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Multicanonical Monte Carlo study and analysis of tails for the order-parameter distribution
of the two-dimensional Ising model
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The tails of the critical order-parameter distribution of the two-dimensional Ising model are investigated
through extensive multicanonical Monte Carlo simulations. Results for fixed boundary conditions are reported
here, and compared with known results for periodic boundary conditions. Clear numerical evidence for ‘‘fat’’
stretched exponential tails exists below the critical temperature, indicating the possible presence of fat tails at
the critical temperature. Our work suggests that the true order-parameter distribution at the critical temperature
must be considered to be unknown at present.
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I. INTRODUCTION

A quantity of central importance for finite-size scalin
analysis of critical phenomena is the order-parameter di
bution @1,2#. Despite many years of research there rem
open questions even for the much studied case of the I
universality class@3–12#.

Most properties of the critical order-parameter distrib
tion p(m) are known from computer simulation
@6,11,13,14#. Analytical information comes from field theo
retic renormalization group calculations@7,15,16#, from con-
formal field theory@17#, and also from a generalized class
fication theory of phase transitions@18–23#. In Refs.@3,23#
some of the analytical predictions seem to have been
roborated by numerical simulations. On the other hand,
simulations in Refs.@3,23# were not able to corroborate th
predictions for the tails of the critical order-parameter dis
bution. Recording of the very small probabilities in the ta
requires special techniques such as multicanonical sim
tions. Even in a multicanonical simulation it is necessary
accumulate sufficient statistics in order to probe the tails
to be able to distinguish different theoretical prediction
Many different simulations@3,4,9,10# in recent times have
attempted this, but failed in establishing the true behavio
the tails of the critical order-parameter distribution.

Detailed investigations of the tails were carried out in o
of the early multicanonical Monte Carlo simulations@4# for
the critical two-dimensional Ising model~square lattice of
size L532 andL564). Even though this work measure
extremely small tail probabilities with remarkably high pr
cision, no power law behavior was observed for large m
netization. In addition, this simulation could not establi
convincingly the agreement of the finite-size scaling pred
tions in the far tail regime.

Given the observations of non-Gaussian ‘‘fat tails’’
many other physical phenomena, and following the pred
tions of the generalized classification theory@3,23#, a recent
work @9# has tried to ascertain the behavior in the tails
1063-651X/2003/68~4!/046123~9!/$20.00 68 0461
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critical order-parameter distribution through a high-precis
Monte Carlo simulation~Swendsen-Wang cluster flip algo
rithms! of square and simple cubic Ising models atT5Tc
with a mixture of free and helical boundary conditions. T
work concludes that in two and three dimensions the tails
the distribution are consistent with Gaussian behavior e
at the critical point.

A more recent high-precision Monte Carlo study@10# of
the probability distribution of the order-parameter for t
three-dimensional Ising model (L512–58) atT5Tc pre-
sents a phenomenological formula~different from a plain
Gaussian distribution! that describes well the main peak o
the measured distribution but excludes the far tail regim
This simulation based on Swendsen-Wang cluster flip al
rithms with periodic boundary condition also reports som
discrepancy with earlier estimates@9#.

In the present paper we report results of a high-precis
multicanonical Monte Carlo~MCMC! simulation for the
Ising model on square lattices with periodic and fixed~i.e.,
all boundary spins fixed to11) boundary conditions. Ou
central objective is to study whether the order-parameter
tribution obtained from the simulation can be considered
be asymptotic with respect to the number of Monte Ca
steps~MCS convergence! and system size (L convergence!.
A secondary objective is to study fixed~symmetry breaking!
boundary conditions because the asymmetry of the or
parameter distribution should give rise to an asymmetry
the far tail behavior. Different boundary conditions are im
portant for the study of critical finite-size scaling function
We study the two-dimensional Ising model, first because
act analytical results are available, and second because
expect the true tail behavior to emerge more quickly in t
case.

The paper is organized in the following manner. In Sec
we recall the basic quantities and assumptions from fin
size scaling. In Sec. III the MCMC simulation method
described and convergence with respect to system size
number of Monte Carlo steps is discussed briefly. The d
analysis, results, and the discussion are presented in Se
©2003 The American Physical Society23-1
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II. CRITICAL FINITE-SIZE SCALING FUNCTIONS

We consider the two-dimensional Ising model on a squ
lattice of side lengthL. The N5L2 spins s i561 interact
according to the Hamiltonian H52J( ( i , j )s is j

2H( i 51
N s i , where J.0 is the ferromagnetic coupling

strength andH is an external field. The first summation( ( i , j )
runs over all nearest neighbor pairs on the lattice. The or
parameter is the magnetization per spin

m5
1

N (
i 51

N

s i , ~1!

whose value fulfills21<m<1. In the following we setJ
51 and also the Boltzmann constant to unity. We denote
temperature byT, and writeh5H/(kBT) for the magnetic
field.

