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Information geometry of the spherical model
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Motivated by the observation that geometrizing statistical mechanics offers an interesting alternative to more
standard approaches, we calculate the scaling behavior of the curvatureR of the information geometry metric
for the spherical model. We find thatR;e22, wheree5bc2b is the distance from criticality. The discrep-
ancy from the naively expected scalingR;e23 is explained and compared with that for the Ising model on
planar random graphs, which shares the same critical exponents.
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I. THE INFORMATION GEOMETRY OF SPIN MODELS

The idea of endowing the space of parameters with a m
ric and geometrical structure has been borrowed from p
metric statistics@1# and employed to some effect in statistic
mechanics@2–8#. The approach seems to be particula
fruitful for a spin model in a field where the parameters a
b, the inverse temperature, andh, the external field. In this
case the~Fisher-Rao! metric is simply given by

Gi j 5] i] j f , ~1!

where f is the reduced free energy per site and] i
5(]/]b,]/]h).

For such a metric the scalar curvature may be calcula
as

R52
1

2G2U ]b
2 f ]b]hf ]h

2f

]b
3 f ]b

2]hf ]b]h
2f

]b
2]hf ]b]h

2f ]h
3f
U , ~2!

whereG5det(Gi j ) is the determinant of the metric itself.
The work in Refs.@2–5# has made it clear that, as on

might expect, the scalar curvature plays a central role in
attempt to look at statistical mechanics from a geometr
perspective. In particular, for all the models that have b
considered so far, the curvature diverges only at a ph
transition point for physical ranges of the parameter valu
We assume a standard scaling form for the free energy
site,

f ~e,h!5l21f ~elae,hlah!, ~3!

wheree5bc2b ~with bc marking the critical point!, andae
and ah are the scaling dimensions for the energy and s
operators, respectively.
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The spherical model has a one-sided critical point@9# and
we are interested in the high-temperature domain~wheree
.0). There, standard scaling assumptions allow us to w
Eq. ~3! as

f ~e,h!5e1/aec1~he2ah /ae!, ~4!

where we have introduced the scaling functionc1 . Consid-
eration of the behavior of the components ofR in Eq. ~2!
then leads to the scaling

R;ea22, ~5!

for the curvature itself.
Equation ~5! shows that the scalar curvature not on

characterizes phase transition points as divergences, a
the more standard statistical mechanical quantities suc
the specific heatC and susceptibilityx, it displays a scaling
behavior that allows the extraction of the critical exponenta.
Indeed, with hyperscaling, Eq.~5! can be recast as

R;jd, ~6!

wherej is the correlation length andd is the dimensionality
of the system. So the curvature is proportional to the co
lation volume, an intuitively reasonable result on dime
sional grounds.

At first sight, our calculation of the scaling behavior ofR
in Ref. @10# for the Ising model on planar random grap
puts a spanner in the works. There,a521, but R;e22

rather than the expectedR;e23. However, returning to the
detailed scaling of the individual terms in Eq.~2! showed
that a negativea affected some of the scaling of the comp
nents and the end result could be traced back to these m
fications. In principle this modified behavior should apply
anymodel with negativea, so an interesting test would be t
calculateR, or at least its scaling limit, for another mod
with this property.
©2003 The American Physical Society06-1
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The spherical model provides just such a test case. It
solved~in field! in the classic Berlin and Kac paper@9# and
the critical exponents in three dimensions found to
a521, b51/2, g52, which are identical to those of th
Ising model on the two-dimensional~2D! planar random
graphs@11#. This is remarkable, because there are no obvi
physical similarities between the two models. An addition
motivation for any such calculation is the general paucity
spin models that have been solved in field. Indeed,R for
spin models has been obtained explicitly only for the
Ising @3#, Bethe lattice Ising@6#, and 1D Potts@12# models
and the scaling form calculated for the Ising model on pla
random graphs@10#. This forms a rather small sample o
which to formulate hypotheses about its general beha
and its scaling properties. In the sequel, we extend this s
list incrementally by looking at the scaling behavior ofR in
the spherical model. We concentrate on the 3D case, but
discuss other dimensions, including the mean-field-like
havior that sets in atd54.

