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Star-graph expansions for bond-diluted Potts models
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We derive high-temperature series expansions for the free energy and the susceptibility of random-bond
g-state Potts models on hypercubic lattices using a star-graph expansion technique. This method enables the
exact calculation of quenched disorder averages for arbitrary uncorrelated coupling distributions. Moreover, we
can keep the disorder strengitas well as the dimensiahas symbolic parameters. By applying several series
analysis techniques to the new series expansions, one can scan large regionpaf)tipa@meter space for
any value ofg. For the bond-diluted four-state Potts model in three dimensions, which exhibits a rather strong
first-order phase transition in the undiluted case, we present results for the transition temperature and the
effective critical exponeny as a function op as obtained from the analysis of susceptibility series up to order
18. A comparison with recent Monte Carlo ddtahatelainet al, Phys. Rev. B64, 036120(2001)] shows
signals for the softening to a second-order transition at finite disorder strength.
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[. INTRODUCTION corrections to the pure fixed poind€2, q=2). At first-
order transitions, randomness softens the transitionsdFor
Systematic series expansions for statistical models defined 2 even infinitesimal disorder induces a continuous transi-
on a lattice are a well-known method to study phase transition [3], whereas fod=3, q>2 a tricritical point at a finite
tions and critical phenomenfl]. They provide a useful disorder strength is expectéd]. This softening to a second-
complement to large-scale numerical simulations, in particu-o,rder phase transition beyond a trlcrltlcal_ point at some finite
lar, for quenched, disordered systems where the average oviisOrder strength has recently been verified in Monte Carlo
many different disorder realizations is numerically very time MC) simulations OT the three-dimensiormte-diluted three-
consuming and only some points in the vast parameter spaééate[S] a_n_d bonadiluted fpur-state{G]_ Potts model. L
of the systems can be sampled with realistic effort. The critical part of serles expansion methods lies in the
Using high-temperature series expansions, on the oth trap(_)Iatlon techn!ques ghat are used in o_rdgr to obtain in-
hand, one can obtain for many quantities results that a%jwmanon on t'he critical smgularlty from afmlte.number of
exact up to a certain order in the inverse temperature. Herg'0Wn coefficients of the high-temperature series. One can

the infinite-volume limit can be taken without problems angguestion the use of these extrapolation techniques in disor-

the quenched disorder is treated exactly. Moreover, one caifred systems, where the complete singularity structure of

keep the disorder strengghas well as the dimensiod as the f“F‘C“O” may be very cor.nplicated,. involving Griffiths-
symbolic parameters and therefore analyze much larger rdYP€ Singularities or logarithmic correctiofig].

gions of the parameter space of disordered systems. To thjs Anyhow, we are able to determine the transition tempera-

end, we developed further the method of “star-graph expant“re for the bond-diluted four-state Potts model in three di-
’ ensions reliably up to the vicinity of the geometrical per-

sion” which allows us to take the disorder average on th X : ) . . .
level of individual graphs exactly and apply itdestate Potts colation point and in good agreement with analytic estimates
models with a bimodal quenched distribution of ferromag-[8] and M_(_: resultg6). .

netic couplings. Using optimized cluster algorithms for the 1€ critical exponenty extracted from our analysis ap-

exact calculation of spin-spin correlators on graphs with arP€ars to be dependent on the disorder strength which is
bitrary inhomogeneous couplings, we obtained series up tGaUSed by crossover effects and the complicated singularity
order 18 in the inverse temperature for the susceptibility angt'Ucture. Using sophisticated analy?s methods, we find a
the free energy of bond-diluted Potts models in two, three/@nge Of the disorder strength wheygy=1, indicating criti-

and four dimensions. cal behavior governed by a tricritical point.