In this paper we focus on the probability densityp(m) of
the order-parameter defined as

p~m!5

(
$s%

dS (
i 51

N

s i ,NmD exp~2bH!

(
$s%

exp~2bH!

, ~2!

whereb51/(kBT), d( i , j )5d i j is a Kroneckerd, and where
m is such thatuNm/2u is an integer not larger thanN/2. The
probability densityp(m) depends parametrically on tem
peratureT, field h, and system sizeN5L2,

p~m!5p~m;T,h,L !. ~3!

It is also called order-parameter distribution. In the followi
we limit ourselves to the caseh50, and hencep(m)
5p(m;T,L).

The critical order-parameter distribution is obtained in t
limit L→` and T→Tc where Tc52/arsinh(1)
'2.2691853 . . . is thecritical temperature. There are diffe
ent ways of taking this limit~see Ref.@23# for an overview!.
Traditionally this limit is understood as the finite-size scali
limit defined by

L→`, T→Tc such that L/j'1,`, ~4!

where j5j(T) is the temperature dependent spin-sp
correlation length for the infinite system. Note that in
infinite systemj(T)→` as T→Tc . A second way to take
the limit is the finite ensemble scaling limit defined throu
@23#

L→`, T→Tc such that L/j→`. ~5!

All other possibilities for taking the limits are discussed
Ref. @23#. It is often postulated thatj fulfills the finite-size
scaling hypothesis

j~ t,L !5L j̃~ tL1/n! ~6!

in the finite-size scaling limit. Heret5(T2Tc)/Tc is the
reduced temperature,j̃(x) is a universal scaling function
04612
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and n is the correlation length exponent. For the tw
dimensional Ising modeln51.

The traditional finite-size scaling hypothesis@13,24# for
the critical order-parameter distribution assumes that

p~m;T5Tc ,L !5p~m;L !5Lb/np̃~mLb/n!, ~7!

where p̃(x) is the universal scaling function of the orde
parameter distribution andb is the order-parameter expo
nent. For the two-dimensional Ising model@25#

b5 1
8 . ~8!

Our scaling variable is then

x5mL1/8. ~9!

Using the scaling assumption~7! one obtains the absolut
moments of the critical order-parameter distribution

^umuk&~L !5E umukp~m;L !dm5L2kb/nm̃k , ~10!

where

m̃k5E uxukp̃~x!dx. ~11!

From these one calculates the so called renormalized
pling constantg5m̃4 /m̃2

2 or the Binder cumulant

UL512
m̃4

3m̃2
2

, ~12!

which are often used in studies of critical behavior beca
they are independent ofL at criticality, if all the assumptions
are valid.

III. SIMULATION METHODS AND BOUNDARY
CONDITIONS

A. Multicanonical Monte Carlo „MCMC … simulation

Monte Carlo simulations with simple sampling~SS! probe
configurations according to their geometrical multiplici
and reweight them with their thermodynamic probabil
exp(2bEi), so for an observableA the average is compute
as

^A&SS5

(
i

Ai exp~2bEi !

(
i

exp~2bEi !

. ~13!

Standard importance sampling~IS! methods such as the Me
tropolis algorithm accept and reject configurations accord
to their relative thermodynamic probability, so that the th
modynamic weight is built into the sampling process inste
of the reweighting, and therefore the thermodynamic aver
reduces to a simple average
3-2
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^A& IS5

(
i

Ai

(
i

1

. ~14!

In some cases, Metropolis-type sampling can be ineffic
because some configurations may be ‘‘rare’’ with respec
their thermodynamic weight, but ‘‘important’’ because the
contribution Ai is disproportionately large, or because t
range with small probability contains a ‘‘barrier’’ to cross s
that other, more ‘‘important’’ configurations can be reach
To overcome this problem of sampling ‘‘rare events,’’ Be
and Neuhaus@26# proposed a method that modifies the im
portance sampling procedure in such a way that ‘‘artifici
probabilitiesPi are introduced for eachAi . Because not a
single canonical sampling is used, but each observable l
on it’s ‘‘own’’ canonical average, the method was calle
MCMC. The Metropolis-type averages of Eq.~14! are then
modified to

^A&MCMC5

(
i

Ai Pi

(
i

Pi

. ~15!

