PHYSICAL REVIEW E 67, 046106 (2003
Information geometry of the spherical model
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Motivated by the observation that geometrizing statistical mechanics offers an interesting alternative to more
standard approaches, we calculate the scaling behavior of the curfRanfréhe information geometry metric
for the spherical model. We find th&~ ¢ 2, wheree=8.— 8 is the distance from criticality. The discrep-
ancy from the naively expected scalifRy~ e 2 is explained and compared with that for the Ising model on
planar random graphs, which shares the same critical exponents.
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|. THE INFORMATION GEOMETRY OF SPIN MODELS The spherical model has a one-sided critical pp&itand
we are interested in the high-temperature donfaihere e
The idea of endowing the space of parameters with a met>0). There, standard scaling assumptions allow us to write
ric and geometrical structure has been borrowed from parazg. (3) as
metric statistic§1] and employed to some effect in statistical
mechanics[2—8]. The approach seems to be particularly
fruitful for a spin model in a field where the parameters are

B, the inverse temperature, ahdthe external field. In this \here we have introduced the scaling functipn. Consid-
case theFisher-Rap metric is simply given by eration of the behavior of the components7fin Eq. (2)
then leads to the scaling

f(eih)zEl/a€$+(h€7ah/ae)1 (4)

R~e*2, (5
where f is the reduced free energy per site aid
=(0ldB,dldh). for the curvature itself.
For such a metric the scalar curvature may be calculated Equation (5) shows that the scalar curvature not only
as characterizes phase transition points as divergences, as do

the more standard statistical mechanical quantities such as
) 5 the specific hea€ and susceptibilityy, it displays a scaling
dgf  dponf  Oif behavior that allows the extraction of the critical exponent

— 1 PBF G20 9.0°f Indeed, with hyperscaling, E@5) can be recast as

R——E B 8%h Bgonl |, 2 ' '
Ioonf  dpdff  Ipf

R~&, (6)
whereG=det(G;;) is the determinant of the metric itself. , . ) ) . )

The work in Refs[2-5] has made it clear that, as one where¢ is the correlation length gmﬂ is the _dlmenS|onaI|ty
might expect, the scalar curvature plays a central role in an%’f the system. So the curvature is proportional to the corre-
attempt to look at statistical mechanics from a geometrical@tion volume, an intuitively reasonable result on dimen-
perspective. In particular, for all the models that have beer§ional grounds. _ _ .
considered so far, the curvature diverges only at a phase At first sight, ourca_lculatlon of the scaling behavior7f
transition point for physical ranges of the parameter valuedn Ref.[10] for the Ising model on planar random graphs

. i — -2
We assume a standard scaling form for the free energy pdiuts @ spanner in the works. There=—1, but R~e
site, rather than the expected~ e~ 3. However, returning to the

detailed scaling of the individual terms in E() showed
that a negativex affected some of the scaling of the compo-
f(e,h)=N"1f(en3 h\2n), €] nents and the end result could be traced back to these modi-
fications. In principle this modified behavior should apply to
wheree= B.— B (with B, marking the critical point anda, = anymodel with negativer, so an interesting test would be to
and a,, are the scaling dimensions for the energy and spircalculateR, or at least its scaling limit, for another model
operators, respectively. with this property.
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The spherical model provides just such a test case. It washe solution reveals no transition far=1 and 2, and a
solved(in field) in the classic Berlin and Kac papgd] and transition with the exponenta=-1, g=1/2, y=2 for d
the critical exponents in three dimensions found to be=3. Ford=4, on the other hand, mean-field behavior with
a=-—1, B=1/2, v=2, which are identical to those of the a=0, f=1/2, y=1 sets in(modified by multiplicative loga-
Ising model on the two-dimensiondRD) planar random rithmic corrections in thel=4 casg14]). For the following
graphg 11]. This is remarkable, because there are no obviougormulas we confine our attention to tkde=3 case.
physical similarities between the two models. An additional It is useful to note that, witih=0, Eq.(10) gives
motivation for any such calculation is the general paucity of
spin models that have been solved in field. IndeRdfor