Depending on the dimensiahand the number of states The rest of the paper is organized as follows. In Sec. Il we
pure Potts models show first- or second-order phase transpriefly recall the model. In Sec. Ill we describe the methods
tions. According to the Harris criteriof2], one expects in used for generating the series, and Sec. IV is devoted to a

the second-order case either the appearance of a new randégPresentation of the analysis techniques used and their ap-
fixed point @=2, q=3,4 andd=3, q=2) or logarithmic plication to the study of the bond-diluted four-state Potts

model in three dimensions. Finally, Sec. V contains our con-
clusions.
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1. MODEL
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stantsJ;; assigned to the linkéij) of G, is defined by its as the second moment of the spin-spin correlation fungtion
partition function which have no star-graph expansion. Furthermore, it works
with free embeddings of graphs into the lattice which can be

counted orders of magnitude faster than the weak embedding
Z={§} exp( ,8(% Jijo(S vSJ))’ (1) numbers used by the star-graph technique. Nonetheless, this
' method has not yet been applied to problems with quenched
where 8= 1/T is the inverse temperatur§=1,...q and disorder. .
5(.,.) is theKronecker symbol. In our series expansion the  The star-graph method can be adopted to systems involv-
combination ing quenched disord¢d.0,11 since it allows one to take the
disorder average on the level of individual graphs. The basic
ePlii—1 idea is to assemble the value of some extensive thermody-
L e r— (2 namic quantityF on a large or even infinite graph from its
eflii—1+q values on subgraphs: Graphs constitute a partially ordered

.set under the “subgraph” relation. Therefore, for every func-
Sion F(G) defined on the set of graphs exists another func-

high-temperature phase, the susceptibility corresponding Lﬁ’on Wi(G) such that for all graph&

the coupling to an external field;, =;hi{[qd(S;,1)—1]/
(g—1)}, is given for a graph wittN spins by

F(G>=Q;G We(9), (5)
1 qs8(S,S)—1 c
D[ | o .

P aq PQJ) and this function can be calculated recursively via
Quenched disorder averades - |p(;) are taken over an un-
correlated bimodal distribution of the form WF(G):F(G)_g;G We(9). (6)

P(Jij)=(1=p)8(J; =) +ps(J;—RJ), @ This gives for an infinite.g., hypercubiclattice

which can include spin glasseR€ —1, p=1/2), random-

bond ferromagnets (@R<1), and bond dilutionR=0) as F(Zd)ZE (G:ZHWE(G), (7)
special cases. Other distributions can, in principle, also be G

considered with our method. _
where G:Z% denotes the weak embedding number of the

graphG in the given lattice structurgl2].

The following observation makes this a useful method.
A. Basic notations from graph theory Let G be a graph with an articulation vertex where two star
subgraphs3, , are glued together. ThéWg(G) vanishes if

Ill. SERIES GENERATION

A graph of orderE consists ofE links connectingN ver-
tices. We consider only connected, undirected graphs that are
simple: no link starts and ends at the same vertex and two

vertices are never connected by more than one link. Sub; : : :
graphs are defined by the deletion of links. In this proces AAn observabld for which Eq.(8) is true on arbitrary graphs

S. . . . R .

. . with articulation points allows a star-graph expansion. All
|(solated vertlcels can be dropbg?ed.bA grarf)h of orIElelrrashfI ) nonstar graphs hgve zero weight. in tk?e sl?um o?Eq(?)

not necessarily nonisomorphisubgraphs since each lin . . :
may be present or absent. These subgraphs may consist Iﬂf Itis easy to see that thiproperly normalizetiiree energy

Z has this property and it can be provet0] that the
several connected components and are called clusters. inverse susceptibility } has it, too, even for arbitrary inho-
An articulation point is a vertex the deletion of which P y o y

renders the graph disconnected. A graph without articulation 2 9eNeOUS couplingk; . This restricts the sum in E€?) to

oints is called “star araph.” a sum over star graphs. The linearity of E¢9—(7) enables
P rec star grapn. . . the calculation of quenched averages over the coupling dis-
A graph is bipartite if the vertices can be separated mtq[ribution on the level of individual graphs
red and hlack vertices so that no link connects two vertices The resulting recipe for the susceptibility series is the fol-
of the same color. Equivalently, all closed paths in the graph

consist of an even number of links Iow[ng. : . .
' (i) Graph generation and embedding number counting.