II. THE SPHERICAL MODEL

Berlin and Kac@9# introduced the spherical model~and
the Gaussian model! in an attempt to understand how gene
some of the features of Onsager’s solution@13# of the 2D
Ising model are for ferromagnetic spin models, particula
for other dimensions. In the spherical model, the61 condi-
tion on the value of the Ising spins is relaxed, whilst reta
ing a global constraint on thetotal spin magnitude. Withsi
denoting the value of a spin at a sitei of a hypercubic lattice,
the partition function is@9#

Z5E ds1•••dsN expS b(̂
i j &

sisj1h(
i

si D dS (
i

si
22ND ,

~7!

whereN is the total number of sites. This can be evalua
by exponentiating the constraint and using steepest des
resulting in the following expression for the reduced fr
energy per site in the thermodynamic limit,N→`:

f 5
1

2
logS p

b D1bz2
1

2
g~z!1

h2

4b~z2d!
, ~8!

where

g~z!5
1

~2p!dE0

2p

dv1•••dvd logS z2 (
k51

d

cos~vk!D .

~9!

The saddle point value ofz, which appears in the expressio
for the free energy in Eq.~8!, is determined from

g8~z!52b2
h2

2b~z2d!2 . ~10!
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The solution reveals no transition ford51 and 2, and a
transition with the exponentsa521, b51/2, g52 for d
53. Ford>4, on the other hand, mean-field behavior w
a50, b51/2, g51 sets in~modified by multiplicative loga-
rithmic corrections in thed54 case@14#!. For the following
formulas we confine our attention to thed53 case.

It is useful to note that, withh50, Eq. ~10! gives

dz

db
5

2

g9~z!
, ~11!

and hence

d2z

db2 52
4g(3)~z!

@g9~z!#3
. ~12!

The critical point is given byz5d53 andh50 @9#, and the
behavior ofg(z) in this region is determined by differentia
ing Eq.~9! twice and then expanding for the smallvk values
that give the dominant contribution. One finds

g9~z!;2
1

2A2p
~z23!21/2. ~13!

A further differentiation gives

g(3)~z!;
1

4A2p
~z23!23/2, ~14!

and an integration yields

g8~z!5
1

A2p
~z23!1/21g8~3!, ~15!

where g8(3)5(18112A2210A327A6)@K(2A31A6
22A223)#2'0.505 462 019••• is the exactly known mass
less 3D lattice propagator at the origin, withK(k2) denoting
the standard elliptic integral. This latter expression can
combined with Eq.~10! with h50 to give

~z23!;8p2~bc2b!2;e2, ~16!

in which bc5g8(3)/2'0.252 731 009 . . . . Equations~13!
and~14! may then be substituted in Eqs.~11! and~12! to give
the scaling ofdz/db andd2z/db2,

lim
z→3

dz

db
5 lim

z→3
@24A2p~z23!1/2#50,

lim
z→3

d2z

db2 516p2, ~17!
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which we shall employ below in the calculation of the sca
curvature.

III. THE SCALAR CURVATURE

We recapitulate the general considerations of Ref.@10#
before going on to discuss in detail the results for the sph
f
he

u
l

ny

04610
r

i-

cal model. In Eq.~4!, we defineA51/ae andC52ah /ae ,
which, in terms of the standard exponents, givesA522a
and A1C5b. If A.2 ~which is the case fora,0), the
specific heat, rather than diverging, will be a constant at
critical point, which we denote byA(A21)f(0). With this
in mind, substitution of the scaling function into Eq.~2!
gives
R52
1

2G2U A~A21!f~0! 0 eA12Cc19 ~0!

2A~A21!~A22!eA23c1~0! 0 2~A12C!eA12C21c19 ~0!

0 2~A12C!eA12C21c19 ~0! 0
U . ~18!
-
nts,

del

n

In Eq. ~18! the terms with an odd number ofh derivatives
have been set to zero. These do not appear because o
h→2h symmetry of the free energy. The scaling for t
determinant of the metricG is given by

G5A~A21!eA12Cf~0!c19 ~0!, ~19!

so the leading term inR ~for A.2) is

R5
~A12C!2

2A~A21!f~0!
e22, ~20!

or, translating back to the standard critical exponents,

R5
g2

2~22a!~12a!f~0!
e22. ~21!

