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Approximate calculation of the ground-state energy for Potts spin-glass models

Elmar Bittner,1,2 Wolfhard Janke,1 and David B. Saakian3
1Institut für Theoretische Physik, Universita¨t Leipzig, Augustusplatz 10/11, 04109 Leipzig, Germany
2Atominstitut der O¨ sterreichischen Universita¨ten, Technische Universita¨t Wien, 1040 Vienna, Austria

3Yerevan Physics Institute, Alikhanian Brothers Street 2, Yerevan 375 036, Armenia
~Received 26 July 2002; published 16 January 2003!

We consider theq-state Potts spin-glass model, with quenched couplings taking two different values only. As
an approximation for this model a proper generalization of the random energy model is derived. Formulas of
the resulting diluted generalized random energy model~DGREM! are applied to calculate the ground-state
energy for the two-dimensional Potts spin-glass model. The semianalytical results are compared with numerical
determinations of the ground-state energy, using multicanonical, random cost, and simulated annealing tech-
niques.

DOI: 10.1103/PhysRevE.67.016105 PACS number~s!: 05.50.1q, 75.10.Nr, 75.40.Mg, 75.10.Hk
is
er
c

s o
ar
o
e

we
to

g
la

ok
h
in
te

s-
gy
ap
o

el
ue

e

n
n

a
he

s

he
nd

that
so
es

e

he

ith
es:
nd
IV,
p-

ate

It is
gu-
he
p-
I. INTRODUCTION

Spin-glass models are used to describe quenched, d
dered materials with randomly distributed, competing int
actions@1–4#. Due to the latter property, being the chara
teristic feature of all spin glasses, numerical investigation
this class of models are among the computationally h
problems. An important example is the exact calculation
spin-glass ground states which, in greater than two dim
sions or generally in the presence of a magnetic field as
as with periodic boundary conditions, is known to belong
the class of nonpolynomial NP-hard problems@5#. Despite
many recent quite elaborate studies, even for seemin
simple cases such as the Edwards-Anderson Ising spin-g
model in two@6# and three@7–9# dimensions, the behavior in
the spin-glass phase~at zero temperature@6,7#, for low tem-
peratures@8# and around the freezing point@9#! is still not
fully understood. In such a situation it is interesting to lo
for alternative methods, even if their accuracy is somew
limited. Making use of numerical data for the correspond
ferromagneticmodel on the same lattice, we shall calcula
in this paper approximate properties ofspin-glassmodels via
an analogy with random energy model-like systems.

The random energy model~REM! @10# and its generaliza-
tions @11–16# have a variety of applications in modern phy
ics. In Ref. @15# the diluted generalized random ener
model ~DGREM! has been suggested and applied to an
proximate calculation of the ground-state energy of the tw
dimensional~2D! Edwards-Anderson Ising spin-glass mod
where each spin can only take on the two different val
si561.

The purpose of this work is to generalize these ideas
the q-state Potts spin-glass model, where the spins can b
one of theq discrete statessiP$1, . . . ,q% @17–22#. This type
of models is suitable for the description of anisotropic orie
tational glasses@23#, which can arise from random dilutio
of molecular crystals such as N2 diluted with Ar @24#. In such
materials the model parameterq is associated with theq
orientations of the uniaxial molecule in the crystal. Typic
cases areq53, when the molecules can align only along t
x, y, andz axes of a cubic crystal andq56, when the face
diagonals are the preferred directions.
1063-651X/2003/67~1!/016105~8!/$20.00 67 0161
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We thus consider a model ofN integer valued Potts spin
siP$1, . . . ,q% interacting via quenched, random61
nearest-neighbor couplingsJik on ad-dimensional hypercu-
bic lattice with Hamiltonian

H152(̂
ik&

Jik@qdsi ,sk
21#

1

q21
. ~1!

In the case where the couplingsJik are drawn from a sym-
metric distribution, one can rewrite Eq.~1! into the equiva-
lent form

H252(̂
ik&

JikF q

q21
dsi ,sk

2
q

2~q21!G . ~2!