) (ii) Calculation of Z(G) and the correlation matrix
B. Star-graph expansion method M ,(G)=Trqs(S, ,Sm)_l]e—ﬁH({Jij}) for all graphs as
There are two well-established methddg for the sys-  polynomials inE variablesy;; .

tematic generation of high-temperature series expansions, the (iii) Inversion of theZ polynomial as a series up to the
linked cluster and the star-graph method. The longest knowdesired order.
series(up to orderB3?%) for classical spin models without (iv) Averaging over quenched disorderN,(G)
disorder are produced by linked cluster expansi@isThis ~ =[Mn/Z]py, resulting in a matrix of polynomials i
technique allows one to obtain series for observatdesh andv.

F(G)=F(G1) +F(Gyp). ®

026118-2



STAR-GRAPH EXPANSIONS FOR BOND-DILUTED. .. PHYSICAL REVIEW &7, 026118 (2003

TABLE I. Number of star graphs witk links and nonvanishing embedding numbers78n

OrderE 1 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19

No. 1 1 1 1 2 3 8 9 29 51 142 330 95122561 7688 23078
(v) Inversion of the matriN,,, and subgraph subtraction, B
W, (G)=Zn m(N™Hnm—ZgcaW,(9). Z; q"e N(<i1>_lc vij ) (<i1>_lc (1—Uij)) - (1D
(vi) Collecting the results from all graphs, x1/ be e
:EG(G:Zd)Wx(G)- Here the sum goes over all clust&€& G, E is the number
of links (= orden of the graphG, e is the number of links of
C. Generation of star graphs and calculation the cluster, and the number of connected componentsCof
of embedding numbers Z is normalized such that |& has a star-graph expansion.

The most complicated part in every attempt to generatérhis essentially reduces the partition sum from a sum over

N H —
lists of graphs by recursively adding nodes and edges to 4 States to a sum over-Zlusters. In the Ising casg=2
smaller list is the isomorphism test, i.e., the decision whethefn0ther huge simplification takes place since only clusters
two given adjacency lists or adjacency matrices describe th\g{here all vertices are of even degree contribute to the cluster
same graph modulo relabeling and reordering of edges amtt™- _
nodes. We used theauTy package by McKay13] which The Z clusters belonging to a graph are enumerated by

makes very fast isomorphism tests by calculating a canonicdp'@ codes14] such that two consecutive clusters in the
representation of the automorphism group of the graphs. SUm(11) differ by exactly one(added or deletgdink. Gray

Since we are only interested in star graphs with nonvantodes are a reordering of the binary representation of num-

ishing weak embedding numbersifi, the following simple bers such that the difference to the successor is in exactly
observations are helpful. ’ one bit position. For example, foE=4 the sequence is

(i Only bipartite graphs oceur siné is bipartte. 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101,
(“) A generick_dimensional embedding.e., one which 1111, 11101010, 1011, 1001, 1000 where zeros denote the

really needs alk dimensions contributes ind>k dimen- deleted links. This allows to speed up the calculation consid-
sions with degenerac;ﬁx erably by reusing every term in the sum for the calculation of

. _ _ the next one.
ner(ilg )e'rA‘ng;ﬁ;ﬂggtiﬂIgrjgr;oogi%jgngirgg; 02 eni-t’_ ;Sgshg\e/ e The calculation of the susceptibility involves the matrix of
at least two edges in each dimension. correlations !\/Inm. The effect of inserting[q&(sn ' Sm)
(iv) The only biconnected graph of even order2n —1]/(g—1) into the trace of Eq10) can easily be seen: we

which has generic embeddings of dimensiis the cycle of get 1 if the vertices: andm belong to the same connected
length 2n. All the other graphs will use at most-1 dimen- component of the cluster and 0 otherwise. Therefore,

sions.
For the embedding count we implemented a refined ver- Mnmocz qe”’\‘( H Vi ( H (l—vij)), (12
sion of the backtracing algorithm by Martii2]. We did Cnm (iec (if)ec

extensive tests to find the optimal algorithm for the “inner-
most” loop, the test for collisions in the embedding, and
ended up using optimized hash tables.

