribution becomes a
L. We have fitted the right tail using this theoretical predic-small constant corresponding to the value zero in our way of
tion. The fit is shown as a guide to the eye in Fig. 6 using Eqgplotting the data. This is again a well known phenomenon
(23) with appropriate fit parameters. Because of the shif{29], reflecting phase coexistence on finite lattices governed
parametelC in Eg. (20) the predicted plateau at 16 appearsby striplike spin configurations.
for fully MCS-converged simulations at larger valuesLof Next we turn to the right tails alT=1.5. Because the
Figure 7 forT=1.5 shows some important results. Firsttemperature is very low the magnetization is close to unity.
consider the left tails in the upper row. Near the pgad, Therefore a peak develops only for larger system sizes ex-
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=16
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X

FIG. 9. Fit and extrapolation using power-law fit functidn
=alP" for fixed (triangles and periodic(circles boundary condi-
tions. The fit parameters ase=1.039(35) and= —0.0891(98) for
fixed boundary conditions ana=0.993(47) ancb=—0.118(15)

o for periodic boundary conditions. The errors in brackets represent
plaining the absence of data for=16. Even forlL=32 only 9504 confidence intervals. They are represented in the figure as
five data points exist to the right of the peak, and hence Weiotted lines following the fitsolid line).

can only conclude that the right tails seem to approach

Gaussian behavior with increasiig whether or not the distribution develops algebraic tails. Us-
ing a value ofx~10 as a lower bound and remembering that
D. Convergence estimate |m|<1 one findsL~ 1. Again this value is very high and

Our results above show clearly that system sizes up to in qualitative agreement with the high values found from the
first extrapolation method.

=64 do not allow to determine the order-parameter distribu- Although we have analyzed only periodic and fixed

tion at cr|t|caI|ty._E_ven away from criticality suc_h SyStem.boundary conditions here, some other boundary condition
sizes are not sufficient to estimate the true Gaussian behaviQr

i . S could be more relevant for such a study. At criticality, a fully
of the tails that has to emerge in an infinite system. s
) . ; converged distribution must correspond to a value of
It is therefore of interest to estimate the valued_dhat

. . . A(T.,L) close to zero. We find\(T.,64) for a periodic
would suffice to obtain the true order-parameter distributio c L ¢ :
at the critical point. We discuss twad hocmethods for such rboundary condition to be smaller thar(T,,64) for a fixed

an estimate. boundary condition. So, perhaps, some other boundary con-

In the first method we extrapolate the peaks in Figs. 2 an&“t'on may give the true critical order-parameter d|s§r|but|on
at a lower value ot than the extrapolated system sizes an-
3, and demand that be smaller than some small threshold,

e.g.,A<0.1. In Figs. 9 and 10 we show extrapolationsAof
based on power law and logarithmic fits. We were unable to
fit the data to an exponential fit function.

FIG. 8. Rescaled order-parameter distributigng{x) for T
=1.5 andL =16,32,64 for fixed and periodic boundary conditions.
(Only right half is shown for periodic boundary conditions.

1

We emphasize once more that the data points Lfor 0.7
=128 are not MCS converged and hence not fully reliable. 0.5}
We also emphasize that the extrapolations are not meant to __
be accurate. Their only purpose is to provide an order of =%,
magnitude estimate for the values lofthat we believe are '% 0.3;

needed to find the truk-converged critical order-parameter
distribution. Extrapolations from both, periodic and fixed
boundary conditions, give values larger thar=10°. Of
course, these values increase further if one demands that the
threshold value foA is smaller than 0.1. 0.1 - . : e\

A second method to estimate which values lofare 10’ 10° ° ’
needed for the trué-converged form of the critical order- L
parameter distribution is to demand that the Critical data CQ" FIG. 10. Fit and extrapolation using a logarithmic fit function
lapse should extend up to values of around 10 in the scaling — 5 |n(1/L) + b for fixed (triangles and periodio(circles bound-
variablex=mL"®. The range over which the data collapseary conditions. The fit parameters ara=0.0694(34), b
determines the range over which the critical scaling function=1.006(12) for fixed boundary conditions amd=0.077(15), b
can be considered to be known. From Fig. 6 one sees that.930(55) for periodic boundary conditions. The errors in brack-
this range is only of the ordex~1 in our simulations. A ets represent 95% confidence intervals. They are represented in the
range ofx= 10 might still be too small if one wants to decide figure as dotted lines following the fisolid line).
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ticipated for these boundary conditions from the abovecurrent methods to estimate this quantity require system

analysis.

V. CONCLUSION

sizes that are beyond present day numerical resources, even
for the two-dimensional Ising model. Our differential analy-
sis shows that system sizes of at lelast10° are needed to

Our main conclusion in this paper is that the universalreach the asymptotic regime at criticality. All our findings
scaling function for the order-parameter distribution at theindicate that convergence with system size is generally very
critical point cannot be considered to be known from numerislow. For fixed boundary conditions this includes even the
cal simulations at present. Our extrapolations indicate thatonvergence o to zero far above the critical point.
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