Of course, for a symmetric distribution of the couplings, t
two Hamiltonians are completely equivalent, but the seco
form is more convenient for our purposes. The reason is
in H2 the local contributions to the total energy are al
symmetrically distributed, taking on the two possible valu
6@q/2(q21)#.

In the following section, we derive the DGREM schem
for generalq-state Potts spin-glass models~2! and apply this
semianalytical approximation to the determination of t
ground-state energy of the two-dimensional models withq
52, 3, and 4. In Sec. III, our results are compared w
numerical estimates obtained with three different techniqu
multicanonical simulations, the random-cost algorithm, a
the standard simulated annealing method. Finally, in Sec.
we close with our conclusions and an outlook to future a
plications.

II. THE DGREM APPROXIMATION

The basic idea of the DGREM scheme is to approxim
the system~2! with another~simpler and analytically solv-
able! model with the same number of configurationsqN as
well as the same one- and two-energy level distributions.
easy to calculate the energy distribution for one spin confi
ration as well as for two configurations. If we consider t
energy distribution for any given spin configuration, in re
resentation~2! the energy is a sum ofz5Nd random num-
©2003 The American Physical Society05-1
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bers 6@q/2(q21)# with symmetric distribution. The sym
metric distribution of couplingsJik clears the bias of@q/(q
21)dsi ,sk

2q/2(q21)# and the terms of our sum are ind
pendent. Hence, we have

r1~E,z![^d@H2~s!2E#&J5
1

2p i E2 i`

i`

dk expF2kE

1z ln coshS kq

2~q21! D G , ~3!

where in Eq. ~3! the average is taken over all possib
choices of the couplingsJik . Note that the right-hand side o
Eq. ~3! doesnot depend on the given spin configurations
[$si%, i 51, . . . ,N. One has a simple formula for the supe
position of two distributions~3!

E dE1dE2r1~E1 ,z1!r1~E2E2 ,z2!5r1~E,z11z2!.

~4!

Let us now consider two spin configurationss(1) and s(2),
i.e.,

r2~E![^d@H2~s(1)!2H2~s(2)!2E#&J,s(1),s(2), ~5!

and let us look atH2(s(1))2H2(s(2)), which may be ex-
pressed as

H2~s(1)!2H2~s(2)!52 (
^ ik&51

z(12v0)

Jik

q

q21
@ds

i
(1) ,s

k
(1)

2ds
i
(2) ,s

k
(2)#. ~6!

Here,z5Nd is again the total number of bonds andv0 is the
fraction of bonds with identical productsSiSk* of complex
valued spinsSi[exp(i2psi /q) in the two configurations, or
in terms of the integer valued spins of Eqs.~1! and ~2!:
si

(1)2sk
(1)1q,mod(q)5si

(2)2sk
(2)1q,mod(q).

To calculate the distribution ofv0 for different realiza-
tions s(1),s(2) one should consider theferromagneticPotts
model with Hamiltonian

H f52(̂
ik&

F q

~q21!
dsi ,sk

2
1

~q21!G , ~7!

where, si5si
(1)2si

(2)1q,mod(q). With this normalization
the ferromagnetic energy varies between2Nd for T50 and
0 in the limit T→`, and for q52 all expressions reduc
smoothly to the standard Ising model notation~with 2dsi ,sj

21 replaced bys is j and s i561). For the Hamiltonian
~7!, we can express the energy via the fractionv0 of ‘‘active’’
bonds†dsi ,sk

[d„@si2sk1q,mod(q)#,0…51‡ as

Ef~v0!52F q

q21
v02

1

q21Gz. ~8!

So, we derive the number of situations withv0 for a choice
of all different configurationss(1),s(2),
01610
N~v0!5qNV~v0![qNexp„S@Ef~v0!#…, ~9!

whereV(v0) is a number of configurations with a fractio
v0 of active bonds andS(Ef) is the associated microcanon
cal entropy of the ferromagnetic model~7!.

Let us calculater2(E) in Eq. ~5! at afixedvalue ofv0. As
products of spinssi

(1) are different, we should considerq(q
21) different situations when considering Eq.~6!. We then
have

r2,v0
~E!5

1

2p i E2 i`

i`

dkexpF2kE

1z~12v0!ln

q2212coshS kq

q21D
q

G . ~10!