The weightsPi can be chosen for convenience, e.g., in su
a way that allAi are sampled uniformly, or some part of th
phase space is sampled with higher frequency than ano
part @27#.

B. Implementation

We implemented a Monte Carlo algorithm on a squ
grid with Glauber dynamics. The grid has an even numbe
sites in each direction, so that we can use the checker-b
update scheme, which has the smallest correlation time@28#
under all single-spin update schemes in the straightforw
Metropolis algorithm. OurFORTRAN 90 program using sub-
arrays allowed a simple implementation of fixed or perio
boundaries. We choose not to implement bit coding, as
bulk of the computer time would be spent in updating t
information of the MCMC procedure rather than for th
straightforward algorithm. The implementation using no
overlapping subarrays also allows vectorization. In addit
we parallelized the algorithm.

To sample the magnetizations evenly, the weightPi in Eq.
~15! is chosen according to the magnetization,Pi5P(Mi).
The MCMC proceeds in several iterationsj, during which
the intermediatePi

( j ) are consecutively refined using the pr
viously computed entries so thatPi

( j )→Pi are obtained.
ProbabilitiesPi

( j ) are evaluated from the histogram of th
visited magnetizations during each spin update. Details
our algorithm for the magnetization distribution will be pu
lished elsewhere.
04612
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C. Convergence

The objective of our Monte Carlo simulations is to obta
information about the equilibrium states~i.e., long time
limit ! for an infinite system~i.e., largeL limit !.

We must distinguish between two kinds of convergenc
MCS-convergence. By this we mean that, at givenL and

T, the individual simulation run is converged in the sen
that increasing the number of MCS will not change t
order-parameter distribution. The measured distribution
the ‘‘true’’ distribution for the given system size and tem
perature.

L convergence. By this we mean the convergence of th
distribution with L at given T to its form for the infinite
system.

The autocorrelation time needed by the algorithm to
from large negative magnetizations to large positive mag
tizations increases rapidly as the system size becomes l
Therefore it is difficult to obtain fully MCS-converged re
sults at large system sizes. Because we are interested on
the tail behavior we need to exclude all cutoffs not result
from the system size, and hence need fully MCS-conver
results.

Within available resources and with simulation for 15

Monte Carlo steps per iteration and 50 multicanonical ite
tions on a Cray-T3E with 128 processors we could obt
statistics all the way up to the saturation magnetization
system sizesL516, 32, 64. Simulations forL5128 did not
MCS converge fully within the available computer time. F
L5128 the simulation runs do not reachm51, and achieve
statistics only uptom50.95. Although this is a significan
improvement over the tail statistics presented in Ref.@9#, it is
still not sufficient for our tail analysis. Therefore our resu
below are limited to system sizesL<64.

D. Far tail regime

MCMC simulations of the two-dimensional Ising mod
provide far better statistics in the tails than the Swends
Wang cluster flip algorithm@9#. As discussed in Sec. II ad
equate statistics is required in the ‘‘far tail regime’’ close a
prior to saturated magnetization. This regime is defined a

mmp!m!1, ~16!

wherem is the magnetization per spin andmmp is the most
probable magnetization. We define the position of the~local
or global! maxima ofp(m) as the most probable magnetiz
tion denoted bymmp(T,L). For the scaling variable define
in Eq. ~9! this implies

xmp!x!L1/8. ~17!

E. Boundary conditions

Most previous investigations have concentrated on p
odic boundary conditions. These boundary conditions h
the advantage of preserving the fundamental symmetry
this paper we present also results for fixed symmetry bre
ing boundary conditions where all boundary spins are fix
to 11.
3-3
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Our motivation for investigating fixed boundary cond
tions comes from Ref.@23#. In particular, one expects that th
order-parameter distribution becomes asymmetric, and
raises the question whether or not the left and the right
behave in the same way.