By this means, we classified all star graphs up to order 19 -—o
which can be embedded in hypercubic latti¢ese Table )
and calculated their(weak embedding numbers for *~—e -———o
d-dimensional hypercubic latticesip to order 17 for arbi-
trary d, order 18 and 19 for dimensions4), see Fig. 1 for 7620(¢) + 76851600(¢) + 14650620864(¢)
typical results.

where the sum is restricted to all clust&€s,,,C G in which
the verticesn andm are connected.

o Py
g L4

+ 404500471680( %) + 3355519311360(5)
D. Cluster representation

The partition function and the matrix of correlatiolf, ]
for each graph are calculated with arbitrary symbolic cou- ‘427
plings J;; using the cluster representation, :- ol—so

z=g"F[I (ePi-1+0q)Z, 9

(i)
12048(%) + 396672(%) + 2127360(F) + 2488320(5)

Z=q7NTrH [1—Uij+vijq5(5i ,sj)] (10 FIG. 1. Two star graphs of order 17 and 19 and their weak
(5 embedding numbers up to six dimensions.
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For the symbolic calculations we developed & € tem- 112
plate library using an expanded degree-sparse representatic 44| o A
of polynomials and series in many variables. The open 328235 T /N
source library GMP is used for the arbitrary-precision arith- 1.08 pr N
metics. 1.06 e A
Our longest series, up to order 18, are obtained for the o4 e
case of bond dilution where E¢) simplifies to o og W .
<= 1.02
P(Jij)=(1—p)o(Jdi;—I)+ps(Jij), (13 1 T e T T
since in this case the disorder average for a series is mos %% ;:m\/x\ ’ /;\
easily done via 0.96 2 e \/ N
[vnlvn2 U“k] =(1—p)kv”1+'“+nk (14) 0.94 X \
172 Tk APO) ' 0 0.05 0.1 0.15 0.2

1/n

IV. SERIES ANALYSIS: TECHNIQUES AND RESULTS FIG. 2. Ratio approximants for different dilutiopsvs 1h.

In the following we shall illustrate the analysis using the
bond-diluted four-state Potts model in three dimensions as a, 1
our primary example. This model exhibits in the pure case a rn:a “U¢
strong first-order transition which is expected to stay first nt

order up to some finite d|sord§_r strength, before it g_ets SOftI':'gure 2 shows these ratios for different valuepolin order
ened to a second-order transition governed by a disorder

fixed point § make them visgglly comparable, they are normalized by
In the Iétter case we are interested in locating power-la heir respective cr!tlcal couplings, . For _smallp they show_
divergences in the susceptibility series of the form Yhe typical oscillations related to the existence of an antifer-
romagnetic singularity at-v.. Near the percolation thresh-
old at p=0.751188[19] (whereT, goes to 0 the series is
clearly ill behaved, related to the exp(}/singularity ex-

For such a critical behavior, many different series analysié)eCteFJI there. Bgmde_s that, we pbserve that the slepe (
1) is increasing withp, changing fromy<1 to y>1

techniques have been discussed in the literature which all

es haw dp=0.5,
have their merits and drawbacks5]. aroundp= , o
To localize a first-order transition point, however, a high-, The widely used DLog-Padeiethod consists in calculat-

temperature series alone is not sufficient since there the co -P? Padeillpproxw?an':s tof tue Iogarlth.mlc derlvatlve;p(v): f
relation length remains finite and no critical singularity oc- | "¢ Smallest real pole of the approximant is an estimation o

curs. In analysing series by ratio, Pade differential Yc gpd its r3esidue givey.h itical . q
approximants, the approximant will provide a continuous Igure comp}:a;es t e,c;ltlca _temper?ture, ES“Tate
continuation of the thermodynamic quantities beyond thd©™M an average of 25-30 Padpproximants for each value

transition point into a metastable region on a pseudospinod29f P I[IZO],' Wlttf? ﬂ;_e :es%lts of rgcenthMC S'T”“'a“%ﬁ@]- 'i.o r ¢
line with a singularityT; <T,. and effective “critical expo- smallp, In the first-order region, the series underestimates

