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Star-graph expansions for bond-diluted Potts models

Meik Hellmund* and Wolfhard Janke†

Institut für Theoretische Physik, Universita¨t Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany
~Received 21 June 2002; published 24 February 2003!

We derive high-temperature series expansions for the free energy and the susceptibility of random-bond
q-state Potts models on hypercubic lattices using a star-graph expansion technique. This method enables the
exact calculation of quenched disorder averages for arbitrary uncorrelated coupling distributions. Moreover, we
can keep the disorder strengthp as well as the dimensiond as symbolic parameters. By applying several series
analysis techniques to the new series expansions, one can scan large regions of the (p,d) parameter space for
any value ofq. For the bond-diluted four-state Potts model in three dimensions, which exhibits a rather strong
first-order phase transition in the undiluted case, we present results for the transition temperature and the
effective critical exponentg as a function ofp as obtained from the analysis of susceptibility series up to order
18. A comparison with recent Monte Carlo data@Chatelainet al., Phys. Rev. E64, 036120~2001!# shows
signals for the softening to a second-order transition at finite disorder strength.
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I. INTRODUCTION

Systematic series expansions for statistical models defi
on a lattice are a well-known method to study phase tra
tions and critical phenomena@1#. They provide a usefu
complement to large-scale numerical simulations, in parti
lar, for quenched, disordered systems where the average
many different disorder realizations is numerically very tim
consuming and only some points in the vast parameter s
of the systems can be sampled with realistic effort.

Using high-temperature series expansions, on the o
hand, one can obtain for many quantities results that
exact up to a certain order in the inverse temperature. H
the infinite-volume limit can be taken without problems a
the quenched disorder is treated exactly. Moreover, one
keep the disorder strengthp as well as the dimensiond as
symbolic parameters and therefore analyze much large
gions of the parameter space of disordered systems. To
end, we developed further the method of ‘‘star-graph exp
sion’’ which allows us to take the disorder average on
level of individual graphs exactly and apply it toq-state Potts
models with a bimodal quenched distribution of ferroma
netic couplings. Using optimized cluster algorithms for t
exact calculation of spin-spin correlators on graphs with
bitrary inhomogeneous couplings, we obtained series u
order 18 in the inverse temperature for the susceptibility
the free energy of bond-diluted Potts models in two, thr
and four dimensions.

Depending on the dimensiond and the number of statesq,
pure Potts models show first- or second-order phase tra
tions. According to the Harris criterion@2#, one expects in
the second-order case either the appearance of a new ra
fixed point (d52, q53,4 andd53, q52) or logarithmic
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corrections to the pure fixed point (d52, q52). At first-
order transitions, randomness softens the transitions. Fd
52 even infinitesimal disorder induces a continuous tran
tion @3#, whereas ford53, q.2 a tricritical point at a finite
disorder strength is expected@4#. This softening to a second
order phase transition beyond a tricritical point at some fin
disorder strength has recently been verified in Monte Ca
~MC! simulations of the three-dimensionalsite-diluted three-
state@5# andbond-diluted four-state@6# Potts model.

The critical part of series expansion methods lies in
extrapolation techniques that are used in order to obtain
formation on the critical singularity from a finite number o
known coefficients of the high-temperature series. One
question the use of these extrapolation techniques in di
dered systems, where the complete singularity structure
the function may be very complicated, involving Griffiths
type singularities or logarithmic corrections@7#.

Anyhow, we are able to determine the transition tempe
ture for the bond-diluted four-state Potts model in three
mensions reliably up to the vicinity of the geometrical pe
colation point and in good agreement with analytic estima
@8# and MC results@6#.

The critical exponentg extracted from our analysis ap
pears to be dependent on the disorder strength whic
caused by crossover effects and the complicated singula
structure. Using sophisticated analysis methods, we fin
range of the disorder strength wheregeff51, indicating criti-
cal behavior governed by a tricritical point.

The rest of the paper is organized as follows. In Sec. II
briefly recall the model. In Sec. III we describe the metho
used for generating the series, and Sec. IV is devoted
representation of the analysis techniques used and their
plication to the study of the bond-diluted four-state Po
model in three dimensions. Finally, Sec. V contains our c
clusions.