IV. RESULTS

A. Results for moments and cumulants

In Fig. 1 we compare the Binder cumulant for period
and fixed boundary conditions. We notice that for fix
boundary conditions the values lie generally above those
the periodic case. They are very close to their upper li
UL52/3, which is expected for a nonvanishing first mome

B. Results for maxima

For fixed boundary conditions the functionp(m;T,L) has
a single maximum as a function ofm for all values ofT and
L. For periodic boundary conditions, on the other hand, th
exists a temperatureT* (L) above which the distribution ha
a single maximum, below which it has two local maxim
For L→` the most probable magnetization approaches
exact infinite volume magnetization given by

FIG. 1. CumulantUL vs 1/L for fixed and periodic boundary
conditions. Individual curves correspond toT52.21, 2.22, 2.23,
2.24, 2.25, 2.26, 2.2691, 2.27, 2.28, 2.29, and 2.3 from top~low
T) to bottom~high T). The curves forTc are marked with a specia
symbol (1 for periodic ands for fixed boundary conditions!.
04612
is
il

or
it
.

re

.
e

mex~T!5H 6$12@sinh~2/T!#24%1/8 for T,Tc

0 for T>Tc .
~18!

Therefore we utilize the difference

D~T,L !5mmp~T,L !2mex~T! ~19!

as a measure for the convergence to the infinite volume
sult. Heremmp is the most probable magnetization defin
earlier.

In Fig. 2 we plot this difference as a function of temper
ture for system sizesL516,32,64 for the case of fixed
boundary conditions. One sees that forT!Tc the difference
is small. ForT@Tc the difference is rather large. This i
surprising, as we shall see in more detail below. One a
sees a pronounced maximum aroundTc . The height of the
maximum is so large that the results are clearly notL con-
verged aroundTc . The asymptotic value for the maximum
value atT5Tc is m50 for all boundary conditions. There i
no reason to believe that the shape of the critical ord
parameter distribution has reached its asymptotic limit, if
peak~maximum value! has not reached its asymptotic limi

In Fig. 3 we plotD(T,L) for the case of periodic bound
ary conditions. In this case there are two local maxima be
Tc and in the critical region. Hence there are two curv
Compared to the case of fixed boundary conditions the
viations aboveTc appear to be smaller. A more detailed com
parison to Gaussian behavior, to be performed below, sh
that the deviations aboveTc are comparable to those in th
fixed case.

C. Results for tails

Here we analyze the tails ofp(m). First we find numbers
A,B such that the rescaled function

p0~x!5Ap„B~m2C!…, ~20!

wherex5B(m2C) andp05Ap, has mean zero, unit norm
and unit variance. To facilitate the comparison between
riodic and fixed boundary conditions the data for period

FIG. 2. DifferenceD(T,L) defined in Eq. 19 between the mo
probable magnetizationmmp(T,L) and the exact infinite volume
magnetizationmex(T) vs temperature for fixed boundary cond
tions. Different curves correspond to system sizesL516 (3), L
532 (s), andL564 (n). The vertical dashed line marksTc .
3-4
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boundary conditions were treated somewhat differently t
it is normally done. In the periodic case Eq. 20 is applied
to p(m) itself but only to its right half, i.e., the data fo
m.0. In Fig. 4 we show the rescaled functionsp0(x) at
criticality T5Tc for fixed and periodic boundary condition
The data collapse atTc is found to be generally good.

To analyze the tails we split the functionp0(x) at the peak

FIG. 3. DifferenceD(T,L) defined in Eq. 19 between the mo
probable magnetizationmmp(T,L) and the exact infinite volume
magnetizationmex(T) vs temperature for periodic boundary cond
tions. Different curves correspond to system sizesL516 (3), L
532 (s), andL564 (n). The vertical dashed line marksTc .
04612
n
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into the left and right tails. More precisely, we find the fun
tions

p0r~x!5p0~x2xpeak! for x.xpeak,

p0l~x!5p0~xpeak2x! for x,xpeak, ~21!

where xpeak is the position of the maximum. To exhib
stretched exponential tails we calculate the functions

FIG. 4. Rescaled order-parameter distributionsp0(x) for T
5Tc andL516,32,64 for fixed and periodic boundary condition
~Only the right half of the distribution is scaled and shown f
periodic boundary conditions.!
FIG. 5. Tail analysis forT53.5. The solid lines represent the standard normal~Gaussian! distribution given in Eq. 24.
3-5
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FIG. 6. Tail analysis forT5Tc . The solid lines in the two upper figures represent the standard normal~Gaussian! distribution given in
Eq. 24. In the lower figures the solid lines are guides to the eye based on fitting the far right tails withp0(x)5a@(x1c)/b#7exp$2@(x
1c)/b#16% wherea51.31, b58.59, c57.79 for fixed anda51.45, b54.59, c53.69 for periodic boundary conditions.
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q~y!5
dlog 10~2 log10p0i !

dlog 10x
, ~22!