nents” atTy . , , , , , ,
Employing the techniques described above, we obtainec "6 . conCdata — 4
the high-temperature series expansions for the susceptibilit R
up to order 18 with coefficients given as polynomials in the 14}
disorder strengtip, as listed in the Appendix for dimensions
d=4 [16]. For such a series in two variables, the method of .}
partial differential approximantgl7] should be well suited.
However, to date, the only application of this method to a*+
tricritical point [18] used a test series of order 50 generated
from an exactly solvable model. In our case, it was unable to
give conclusive results. Therefore, we confined ourselves t¢ %8
the analysis of single-parameter series for selected values ¢
p. 06 F -,
The ratio method is the least sophisticated method of se-
ries analysis, but usually it is quite robust and gives a good
first estimate of the series behavior. It assumes that the ex-

-1
1+ T) (16)

x(v)=A(ve—v) "+, (15

pected singularity of the forrtlL5) is the closest to the origin. FIG. 3. Critical temperature for different dilutigmas obtained
Then the consecutive ratios of series coefficients behaviom MC simulationd6] and DLog-Padeeries analyses. The inset
asymptotically as shows the difference between the two estimates.
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FIG. 4. Scattering of different Padgpproximants at a dilution \
p=0.4: critical exponenty against critical coupling . 1.35

1.3

the critical temperature. As explained above, this is an esti-
mate not ofT, but of T; . Betweenp=0.3 andp=0.5, the 1.25
estimates confirm, within errors, the MC results, indicating

that now both methods see the same second-order transitio® 12 ——
Beyond p=0.5, the scatter of different Paggproximants 115 -
increases rapidly, related to the crossover to the percolatior - \\\
point. 11 e §

The situation is more complicated with respect to the

critical exponenty. A DLog-Padeanalysis gives inconclu-
sive results due to a large scattering between different Pad
approximants, as shown in Fig. 4. One possible reason fol
this failure is the existence of confluent singularities. The
dots in Eq.(15) indicate correction terms that can be param- FIG. 5. Values for the critical exponent and amplitudeA at

l
l

1.056

4 .
032 03205 0.321 03215 0322 0.3225 0.323 0.3235 0.324

Ve

etrized as follows: p=0.4 as function of trialv, estimates from the Baker-Hunter
analysis. From the clustering of different Paagproximants in both
X©)=AW—0) Y [1+A(v—v) 1+ Ay(ve—v)22 pictures we estimate,=0.3217,y=0.966, andA=1.21.
+.--],

(17 We see that Padapproximants tog(t) have poles att

where A; are the confluent correction exponents. We used_ L, with residues at the poles 6f Ai/);. This method

different more sophisticated analysis methods, such as inh(ga%zr:'edm?a/mp;ﬂtgn? t(r:()esaes%lr?cstiggg (;efzs'dlfrise f(c))r tﬁ;ﬁ;rent
mogeneous differential approximarits5] and the methods P . ¢’ P

M1 and M2[21], especially tailored to deal with confluent set of values for the parameters is determined visually from

singularities. In the case at hand, the Baker-Hunter methoH1e best c!ustgrlng of different Padpproximants, as dem-
nstrated in Fig. 5.

[22] appeared to be quite successful, giving consistent resulf¥ Using this method, our results for the critical expongnt

at larger dilutionsp>0.35 where the DLog-Padanalysis lotted in Fid. 6. Th h foct
failed. Assume that the function under investigation has con'€ P ottg In Fg. 6. They show an & ective expon_ent maono-
fluent singularities tqnlgally increasing withp but reaching a plateau gzt— 1 for
' dilutions betweemp=0.42 andp=0.46. The following sharp
N increase is to be interpreted as due to the crossover to the
) ':E azh (19) percolation fixed pointp,=0.751188,T,=0, where ay
= " ~exp(1T) behavior is expected.
It is well known (see, e.g., Ref.23]) that series analysis
in crossover situations is extremely difficult. If the parameter
p interpolates between regions governed by different fixed
points, the exponent obtained from a finite number of terms
of a series expansion must cross somehow between its uni-
versal values, and does this usually quite slowly. Therefore it