For small energies (E;AN) this expression simplifies to a
Gaussian distribution,

r2,v0
~E!;expF2

~q21!2

4q~12v0!z
E2G . ~11!

Recall thatr2,v0
(E) is the density of energy differences fo

two configurations with a fixed fractionv0 of equal bonds.
The relation with the densityr2(E) in Eq. ~5! is obviously

r2~E!5E
0

1

dv0N~v0!r2,v0
~E!. ~12!

We thus know the one-energy level distribution for our sy
tem and the distribution for the difference of two leve
There is some ambiguity in the choice of the one level d
tribution. The HamiltonianH2 is a peculiar choice due to it
symmetry properties; that is why we have chosen it and
corresponding distribution~3!.

Let us now construct a simple REM approximation f
our case without going too much into the details. We co
siderqN energy levels with independent distributions~3!

r~E1 ,E2![^d@H2~s(1)!2E1#d@H2~s(2)!2E2#&J

5r1~E1 ,z!r1~E2 ,z!. ~13!

Here, one has for the partition functionZ an expression

Z5(
i 51

qN

exp~2bEi !, ~14!

whereb51/T is the inverse temperature. IfN[ ln(qN)/ln(q)
is the number of Potts spins@in the original model~2! for-
mulated via spin-spin interactions#, then the REM approxi-
mation has a free parameter

a5
z

N
. ~15!
5-2
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Following Refs.@11,12#, we note that at high temperature
the system is in the paramagnetic phase, and in this p
quenched and annealed expressions for the free energ
the same,

^ ln Z~b!&5 ln^Z~b!&5aN ln coshS bq

2~q21! D1N ln q,

~16!

where the average is now taken over the energy distribu
~3!, with the number of couplingsz5Nd replaced byNa. To
obtain Eq.~16!, we used the identity

E
2`

`

dE exp~2bE!r~E!5exp@ f ~b!#,

~17!

r~E!5
1

2p i E2 i`

i`

dkexp@2kE1 f ~k!#.

The solution~16! is correct at high temperatures. At som
finite temperature Tc51/bc the entropy ^ ln Z(b)&
2b(d^ln Z&/db) vanishes,

aNF ln coshS bcq

2~q21! D2
bcq

2~q21!
tanhS bcq

2~q21! D G1N ln q

50. ~18!

This is the main peculiar feature of REM. While in usu
physical systems the entropy vanishes at zero tempera
here it happens already at a finite temperature. At this t
perature the system is frozen in the spin-glass phase
^ ln Z(bc)& given by Eq.~16!. If we assume that the system
frozen into some low-level energy configuration with ze
entropy, then below that freezing temperature^ ln Z(b)&
should be proportional tob. Since the free energy is a con
tinuous function of temperature, we thus have in the lo
temperature phase

2bF5^ ln Z~b!&5
^ ln Z~bc!&

bc
b

5baN
q

2~q21!
tanhS bcq

2~q21! D . ~19!

To derive the last expression, we made use of Eq.~18!.
The spin-glass phase exists only for large connectiv

a.ac . The critical valueac can be obtained by considerin
the limit Tc→0, bc→` in Eq. ~18!, leading to

ac5
ln q

ln 2
. ~20!

For the caseq54 this estimate givesac52, i.e., the bound
d>2 for q54 or q<4 in d52 for the existence of a spin
glass phase. It is unlikely that a spin-glass phase exist
finite temperatures.

So far, we have only considered the one-energy distri
tion. In the REM approach all energy configurations d
couple and, thus, there are no nontrivial two-point correla
01610
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functions to simulate those of the model~2!. To succeed with
nontrivial expressions we have to introduce DGREM, a g
eralized version of REM. As before one can define DGRE
with the one-energy distribution~3!. In addition there is now
a K level hierarchical structure~later, we will take the limit
K→`) with a parameterv for the i th hierarchy levelv
[ i /K, 0<v<1. If we denote the branching number at lev
i by f i , the total number of branches at leveli[Kv is given
by ) i 51

K f i[exp@s(v)#. At the last level of the hierarchy, we
require for the total number of end points

exp@s~1!#5qN. ~21!