II. MODEL

The q-state Potts model on the hypercubic latticeZd, or
more generally on any graphG with arbitrary coupling con-

:
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stantsJi j assigned to the linkŝi j & of G, is defined by its
partition function

Z5(
$Si %

expS b(̂
i j &

Ji j d~Si ,Sj ! D , ~1!

whereb51/T is the inverse temperature,Si51, . . . ,q and
d(.,.) is theKronecker symbol. In our series expansion t
combination

v i j 5
ebJi j 21

ebJi j 211q
~2!

will be the relevant expansion parameter. In the symme
high-temperature phase, the susceptibility correspondin
the coupling to an external fieldhi , ( ihi$@qd(Si ,1)21#/
(q21)%, is given for a graph withN spins by

x5
1

N (
i

(
j

F K qd~Si ,Sj !21

q21 L G
P(J)

. ~3!

Quenched disorder averages@•••#P(J) are taken over an un
correlated bimodal distribution of the form

P~Ji j !5~12p!d~Ji j 2J!1pd~Ji j 2RJ!, ~4!

which can include spin glasses (R521, p51/2), random-
bond ferromagnets (0,R,1), and bond dilution (R50) as
special cases. Other distributions can, in principle, also
considered with our method.

III. SERIES GENERATION

A. Basic notations from graph theory

A graph of orderE consists ofE links connectingN ver-
tices. We consider only connected, undirected graphs tha
simple: no link starts and ends at the same vertex and
vertices are never connected by more than one link. S
graphs are defined by the deletion of links. In this proce
isolated vertices can be dropped. A graph of orderE has 2E

~not necessarily nonisomorphic! subgraphs since each lin
may be present or absent. These subgraphs may cons
several connected components and are called clusters.

An articulation point is a vertex the deletion of whic
renders the graph disconnected. A graph without articula
points is called ‘‘star graph.’’

A graph is bipartite if the vertices can be separated i
red and black vertices so that no link connects two verti
of the same color. Equivalently, all closed paths in the gra
consist of an even number of links.

B. Star-graph expansion method

There are two well-established methods@1# for the sys-
tematic generation of high-temperature series expansions
linked cluster and the star-graph method. The longest kno
series~up to orderb25) for classical spin models withou
disorder are produced by linked cluster expansions@9#. This
technique allows one to obtain series for observables~such
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as the second moment of the spin-spin correlation functi!
which have no star-graph expansion. Furthermore, it wo
with free embeddings of graphs into the lattice which can
counted orders of magnitude faster than the weak embed
numbers used by the star-graph technique. Nonetheless
method has not yet been applied to problems with quenc
disorder.

The star-graph method can be adopted to systems inv
ing quenched disorder@10,11# since it allows one to take the
disorder average on the level of individual graphs. The ba
idea is to assemble the value of some extensive thermo
namic quantityF on a large or even infinite graph from it
values on subgraphs: Graphs constitute a partially orde
set under the ‘‘subgraph’’ relation. Therefore, for every fun
tion F(G) defined on the set of graphs exists another fu
tion WF(G) such that for all graphsG,

F~G!5 (
g#G

WF~g!, ~5!

and this function can be calculated recursively via

WF~G!5F~G!2 (
g,G

WF~g!. ~6!

This gives for an infinite~e.g., hypercubic! lattice

F~Zd!5(
G

~G:Zd!WF~G!, ~7!

where (G:Zd) denotes the weak embedding number of t
graphG in the given lattice structure@12#.

The following observation makes this a useful metho
Let G be a graph with an articulation vertex where two s
subgraphsG1,2 are glued together. ThenWF(G) vanishes if

F~G!5F~G1!1F~G2!. ~8!

An observableF for which Eq.~8! is true on arbitrary graphs
with articulation points allows a star-graph expansion. A
nonstar graphs have zero weightWF in the sum of Eq.~7!.

It is easy to see that the~properly normalized! free energy
ln Z has this property and it can be proved@10# that the
inverse susceptibility 1/x has it, too, even for arbitrary inho
mogeneous couplingsJi j . This restricts the sum in Eq.~7! to
a sum over star graphs. The linearity of Eqs.~5!–~7! enables
the calculation of quenched averages over the coupling
tribution on the level of individual graphs.

The resulting recipe for the susceptibility series is the f
lowing.

~i! Graph generation and embedding number counting
~ii ! Calculation of Z(G) and the correlation matrix

Mnm(G)5Tr@qd(Sn ,Sm)21#e2bH($Ji j %) for all graphs as
polynomials inE variablesv i j .

~iii ! Inversion of theZ polynomial as a series up to th
desired order.