N
|:(z)=i§1 Ai(l—zE

C

This can be transformed into an auxiliary functigygt)

which is meromorphic and therefore suitable for Paqhe
proximation. After the substitution=z.(1—e") we expand
F(z(t))==,ct" and construct the new series

N does not come as a surprise that the MC simulations quoted
g(t) = 2 nle.th= i _ (19) above see the onset of a second-order phase transition al-
n=0 T L\t ready for smaller values of the disorder strengtfihe mere
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1.3 temperature series expansions of quenched, disordered sys-
tems. Monte Carlo simulations of systems with quenched
125 / disorder require an enormous amount of computing time be-
1.2 cause many realizations have to be simulated for the
/ guenched average. For this reason, it is hardly possible to
1.15 scan a whole parameter range. Using high-temperature series
- 4 / expansions, on the other hand, one can obtain this average
' A exactly. Since the relevant parametétsgree of disordep,
1.05 Ve spatial dimensior, number of stateg, etc) can be kept as
/ symbolic variables, the number of potential applications is
! PZAAREE very large.
0.95 e Here we presented an analysis of the three-dimensional
S bond-diluted four-state Potts model. The phase diagram con-
08 —= e " e pye Py firms recent Monte Carlo results and, by comparing with the

numerical data, we also see signals for the onset of a second-
order transition at a finite disorder strength.

P

FIG. 6. Effective critical exponeng as a function of the dilution
p from Baker-Hunter analyses.
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APPENDIX

V. CONCLUSIONS . . o
As an example, we publish here the inverse susceptibility

We have implemented a comprehensive toolbox for genfor the bond-diluted four-state Potts modeldrs=4 dimen-
erating and enumerating star graphs as required for higtsions[16] up to orderv*® (P=1-p),

X X(Pu,d)=1-2Pvd+2P2p2d-2P3p3d+ v+

d d
2P4d—16P4(2 —2P5d+(24P4+72P5)(2”05

d
08

[ d
+]2 P6d+(24P4—96P5—248P6)( 2) —768P° ( 3

U?

[ d d
+| —2P7d+(24P*—-96P°+264P°+640P") ) +(576P6+3264P7)<3)

[ d
+|2P8d+(72P*—96P°+264P°—216P"— 1384P8)< 2)

‘ 22 S(d
— P
3 62208 4

d
—2P%d+(—72P*—288P%+264P%—312P"—1416P%+ 1888P9)< 2)

+(576P%—144P7—22 704P8) v®

J’_

d
+(576P°%—720P "+ 720P%+ 66 944P9) 3

d
+(31104P8+221 31239)( 4) } v

d
+[2P10d+(—72P*+288P°+648P°+384P" — 144P8+ 9336P°— 296P1°)< 2)

)

+(576P°%+3456P"+ 19 296P8+ 75 456P° — 387 168P19)

UlO

d
+(31104P8+ 109 440P°— 4 000 512310)< 4)
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d
+| -2 PY1d+(—72P*+288P°—504P5— 1008P" — 3024P8+ 3144P°— 33 336P10— 9616P11)( 2)

d
+(576P°—1440P’ - 8352P%— 31 248P°~ 309 744P'%+ 781 824P11)< 3)
d
+(31104P8+ 11 520P°+ 635 520P1%+ 10 415 87P11) 4 vt

+|2 P¥2d+(—216P*+288P°—216P%—4272P"+240P8+ 11 856P°— 4968P0+ 81 744P1!

d
+37 320P12)< 2)
d
+(2880P°%—31392P7+14 112P8+ 169 200P°+ 489 024P°+ 2 692 800P*— 5 811 664P*?) 3
d
+(31104P8+ 273 024P°+ 3 204 864P1%+ 16 037 76(P 11— 179 275 64812 4l v 12

+| —2 P13d+(216P*+864P°—792P%—3912P"+ 29 736P8+ 5952P°— 20 736P°+ 23 088P*!

d
— 144 624P*%—96 160P13)( 2)

+(—1728P°%—31536P"+ 162 288P%+ 15 408P°— 223 344P1°— 113 760P*'— 8 412 192P12

d
+5990 784P13)( 3)

v13

d
+(31104P8+ 67 968P°%+ 1 022 976P1°— 693 504P*1— 16 255 8712+ 304 010 112313)< 4)