Let us put random variablesc l at each branchl with the
distribution

r1S c,
z

K D . ~22!

We put our energy configurations at the end points of
tree. Every end point has a single path, connecting it with
origin of the tree. One defines an energy of a given confi
ration, located at the pointx as

Ex5(
l

c l . ~23!

According to the property~4! all the energy configurations
have again the energy distribution

r~E!5r1~E,z!. ~24!

Before deriving an expression for the two-point correlat
let us first give expressions for the free energy^ ln Z&c , where
the average is now over distributions of allc. Thermody-
namically DGREM is equivalent to a chain of REM’s havin
z/K couplings and@s8(v)/ ln q#(z/K) spins (q valued!. In the
limit of large K one can consider 1/K as differentialdv. We
have thats(v) is a monotonic function withs(0)50 and
s(1)5N ln q. The part of hierarchy fromv50 up to vc is
frozen in the spin-glass phase, andvc,v,1 holds in the
paramagnetic phase. We calculate the free energy of our
tem as a sum of the paramagnetic part with (12vc)z cou-
plings ands(vc)/ ln q spins@14,15# and the spin-glass part

^ ln Z~b!&5~12vc!zln coshS bq

2~q21! D1s~vc!

1
zbq

2~q21!
E

0

vc
dv1tanhS b0~v1!q

2~q21! D , ~25!

where the functionb0(v1) is defined as the solution of th
equation

ln coshS b0q

2~q21! D2
b0q

2~q21!
tanhS b0q

2~q21! D52
s8~v1!

z
,

~26!

which is identical to Eq.~18! for bc with a5z ln q/s8(v1). At
the critical valuevc , we have the relation
5-3
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BITTNER, JANKE, AND SAAKIAN PHYSICAL REVIEW E 67, 016105 ~2003!
b0~vc!5b, ~27!

which can be derived from the extremum condition of E
~25! with respect tovc .

We should next construct a DGREM, which has the sa
distribution@with Hamiltonian~2!# for one-energy as well a
for two-energy levels. To have a correct one-energy distri
tion it is sufficient to takez5dN, i.e., a5d. Let us now
consider the distribution for the difference of two-energy le
els. The difference between energies of two configurati
comes from thec l at higher levels of the hierarchy. If two
configurations one and two meet at levelv of the hierarchy,
then their difference is defined as

E12E25 (
v15v

1

cv1 ,l 1
2 (

v25v

1

cv2 ,l 2
, ~28!

wherev1 ,l 1 andv2 ,l 2 identify the branches at the hierarch
levels v1 and v2, respectively. The labell 1 corresponds to
the branch on the path connecting the end point 1 with
origin of the tree andl 2 to the path connecting the end poi
2. Let us calculate the distribution forE12E2 by analogy
with Eq. ~10! „the distribution~3! is equivalent to the distri-
bution of the sum ofz independent variables6@q/2(q
21)#…. Only when calculating Eq.~10!, we were limited by
the constraintc l 1

Þc l 2
; now those are independent and w

obtain

r̂2,v~E!5
1

2p i E2 i`

i`

dk expF 2kE

1z~12v ! ln

q222q1212~q21!coshS kq

q21D
q2

G ,

r̂2~E!5( r̂2,v i
~E!~ f i21! )

j 5 i 11

K

f j

'E
0

1

dv r̂2,v i
~E!e[s(1)2s(v)]s8~v !.

~29!