spin models has been obtained explicitly only for the 1D E_ 2 11
Ising [3], Bethe lattice Isind6], and 1D Pott412] models ag g”(z)’ (11)
and the scaling form calculated for the Ising model on planar
random graphg10]. This forms a rather small sample on and hence
which to formulate hypotheses about its general behavior
and its scaling properties. In the sequel, we extend this short
list incrementally by looking at the scaling behavior®fin d’z  49®¥(z2) 12
the spherical model. We concentrate on the 3D case, but also dp? _[g”(z)]3' (12
discuss other dimensions, including the mean-field-like be-
havior that sets in ad=4. The critical point is given by=d=3 andh=0 [9], and the
behavior ofg(z) in this region is determined by differentiat-
Il. THE SPHERICAL MODEL ing Eq.(9) twice and then expanding for the smal} values
that give the dominant contribution. One finds
Berlin and Kac[9] introduced the spherical modé&ind
the Gaussian modein an attempt to understand how generic
some of the features of Onsager’s solutidr8] of the 2D , 1 1
Ising model are for ferromagnetic spin models, particularly 9"(2)~~— 22 (z=3)"7% (13
for other dimensions. In the spherical model, thé condi- T
tion on the value of the Ising spins is relaxed, whilst retain-p further differentiation gives
ing a global constraint on th®tal spin magnitude. Witls;
denoting the value of a spin at a sitef a hypercubic lattice,
the partition function i§9] 4P(2)~ 1 (2-3) 14
42
Z:f ds,- - -dsy ex 3(2) Sisj"'hz Si) 5(2 siz—N), and an integration yields
ij i i
(7
1

whereN is the total number of sites. This can be evaluated 9'(2)= 77(2—3)1/2‘*'9’(3), (15

by exponentiating the constraint and using steepest descent,

resulting in the following expression for the reduced free iy
g Qoo et where  g’(3)=(18+12y2—10y3—76)[K(2y/3+ 6
energy per site in the thermodynamic imi—e2: —2,2-3)]?~0.505 462 019 - is the exactly known mass-
less 3D lattice propagator at the origin, wht{k?) denoting

1 - 1 h2 the standard elliptic integral. This latter expression can be
f= Elog 3 +Bz— Eg(z)+ AB=d) (8)  combined with Eq(10) with h=0 to give
where (z—3)~87%(B.— B)°~ €, (16)
§ in which B.=g'(3)/2~0.25273100 ... . Equations(13)
1 27 and(14) may then be substituted in Eq41) and(12) to give
9(2)= 2milo dw;- - -dwglog Z_gl cog wy) |- the scaling ofdz/dg andd?z/dg?,
€)
: : ; ; L dz_ 1/2
The saddle point value & which appears in the expression I|m@= Ilm[—4\/§7-r(z— 3)74]=0,
for the free energy in Eq8), is determined from z—3 z—3
h im 2 _ 1 (17)
"(2)=2B— 55— im——5= ,
9'(2=28-55,—g" (10) 308
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which we shall employ below in the calculation of the scalarcal model. In Eq(4), we defineA=1/a_ andC=—a/a,,
curvature. which, in terms of the standard exponents, gives2— «
and A+C=g. If A>2 (which is the case fow<0), the
specific heat, rather than diverging, will be a constant at the

Il. THE SCALAR CURVATURE € € : , ,
critical point, which we denote bA(A—1)¢(0). With this

We recapitulate the general considerations of R&€)]

in mind, substitution of the scaling function into E(R)

before going on to discuss in detail the results for the spherigives

A(A—1)#(0)

L CAa-DA-2)e 2y, (0)
2G? 0

—(A+

In Eq. (18) the terms with an odd number &f derivatives

0 €A+2C¢/i(0)
0 —(A+2C)M 2y (0)] . (19
zc)EAJrZCfllp/jr(O) 0

which, using Egs(16) and(17), have the following behavior

have been set to zero. These do not appear because of timethe scaling region:

h— —h symmetry of the free energy. The scaling for the
determinant of the metriG is given by

G=A(A—1)e""?°¢(0)y,(0), (19
so the leading term iR (for A>2) is
(A+2C)? .
(20)

T2AA-1)¢(0) ¢

or, translating back to the standard critical exponents,

’}/2

T 22— a)(1-a)$(0)¢

-2

R (21

In summary, ifa<0, the expected scaling &® is R~ e 2
rather thariR~ €%~ 2, which is seen for positiver.