~iv! Averaging over quenched disorder,Nnm(G)
5@Mnm /Z#P(J) , resulting in a matrix of polynomials inp
andv.
8-2



STAR-GRAPH EXPANSIONS FOR BOND-DILUTED . . . PHYSICAL REVIEW E67, 026118 ~2003!
TABLE I. Number of star graphs withE links and nonvanishing embedding numbers onZd.

OrderE 1 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19

No. 1 1 1 1 2 3 8 9 29 51 142 330 9512561 7688 23078
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~v! Inversion of the matrixNnm and subgraph subtraction
Wx(G)5(n,m(N21)nm2(g,GWx(g).

~vi! Collecting the results from all graphs, 1/x
5(G(G:Zd)Wx(G).

C. Generation of star graphs and calculation
of embedding numbers

The most complicated part in every attempt to gener
lists of graphs by recursively adding nodes and edges
smaller list is the isomorphism test, i.e., the decision whet
two given adjacency lists or adjacency matrices describe
same graph modulo relabeling and reordering of edges
nodes. We used theNAUTY package by McKay@13# which
makes very fast isomorphism tests by calculating a canon
representation of the automorphism group of the graphs

Since we are only interested in star graphs with nonv
ishing weak embedding numbers inZd, the following simple
observations are helpful.

~i! Only bipartite graphs occur sinceZd is bipartite.
~ii ! A generick-dimensional embedding~i.e., one which

really needs allk dimensions! contributes ind.k dimen-
sions with degeneracy (k

d).
~iii ! A biconnected graph of odd orderE52n11 has ge-

neric embeddings only up to dimensionn since it must have
at least two edges in each dimension.

~iv! The only biconnected graph of even orderE52n
which has generic embeddings of dimensionn is the cycle of
length 2n. All the other graphs will use at mostn21 dimen-
sions.

For the embedding count we implemented a refined v
sion of the backtracing algorithm by Martin@12#. We did
extensive tests to find the optimal algorithm for the ‘‘inne
most’’ loop, the test for collisions in the embedding, a
ended up using optimized hash tables.

By this means, we classified all star graphs up to order
which can be embedded in hypercubic lattices~see Table I!
and calculated their ~weak! embedding numbers fo
d-dimensional hypercubic lattices~up to order 17 for arbi-
trary d, order 18 and 19 for dimensions<4), see Fig. 1 for
typical results.

D. Cluster representation

The partition function and the matrix of correlationsMnm
for each graph are calculated with arbitrary symbolic co
plings Ji j using the cluster representation,

Z5qN2E)̂
i j &

~ebJi j 211q!Z, ~9!

Z5q2NTr)̂
i j &

@12v i j 1v i j qd~Si ,Sj !# ~10!
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qe1c2NS )
^ i j &PC

v i j D S )
^ i j &¹C

~12v i j ! D . ~11!

Here the sum goes over all clustersC#G, E is the number
of links (5 order! of the graphG, e is the number of links of
the cluster, andc the number of connected components ofC.
Z is normalized such that lnZ has a star-graph expansio
This essentially reduces the partition sum from a sum o
qN states to a sum over 2E clusters. In the Ising caseq52
another huge simplification takes place since only clus
where all vertices are of even degree contribute to the clu
sum.

The 2E clusters belonging to a graph are enumerated
Gray codes@14# such that two consecutive clusters in th
sum~11! differ by exactly one~added or deleted! link. Gray
codes are a reordering of the binary representation of n
bers such that the difference to the successor is in exa
one bit position. For example, forE54 the sequence is
0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1
1111, 1110,1010, 1011, 1001, 1000 where zeros denote
deleted links. This allows to speed up the calculation cons
erably by reusing every term in the sum for the calculation
the next one.

The calculation of the susceptibility involves the matrix
correlations Mnm . The effect of inserting@qd(Sn ,Sm)
21#/(q21) into the trace of Eq.~10! can easily be seen: w
get 1 if the verticesn and m belong to the same connecte
component of the cluster and 0 otherwise. Therefore,

Mnm}(
Cnm

qe1c2NS )
^ i j &PC

v i j D S )
^ i j &¹C

~12v i j ! D , ~12!

where the sum is restricted to all clustersCnm#G in which
the verticesn andm are connected.

FIG. 1. Two star graphs of order 17 and 19 and their we
embedding numbers up to six dimensions.
8-3
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For the symbolic calculations we developed a C11 tem-
plate library using an expanded degree-sparse represent
of polynomials and series in many variables. The op
source library GMP is used for the arbitrary-precision ari
metics.