Here, r̂2,v(E) is the energy distribution for two configura
tions with a crossing point at hierarchy levelv. By compar-
ing Eq. ~29! with Eq. ~10! for small values of energies, w
find ~ignoring the prefactors! that

q~12v0!

q21
5~12v !, v52

Ef

Nd
,

s~v !5N ln q2S~2vNd!, ~30!

where Ef is the energy~8! and S(Ef) the microcanonical
entropy in Eq. ~9! of the ferromagnetic model. For ou
proper choice of the ferromagnetic Hamiltonian~7! the pa-
rameter v, thus, indeed, varies in the interval 0<v
[2(Ef /Nd)<1.
01610
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There is an important principal aspect here. When con
ering Eq.~9! one observes thatN(v0) is monotonic in the
region 1/q,v0,1, then it falls off after the pointv051/q.
On the other hand, on hierarchical lattices we have that
equivalent ofN(v0) ~the number of all branches betwee
levels of hierarchyi andi 11) grows all the time. In formula
~30!, we constructed the DGREM scheme, which imita
our finite-dimensional model for the values ofv0 in the re-
gion 1/q,v0,1.

Next, we rewrite Eq.~25! via integrating by parts in the
limit b→`. To this end, we first introduce the abbreviatio

y5tanhS b0q

2~q21! D . ~31!

It is then tedious but straightforward to show that the se
consistency Eq.~26! can be rewritten as

~11y!ln~11y!1~12y!ln~12y!52x, ~32!

with x[s8(v1)/z. For a graphical illustration see Fig. 1.
Using the identityS8(Ef)5b1 ~inverse temperature of th

ferromagnetic model~7!, that is, H1 in Eq. ~1! with Jik
[1), and insertingb15x5s8(v1)/z into Eq. ~26! we re-
write Eq. ~25! as

^ ln Z~b!&5
zbq

2~q21! F12vc1E
0

vc
dv1yS s8~v1!

z D G
5

zbq

2~q21!
F 12vc1vcyS s8~vc!

z D

2E
0

vc
dv1v1

dyS s8~v1!

z D
dv1

G . ~33!

FIG. 1. Graphical representation of Eq.~32! for y(x), illustrat-
ing that forx→ ln 2 the solutiony approaches61, the limits of the
allowed range for real values ofx.
5-4
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Changing the integration variable,v1→b1(v1)5s8(v1)/z,
using the identities v152Ef(b1)/Nd, y„s8(v1)/z…
5y(b1), and considering the limitb→`, y„s8(vc)/z…→1
and in this limits8(vc)/z5 ln 2, we transform Eq.~33! into

2Emin5
qNd

2~q21! F12E
0

ln 2

db1

2Ef~b1!

Nd

dy~b1!

db1
G

5
qNd

2~q21! F 12E
0

ln 2

db1

2Ef~b1!

Nd

2

ln
11y~b1!

12y~b1!
G .

~34!

The lower boundb1(v50)50 follows because the energ
of Hamiltonian ~2! is zero at zero inverse temperature a
the last fraction in the second line is justdy(b1)/db1 as
calculated from Eq.~32!. This is the central result of the
DGREM approximation.

It is interesting to compare this result with the REM es
mate for the energy of REM withNd couplings,a5d. Re-
calling Eq. ~31!, the solutionbc of Eq. ~18! can then be
expressed as

FIG. 2. Finite-size scaling of the ground-state energy results
the 2D EAI spin-glass model using multicanonical simulatio
~muca!, the random-cost algorithm~RC!, and simulated annealing
techniques~SA!. For comparison also the multicanonical data
Berg and Celik@26# are shown.
01610
tanhS bcq

2~q21! D5yS ln q

d D , ~35!

and from Eq.~19!, we obtain the purely analytical expressio

2Emin5
qNd

2~q21!
yS ln q

d D , ~36!

with y(ln q/d) determined as solution of Eq.~32!.
As an example, for the cased52, q53, we obtain from

Eq. ~36! by solving Eq.~32! numerically

Emin /N'21.4020 ~REM!, ~37!

while, upon inserting into Eq.~34! the numerically deter-
mined energy of the ferromagnetic model as a function
temperature~for more details see below!, our DGREM ap-
proach gives

Emin /N'21.3156 ~DGREM!. ~38!

In the following section, these values will be compared w
numerically determined estimates of the ground-state ene
using Monte Carlo minimization methods.