We now move on to examine the scaling of the various

terms contributing toR in Eq. (2) for the spherical model
itself. As we have remarked, the— —h symmetry in the
free energy per sitd, of the spherical model means that any
terms with an odd number &fderivatives will automatically
be zero wherh=0, hencef g,=f g5n=f1,np,=0. This leaves
the nonzero term&gain wherh=0)

¢ Jz 1
B~ 55" 287

B 1
" 2B(z-3)

Pz 1
Toes=gp7 g3

_ 1 0z 1
fns =" 2pz-3)2 35 26%2-3)"

(22

; 1
~—,
BB o 2

oy
1672B(Be— B2

fhh

, 1
Topp~16m"~ 53,
C

1 1
T~ 828 (Bo—B)° 167282 Bu— )2

673

(23

Comparing with the individual terms in E¢L8) we see that
the expected general scaling of each tdfor «<0) does
indeed apply and that overall we have, as in &1),
R~e€ 2. (24)
We thus see that calculating the scaling ®ffor the 3D
spherical model for whichw=—1 gives results in accor-
dance with expectations from general scaling arguments,
which take into account the negative similar to the Ising
model on planar random graphs.

In d=4 dimensions the exponents of the spherical model
attain their mean-field valuesy=0, f=1/2, y=1. In this
caseqg’'(z)~z—d+g’'(d) near criticality and the resulting
scaling of the components of the expression7ois

-1

const 0 €
ay const 0 €2, (25)
0 €2 0

where the determinant of the metric scaleGase 1. Thus,
R itself scales as 2, in the mean-field case. This is in
agreement with the expected scaling «f 2 when a=0
since, in that casp4],
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AA-1)e* 2y, (0) 0 ATy (0)
R=— | ~A(A=1)(A=2)eA 3y, (0) 0 ~(A+20) 1y 0)| | (26)
2G? ~
0 —(A+2C)er2C 1y (0) 0

where the scaling of the metric determinant is

G=A(A-1)eA 272y, (0)y/L(0). (27)

The difference in scaling between tlhe=0 and thea<0
cases originates in thig;; term which contributes to botR
and G in Egs. (26) and (27). In the negativea case, the

contribution of this term comes from the regular part of the

free energy and is nondiverging.
Note that fora=0, A=2, and although the displayed
scaling termA(A—1)(A—2)e* 3y, (0) in Eq. (26) would

spherical model, finding, as for the Ising model on planar
random graphs, thaR~ e~ 2. Careful considerations of the
scaling of the various elements that contribute/Roshow
that this is in accordance with the expectations. We also
briefly discussed the scaling behavior®ffor d=4, corre-
sponding to the mean-field exponents.

The calculation reported here provides another example
of a statistical mechanical model in which the curvature of
the information geometry metric diverges at the critical
point, with a clearly quantifiable scaling behavior. Once
again it is curious that the relevant exponent is shared with

be expected to vanish, a regular term could still contribute,o Ising model on planar random graphs. Al critical expo-

This is indeed what is seen in the explicit calculation for the,
spherical model. Two further caveats arise. First, for the upgyious physical relation between them.

per critical dimensiond=4 itself, there are multiplicative
logarithmic correctiond14], which require a careful han-

nents now coincide in the two models though there is no
It seems that the
suggestion in the original Berlin and Kac pap@i that the

3D spherical model might provide a hint to the behavior of

dling. Second, ford>4, where the scaling is described by e 3p |sing model applies rather to the Ising model on 2D
the mean-field theory, the hyperscaling relation fails. So ON&lanar random graphs.

should be quite cautious in comparing the explicit calcula-

tion in terms ofe with the expressions involving the corre-
lation lengthé.

IV. CONCLUSIONS
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