In summary, ifa,0, the expected scaling ofR is R;e22

rather thanR;ea22, which is seen for positivea.
We now move on to examine the scaling of the vario

terms contributing toR in Eq. ~2! for the spherical mode
itself. As we have remarked, theh→2h symmetry in the
free energy per site,f, of the spherical model means that a
terms with an odd number ofh derivatives will automatically
be zero whenh50, hencef bh5 f bbh5 f hhh50. This leaves
the nonzero terms~again whenh50)

f bb5
]z

]b
1

1

2b2 ,

f hh5
1

2b~z23!
,

f bbb5
]2z

]b22
1

b3 ,

f hhb52
1

2b~z23!2

]z

]b
2

1

2b2~z23!
, ~22!
the

s

which, using Eqs.~16! and~17!, have the following behavior
in the scaling region:

f bb;
1

2bc
2 ,

f hh;
1

16p2bc~bc2b!2
;e22,

f bbb;16p22
1

bc
3 ,

f hhb;
1

8p2bc~bc2b!32
1

16p2bc
2~bc2b!2;e23.

~23!

Comparing with the individual terms in Eq.~18! we see that
the expected general scaling of each term~for a,0) does
indeed apply and that overall we have, as in Eq.~21!,

R;e22. ~24!

We thus see that calculating the scaling ofR for the 3D
spherical model for whicha521 gives results in accor
dance with expectations from general scaling argume
which take into account the negativea, similar to the Ising
model on planar random graphs.

In d>4 dimensions the exponents of the spherical mo
attain their mean-field values,a50, b51/2, g51. In this
caseg8(z);z2d1g8(d) near criticality and the resulting
scaling of the components of the expression forR is

R52
1

2G2Uconst 0 e21

const 0 e22

0 e22 0
U , ~25!

where the determinant of the metric scales asG5e21. Thus,
R itself scales ase22, in the mean-field case. This is i
agreement with the expected scaling ofea22 when a>0
since, in that case@4#,
6-3
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R52
1

2G2U A~A21!eA22c1~0! 0 eA12Cc19 ~0!

2A~A21!~A22!eA23c1~0! 0 2~A12C!eA12C21c19 ~0!

0 2~A12C!eA12C21c19 ~0! 0
U , ~26!
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where the scaling of the metric determinant is

G5A~A21!e2A12C22c1~0!c19 ~0!. ~27!

The difference in scaling between thea>0 and thea,0
cases originates in thef bb term which contributes to bothR
and G in Eqs. ~26! and ~27!. In the negativea case, the
contribution of this term comes from the regular part of t
free energy and is nondiverging.

Note that fora50, A52, and although the displaye
scaling termA(A21)(A22)eA23c1(0) in Eq. ~26! would
be expected to vanish, a regular term could still contribu
This is indeed what is seen in the explicit calculation for t
spherical model. Two further caveats arise. First, for the
per critical dimensiond54 itself, there are multiplicative
logarithmic corrections@14#, which require a careful han
dling. Second, ford.4, where the scaling is described b
the mean-field theory, the hyperscaling relation fails. So
should be quite cautious in comparing the explicit calcu
tion in terms ofe with the expressions involving the corre
lation lengthj.

IV. CONCLUSIONS

We have calculated the scaling behavior of the scalar
vature R of the information geometry metric for the 3D
04610
.
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spherical model, finding, as for the Ising model on plan
random graphs, thatR;e22. Careful considerations of the
scaling of the various elements that contribute toR show
that this is in accordance with the expectations. We a
briefly discussed the scaling behavior ofR for d>4, corre-
sponding to the mean-field exponents.

The calculation reported here provides another exam
of a statistical mechanical model in which the curvature
the information geometry metric diverges at the critic
point, with a clearly quantifiable scaling behavior. On
again it is curious that the relevant exponent is shared w
the Ising model on planar random graphs. All critical exp
nents now coincide in the two models though there is
obvious physical relation between them. It seems that
suggestion in the original Berlin and Kac paper@9# that the
3D spherical model might provide a hint to the behavior
the 3D Ising model applies rather to the Ising model on
planar random graphs.
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