Our longest series, up to order 18, are obtained for
case of bond dilution where Eq.~4! simplifies to

P~Ji j !5~12p!d~Ji j 2J!1pd~Ji j !, ~13!

since in this case the disorder average for a series is m
easily done via

@v1
n1v2

n2 . . . vk
nk#P(J)5~12p!kvn11•••1nk. ~14!

IV. SERIES ANALYSIS: TECHNIQUES AND RESULTS

In the following we shall illustrate the analysis using t
bond-diluted four-state Potts model in three dimensions
our primary example. This model exhibits in the pure cas
strong first-order transition which is expected to stay fi
order up to some finite disorder strength, before it gets s
ened to a second-order transition governed by a disord
fixed point.

In the latter case we are interested in locating power-
divergences in the susceptibility series of the form

x~v !5A~vc2v !2g1•••. ~15!

For such a critical behavior, many different series analy
techniques have been discussed in the literature which
have their merits and drawbacks@15#.

To localize a first-order transition point, however, a hig
temperature series alone is not sufficient since there the
relation length remains finite and no critical singularity o
curs. In analysing series by ratio, Pade´ or differential
approximants, the approximant will provide a continuo
continuation of the thermodynamic quantities beyond
transition point into a metastable region on a pseudospin
line with a singularityTc* ,Tc and effective ‘‘critical expo-
nents’’ atTc* .

Employing the techniques described above, we obtai
the high-temperature series expansions for the susceptib
up to order 18 with coefficients given as polynomials in t
disorder strengthp, as listed in the Appendix for dimension
d<4 @16#. For such a series in two variables, the method
partial differential approximants@17# should be well suited.
However, to date, the only application of this method to
tricritical point @18# used a test series of order 50 genera
from an exactly solvable model. In our case, it was unable
give conclusive results. Therefore, we confined ourselve
the analysis of single-parameter series for selected value
p.

The ratio method is the least sophisticated method of
ries analysis, but usually it is quite robust and gives a go
first estimate of the series behavior. It assumes that the
pected singularity of the form~15! is the closest to the origin
Then the consecutive ratios of series coefficients beh
asymptotically as
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Figure 2 shows these ratios for different values ofp. In order
to make them visually comparable, they are normalized
their respective critical couplingsvc . For smallp they show
the typical oscillations related to the existence of an antif
romagnetic singularity at2vc . Near the percolation thresh
old at p50.751 188@19# ~whereTc goes to 0! the series is
clearly ill behaved, related to the exp(1/T) singularity ex-
pected there. Besides that, we observe that the slope}g
21) is increasing withp, changing fromg,1 to g.1
aroundp50.5.

The widely used DLog-Pade´ method consists in calculat
ing Pade´ approximants to the logarithmic derivative ofx(v).
The smallest real pole of the approximant is an estimation
vc and its residue givesg.

Figure 3 compares the critical temperature, estima
from an average of 25–30 Pade´ approximants for each valu
of p @20#, with the results of recent MC simulations@6#. For
small p, in the first-order region, the series underestima

FIG. 2. Ratio approximants for different dilutionsp vs 1/n.

FIG. 3. Critical temperature for different dilutionp as obtained
from MC simulations@6# and DLog-Pade´ series analyses. The inse
shows the difference between the two estimates.
8-4
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the critical temperature. As explained above, this is an e
mate not ofTc but of Tc* . Betweenp50.3 andp50.5, the
estimates confirm, within errors, the MC results, indicati
that now both methods see the same second-order trans
Beyond p50.5, the scatter of different Pade´ approximants
increases rapidly, related to the crossover to the percola
point.

The situation is more complicated with respect to t
critical exponentg. A DLog-Pade´ analysis gives inconclu
sive results due to a large scattering between different P´
approximants, as shown in Fig. 4. One possible reason
this failure is the existence of confluent singularities. T
dots in Eq.~15! indicate correction terms that can be para
etrized as follows:

x~v !5A~vc2v !2g @11A1~vc2v !D11A2~vc2v !D2

1•••#,
~17!

where D i are the confluent correction exponents. We us
different more sophisticated analysis methods, such as in
mogeneous differential approximants@15# and the methods
M1 and M2 @21#, especially tailored to deal with confluen
singularities. In the case at hand, the Baker-Hunter met
@22# appeared to be quite successful, giving consistent res
at larger dilutionsp.0.35 where the DLog-Pade´ analysis
failed. Assume that the function under investigation has c
fluent singularities,

F~z!5(
i 51

N

Ai S 12
z

zc
D 2l i

5 (
n50

anzn. ~18!