+|2 P¥d+(216P*—864P°>—1944P%—8616P"+ 18 360P% — 99 600P°— 65 544P1%+ 33 936P 1!

d
—86 952P12+ 73 704P3+ 169 400P14)( 2)

+(—1728P%—55152P" + 67 248P8— 894 240P°— 918 000P 1+ 2 799 648P1+ 8 589 744P1?

d
+58983984P13—98 045 424314)( 3)

+(31104P8—1 057 536P%+ 17 280P19+ 24 870 52811+ 179 980 416°%%+ 1 095 494 78413

d
—7 487817 088314)( 4> } o4

+| —2 Pd+(216P*—864P%+ 1512P%— 4536P7 + 44 568P% — 55 200P° + 168 480P 10+ 363 072P1*
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d
—11832P124 530 040P13+ 501 600P14— 145 632315)( 2)

+(—1728P%—41 040P"+ 209 232P8— 609 984P°+ 1 319 32810+ 7 874 208P*1+ 5 670 04812

)

+(31104P8— 740 736P°%+ 131 328P1%+ 22 334 97611+ 66 366 72(P1%+ 188 319 74413

!

+|2 P*d+(648P*—864P°+ 1512P%+ 24 336P" + 38 496P8— 148 008P°+ 1656P 1%+ 117 024P1!

+24 319 296P13— 141 840 28814 14 817 536°15)

—1 46751129614+ 5 362518 01615 o1

d
—1 325376P12+ 7200P%3— 1 644 000P1*4—2 926 176P1°— 373 984P16)( 2)
+(—1728P%+ 163 296P "+ 105 984P8—2 305 728P°— 1 857 888 1°— 6 620 544P1!— 48 148 99P*?
d
+18163 72813+ 118520 640P14+ 1 144 225 00 °— 1 918 717 24816) 3

+(217 728P8—3 438 720P°— 7 119 360P 10— 64 137 60(P1— 149 601 02412+ 1 152 714 2413

UlG

d
+8 368 094 20814+ 58 294 742 40P *>— 317 165 909 50@16)( 4)
+| —2 PYd+(—648P*—2592P%+ 1512P%+ 15 408P’— 161 712P%— 123 384P°+ 66 792P%+ 39 264P1!

d
—1 976 760P1%+ 3 413 424P 13+ 848 256P1*+ 4 241 568P 5+ 8 541 960P 6+ 2 398 96(]317)( 2)
+(—1728P%+ 109 728P"— 984 096P8— 1 584 432P%+ 413 424P10— 11 287 29611 — 32 069 37612
d
+206 240 976°13+ 380 730 9604+ 1 087 235 856°1°— 1 859 056 704 16— 2 643 006 38417) 3
+(—93312P8—2 522 880P°— 4 468 6081°— 63 930 24(P1!— 127 255 680P*%+ 1 693 209 6003

d
+6 161021 568+ 23 385 824 2561°— 50 368 269 31P'°— 105383 991 68@17)( 4> vt

+|2 P*®d+ (—648P*+2592P°+ 4104P%+ 83 520P — 82 080P% + 465 984P° + 586 080P %+ 605 064P*!

—166248P12+8 121 312P13— 4 714 536P1*— 2 886 168P15— 3 604 536P16— 20651 83 P17

d
—7297 424P18)( 2)
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+(—8640P°+ 518 400P" — 492 480P8+ 3 752 592P°%+ 12 513 74410— 23 522 25811 66 704 64(P*2
—5310691P13—884 626 27P14— 122 168 4481°+ 2 205 877 39P16+ 22 700 601 216’

d
—42014019 16@18)( 3)

+(—93312P8+ 657 024P°+ 23 180 544P1°— 169 350 91P1!— 762 268 03P 12— 3 977 024 256*°
—10126 195 2004+ 47 139 877 63P5+ 379 559 824 128+ 2 866 361 546 49617

d
+3 747 410 465 66219 ( 4> vi8 (A1)
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