wherei 5 l ,r and plot them againsty5 log10x. In this way of
plotting the data a tail of the formp0(x);B(x1c)b

exp@2A(x1c)a# corresponds to the function

q~y!5aS 12
c fA2 f B1~b10y!/@a~10y1c!#

~10y1c! f A2 f B
D , ~23!

where f A5A(10y1c)a21 and f B5 lnB1bln(10y1c). The
exponenta can be easily identified as a plateau at the va
a. In these plots the far tail regime corresponds to la
values of x. A standard normal~Gaussian! distribution
(1/A2p)exp(2x2/2) corresponds to the function

g~y!52S 12
log10~2p!

log10~e!102y1 log10~2p!
D , ~24!

wherey5 log10x. We note that our choice to splitp0(x) at
the peaks is natural, and we believe, the only reason
04612
e
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choice away fromTc . At Tc , multiplication of algebraic
prefactors or splitting the distribution differently into righ
and left tails does not affect the results of the followin
analysis of the far tail region.

In the following we plot the results of our tail analysis fo
three selected temperaturesT51.5, T52.2691'Tc , andT
53.5. We have chosen these temperatures to demonstrat
degree of convergence with respect toL below Tc , at Tc ,
and aboveTc . Below and aboveTc the central limit theorem
predicts Gaussian tails which would correspond to a plat
at 2 in our plots. AtTc theory predicts a right tail of the form
x7exp(2x16) corresponding to a plateau at 16.

In Figs. 5–7 these are presented for three different te
peratures. Each of the three figures shows the left tail in
upper row and the right tail in the lower row of the figur
Fixed boundary conditions appear in the left column, a
periodic boundary conditions in the right column.

All the plots in Fig. 5 for the high temperatureT53.5 are
similar. All tails approach the solid line from the top asL is
increased. The solid line represents a Gaussian distribu
as expected from the central limit theorem. However, all
data, even those forL564, match the Gaussian form over
relatively narrow range in log10x. Note that this match still
means agreement over many orders of magnitudes in
probability. In our analysis the plateau at 2 is beginning
become visible in the data. The emergence of the Gaus
3-6
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FIG. 7. Tail analysis forT51.5. The solid lines represent the standard normal~Gaussian! distribution given in Eq.~24!.
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tails ;exp(2x2/2) is slow, and system sizes of at leastL
'256 are necessary to clearly show the plateau at 2.

Figure 6 shows the results for the tails of the critic
order-parameter distribution. The curves for the left tails~up-
per row! for all the three different system sizes nearly c
lapse. Deviations appear only at larger values of the sca
variable x. The data collapse makes it difficult to see a
systematic approach to the limiting function for infinite sy
tems. It should be kept in mind that the scaling function h
not reached its form for infinite systems, because the d
collapse extends only over a narrow absolute range in
scaling variablex. For fixed boundary conditions a platea
seems to develop at around 0.75. It would correspond to
anomalous stretched exponential tail of the scaling funct
To the best of our knowledge, this has not been observe
predicted up to now.

Next we turn to the right tail of the order-paramet
distribution at Tc . This tail is expected to behave a
;x7 exp(2x16) corresponding to a plateau at 16 for largex
@3,4#. Our data reveal a shoulder developing with increas
L. We have fitted the right tail using this theoretical pred
tion. The fit is shown as a guide to the eye in Fig. 6 using
~23! with appropriate fit parameters. Because of the s
parameterC in Eq. ~20! the predicted plateau at 16 appea
for fully MCS-converged simulations at larger values ofL.

Figure 7 forT51.5 shows some important results. Fir
consider the left tails in the upper row. Near the peak~i.e.,
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for small x), the curves approach Gaussian behavior as
would expect from the central limit theorem@13#. However,
there is only a relatively narrow regime over which Gauss
behavior is seen. In the intermediate range ofx the curves for
the left tail show a plateau occurring at 0.5 corresponding
a fat stretched exponential tail;exp(2Ax). In Fig. 8 we
show the full rescaled order-parameter distributions aT
51.5. In the upper right hand corner of Fig. 8 one see
narrow Gaussian peak nearx50. It is followed by a
stretched exponential tail. For periodic boundary conditio
the stretched exponential tail crosses over into a flat bott
For fixed boundary conditions the same stretched expon
tial tail is cut off by a cutoff function. The stretched expo
nential tail represents the well known droplet regime fou
analytically by Shlosman@29#. We found this stretched ex
ponential tail in the distributions for the low temperatures
the way up to the critical temperature. Finally, in the far t
regime the cutoff function lets the curves diverge to infin
for fixed boundary conditions. In the case of periodic boun
ary conditions the order parameter distribution become
small constant corresponding to the value zero in our way
plotting the data. This is again a well known phenomen
@29#, reflecting phase coexistence on finite lattices gover
by striplike spin configurations.