This can be transformed into an auxiliary functiong(t)
which is meromorphic and therefore suitable for Pade´ ap-
proximation. After the substitutionz5zc(12e2t) we expand
F„z(t)…5(ncntn and construct the new series

g~ t !5 (
n50

n!cntn5(
i 51

N
Ai

12l i t
. ~19!

FIG. 4. Scattering of different Pade´ approximants at a dilution
p50.4: critical exponentg against critical couplingvc .
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We see that Pade´ approximants tog(t) have poles att
51/l i , with residues at the poles of2Ai /l i . This method
is applied by plotting these poles and residues for differ
Padéapproximants tog(t) as functions ofzc . The optimal
set of values for the parameters is determined visually fr
the best clustering of different Pade´ approximants, as dem
onstrated in Fig. 5.

Using this method, our results for the critical exponentg
are plotted in Fig. 6. They show an effective exponent mo
tonically increasing withp but reaching a plateau atg51 for
dilutions betweenp50.42 andp50.46. The following sharp
increase is to be interpreted as due to the crossover to
percolation fixed pointpc50.751 188, Tc50, where ax
;exp(1/T) behavior is expected.

It is well known ~see, e.g., Ref.@23#! that series analysis
in crossover situations is extremely difficult. If the parame
p interpolates between regions governed by different fix
points, the exponent obtained from a finite number of ter
of a series expansion must cross somehow between its
versal values, and does this usually quite slowly. Therefor
does not come as a surprise that the MC simulations qu
above see the onset of a second-order phase transitio
ready for smaller values of the disorder strengthp. The mere

FIG. 5. Values for the critical exponentg and amplitudeA at
p50.4 as function of trialvc estimates from the Baker-Hunte
analysis. From the clustering of different Pade´ approximants in both
pictures we estimatevc50.3217,g50.966, andA51.21.
8-5
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MEIK HELLMUND AND WOLFHARD JANKE PHYSICAL REVIEW E 67, 026118 ~2003!
existence of a plateau ingeff(p), however, is an indication
that here truly critical behavior is seen. It is governed b
fixed point for which we obtaing51.00(3). Here, as always
in series analyses, the error estimates the scattering of d
ent approximants.

V. CONCLUSIONS

We have implemented a comprehensive toolbox for g
erating and enumerating star graphs as required for h

FIG. 6. Effective critical exponentg as a function of the dilution
p from Baker-Hunter analyses.
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temperature series expansions of quenched, disordered
tems. Monte Carlo simulations of systems with quench
disorder require an enormous amount of computing time
cause many realizations have to be simulated for
quenched average. For this reason, it is hardly possibl
scan a whole parameter range. Using high-temperature s
expansions, on the other hand, one can obtain this ave
exactly. Since the relevant parameters~degree of disorderp,
spatial dimensiond, number of statesq, etc.! can be kept as
symbolic variables, the number of potential applications
very large.

Here we presented an analysis of the three-dimensio
bond-diluted four-state Potts model. The phase diagram c
firms recent Monte Carlo results and, by comparing with
numerical data, we also see signals for the onset of a sec
order transition at a finite disorder strength.
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APPENDIX

As an example, we publish here the inverse susceptib
for the bond-diluted four-state Potts model ind<4 dimen-
sions@16# up to orderv18 (P512p),
x21~P,v,d!5122 P v d12 P2 v2 d22 P3 v3 d1F2 P4 d216P4 S d

2D G v41F22 P5 d1~24P4172P5!S d

2D Gv5

1F2 P6 d1~24P4296P52248P6!S d

2D 2768P6 S d

3D G v6

1F22 P7 d1~24P4296P51264P61640P7!S d

2D 1~576P613264P7!S d

3D G v7

1F2 P8 d1~72P4296P51264P62216P721384P8!S d

2D
1~576P62144P7222 704P8!S d

3D 262 208P8S d

4D G v8

1F22 P9 d1~272P42288P51264P62312P721416P811888P9!S d

2D
1~576P62720P71720P8166 944P9!S d

3D 1~31 104P81221 312P9!S d

4D Gv9

1F2 P10d1~272P41288P51648P61384P72144P819336P92296P10!S d

2D
1~576P613456P7119 296P8175 456P92387 168P10!S d

3D
1~31 104P81109 440P924 000 512P10!S d

4D G v10
8-6
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1F22 P11d1~272P41288P52504P621008P723024P813144P9233 336P1029616P11!S d

2D
1~576P621440P728352P8231 248P92309 744P101781 824P11!S d

3D
1~31 104P8111 520P91635 520P10110 415 872P11!S d

4D Gv11

1F2 P12d1~2216P41288P52216P624272P71240P8111 856P924968P10181 744P11

137 320P12!S d

2D
1~2880P6231 392P7114 112P81169 200P91489 024P1012 692 800P1125 811 664P12!S d

3D
1~31 104P81273 024P913 204 864P10116 037 760P112179 275 648P12!S d

4D Gv12

1F22 P13d1~216P41864P52792P623912P7129 736P815952P9220 736P10123 088P11

2144 624P12296 160P13!S d

2D
1~21728P6231 536P71162 288P8115 408P92223 344P102113 760P1128 412 192P12

15 990 784P13!S d

3D
1~31 104P8167 968P911 022 976P102693 504P11216 255 872P121304 010 112P13!S d

4D G v13

1F2 P14d1~216P42864P521944P628616P7118 360P8299 600P9265 544P10133 936P11

286 952P12173 704P131169 400P14!S d

2D
1~21728P6255152P7167 248P82894 240P92918 000P1012 799 648P1118 589 744P12

158 983 984P13298 045 424P14!S d

3D
1~31 104P821 057 536P9117 280P10124 870 528P111179 980 416P1211 095 494 784P13

27 487 817 088P14!S d

4D G v14
1F22 P15d1~216P42864P511512P624536P7144 568P8255 200P91168 480P101363 072P11

026118-7
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211 832P121530 040P131501 600P142145 632P15!S d

2D
1~21728P6241 040P71209 232P82609 984P911 319 328P1017 874 208P1115 670 048P12

124 319 296P132141 840 288P14214 817 536P15!S d

3D
1~31 104P82740 736P91131 328P10122 334 976P11166 366 720P121188 319 744P13

21 467 511 296P1415 362 518 016P15!S d

4D G v15

1F2 P16d1~648P42864P511512P6124 336P7138 496P82148 008P911656P101117 024P11

21 325 376P1217200P1321 644 000P1422 926 176P152373 984P16!S d

2D
1~21728P61163 296P71105 984P822 305 728P921 857 888P1026 620 544P11248 148 992P12

118 163 728P131118 520 640P1411 144 225 008P1521 918 717 248P16!S d

3D
1~217 728P823 438 720P927 119 360P10264 137 600P112149 601 024P1211 152 714 240P13

18 368 094 208P14158 294 742 400P152317 165 909 504P16!S d

4D Gv16

1F22 P17d1~2648P422592P511512P6115 408P72161 712P82123 384P9166 792P10139 264P11

21 976 760P1213 413 424P131848 256P1414 241 568P1518 541 960P1612 398 960P17!S d

2D
1~21728P61109 728P72984 096P821 584 432P91413 424P10211 287 296P11232 069 376P12

1206 240 976P131380 730 960P1411 087 235 856P1521 859 056 704P1622 643 006 384P17!S d

3D
1~293 312P822 522 880P924 468 608P10263 930 240P112127 255 680P1211 693 209 600P13

16 161 021 568P14123 385 824 256P15250 368 269 312P162105 383 991 680P17!S d

4D G v17

1F2 P18d1~2648P412592P514104P6183 520P7282 080P81465 984P91586 080P101605 064P11

2166 248P1218 121 312P1324 714 536P1422 886 168P1523 604 536P16220 651 832P17

18
d

27 297 424P !S 2D

026118-8
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1~28640P61518 400P72492 480P813 752 592P9112 513 744P10223 522 256P11266 704 640P12

253 106 912P132884 626 272P142122 168 448P1512 205 877 392P16122 700 601 216P17

242 014 019 168P18)S d

3D
1(293 312P81657 024P9123 180 544P102169 350 912P112762 268 032P1223 977 024 256P13

210 126 195 200P14147 139 877 632P151379 559 824 128P1612 866 361 546 496P17

13 747 410 465 664P18)S d

4D Gv18. ~A1!
3

Re

n-
,

a

i-
-

.
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