Next we turn to the right tails atT51.5. Because the
temperature is very low the magnetization is close to un
Therefore a peak develops only for larger system sizes
3-7
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plaining the absence of data forL516. Even forL532 only
five data points exist to the right of the peak, and hence
can only conclude that the right tails seem to appro
Gaussian behavior with increasingL.

D. Convergence estimate

Our results above show clearly that system sizes up tL
564 do not allow to determine the order-parameter distri
tion at criticality. Even away from criticality such syste
sizes are not sufficient to estimate the true Gaussian beha
of the tails that has to emerge in an infinite system.

It is therefore of interest to estimate the values ofL that
would suffice to obtain the true order-parameter distribut
at the critical point. We discuss twoad hocmethods for such
an estimate.

In the first method we extrapolate the peaks in Figs. 2
3, and demand thatD be smaller than some small thresho
e.g.,D,0.1. In Figs. 9 and 10 we show extrapolations ofD
based on power law and logarithmic fits. We were unable
fit the data to an exponential fit function.

We emphasize once more that the data points foL
5128 are not MCS converged and hence not fully reliab
We also emphasize that the extrapolations are not mea
be accurate. Their only purpose is to provide an order
magnitude estimate for the values ofL that we believe are
needed to find the trueL-converged critical order-paramete
distribution. Extrapolations from both, periodic and fixe
boundary conditions, give values larger thanL'105. Of
course, these values increase further if one demands tha
threshold value forD is smaller than 0.1.

A second method to estimate which values ofL are
needed for the trueL-converged form of the critical order
parameter distribution is to demand that the critical data c
lapse should extend up to values of around 10 in the sca
variablex5mL1/8. The range over which the data collap
determines the range over which the critical scaling funct
can be considered to be known. From Fig. 6 one sees
this range is only of the orderx'1 in our simulations. A
range ofx'10 might still be too small if one wants to decid

FIG. 8. Rescaled order-parameter distributionsp0(x) for T
51.5 andL516,32,64 for fixed and periodic boundary condition
~Only right half is shown for periodic boundary conditions.!
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whether or not the distribution develops algebraic tails. U
ing a value ofx'10 as a lower bound and remembering th
umu<1 one findsL'108. Again this value is very high and
in qualitative agreement with the high values found from t
first extrapolation method.

Although we have analyzed only periodic and fixe
boundary conditions here, some other boundary condi
could be more relevant for such a study. At criticality, a fu
converged distribution must correspond to a value
D(Tc ,L) close to zero. We findD(Tc,64) for a periodic
boundary condition to be smaller thanD(Tc,64) for a fixed
boundary condition. So, perhaps, some other boundary c
dition may give the true critical order-parameter distributi
at a lower value ofL than the extrapolated system sizes a

FIG. 9. Fit and extrapolation using power-law fit functionD
5aLb for fixed ~triangles! and periodic~circles! boundary condi-
tions. The fit parameters area51.039(35) andb520.0891(98) for
fixed boundary conditions anda50.993(47) andb520.118(15)
for periodic boundary conditions. The errors in brackets repres
95% confidence intervals. They are represented in the figure
dotted lines following the fit~solid line!.

FIG. 10. Fit and extrapolation using a logarithmic fit functio
D5a ln(1/L)1b for fixed ~triangles! and periodic~circles! bound-
ary conditions. The fit parameters area50.0694(34), b
51.006(12) for fixed boundary conditions anda50.077(15), b
50.930(55) for periodic boundary conditions. The errors in bra
ets represent 95% confidence intervals. They are represented i
figure as dotted lines following the fit~solid line!.
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ticipated for these boundary conditions from the abo
analysis.

V. CONCLUSION

Our main conclusion in this paper is that the univer
scaling function for the order-parameter distribution at
critical point cannot be considered to be known from nume
cal simulations at present. Our extrapolations indicate
a
,

04612
e

l
e
i-
at

current methods to estimate this quantity require sys
sizes that are beyond present day numerical resources,
for the two-dimensional Ising model. Our differential anal
sis shows that system sizes of at leastL*105 are needed to
reach the asymptotic regime at criticality. All our finding
indicate that convergence with system size is generally v
slow. For fixed boundary conditions this includes even
convergence ofD to zero far above the critical point.
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