In two dimensions, another interesting phenomen
should happen atq54. Here atT50, if the spin-glass phase
does exist, is a multicritical point or the edge of the sp
glass phase. Let as assume, that there exists some spin
phase with some frozen spins. Such spins carry informa
N ln 4. On the other hand, our couplings carry an informat
2N ln 2. So in some sense the information content of
random couplings equals that of the spins in vacuum c
figurations. Such qualitative arguments show that the sp
glass transition point is improbable ford52, q>4.

III. NUMERICAL RESULTS

To judge the quality of the approximate calculations bas
on the DGREM approach, we have performed a dir
ground-state energy computation for the models at hand
ing three different methods: the multicanonical algorith
@25,26#, the random-cost algorithm@27#, and the simulated

r

nical
e

TABLE I. Results for the ground-state energy of the 2D EAI spin-glass model from our multicano
simulations~muca! in comparison with those by Berg and Celik@26#. Also shown are the results from th
random cost and simulated annealing studies.

L Muca Berg and Celik Random cost Simulated annealing

4 21.30460.013 21.27560.029 21.34160.013 21.31260.013
10 21.38960.005 2 21.39360.004 21.38560.005
12 21.39960.005 21.37560.015 21.39160.004 21.39160.004
16 2 2 21.38960.003 21.39460.003
24 21.40460.002 21.38860.008 21.38160.002 21.38860.002
` 21.40760.002 21.39460.007 21.38660.002 21.39560.002
5-5
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A. 2D Edwards-Anderson Ising spin glass

As a benchmark case let us first consider the Edwa
Anderson Ising~EAI! spin-glass model with Hamiltonian
@29#

H252(̂
ik&

Jiks isk , ~39!

where s i561 and Jik561 are quenched, random
couplings which are drawn with equal probability. We a
ways assume periodic boundary conditions. The~total! en-
ergy is given asE(b)5@^H2&#av5@^2(^ ik&Jiks isk&#av,
where ^•••& is the usual thermodynamic expectation val
and@•••#av denotes the average over the quenched disor

On two-dimensional lattices of sizeN5L2 with L
54,10,12, and 24 we performed multicanonical simulatio
studying 100 different realizations per lattice size. We us
these results to check our codes on results in the litera
@26#, see Fig. 2 and Table I. For the estimate of the infini
volume ground-state energy per spin,emin5Emin /N, we used
a finite-size scaling~FSS! fit of the form emin(L)5emin
1c/L2. Applied to our multicanonical~muca! data in Table I
this ansatz works perfectly with ax2 per degree of freedom
of 0.7.

For the 2D Ising spin-glass model much more accur
estimates are available in the literature for further comp
son. Using a combinatoric matching method to find for
given disorder realization theexactground-state energy o
lattices as big as 180031800, Palmer and Adler@30# re-
cently extrapolated@31# an infinite-volume limit of @32#
emin521.40193(2). Other recent estimates includeemin
521.4015(8) ~Ref. @33#, using similar methods!, emin
521.400(5) ~Ref. @34#, pure cluster exact approximation!,

TABLE II. Ground-state energyEmin8 /N of the 2D three-state
Potts spin-glass model.

L Muca Random cost

4 20.75460.014 20.78160.015
8 20.82060.007 20.82260.007

10 20.82260.007 20.82260.006
16 20.83060.003 20.82860.004
20 20.83060.003 20.81960.003
24 20.82760.003 20.81660.002
` 20.83260.002 20.82160.002

TABLE III. Ground-state energyEmin8 /N of the 2D four-state
Potts spin-glass model.

L Muca Random cost

4 20.79660.015 20.79160.014
8 20.83160.007 20.83260.007

10 20.83260.006 20.83260.006
16 20.83460.004 20.83860.004
24 20.83460.003 20.83360.003
` 20.83660.002 20.83660.003
01610
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emin521.4015(3)~Ref. @35#, mixed genetic and cluster ex
act approximation!, emin521.4024(12)~Ref. @36#, transfer-
matrix calculations!, andemin521.407(8)~Ref. @37#, replica
Monte Carlo!. There is a clear consensus amongst these
sults of a central value between21.401 and21.402, which
is compatible with our multicanonical estimates.

After this test, we turned to the random-cost~RC! algo-
rithm and simulated annealing~SA! runs. On lattices of size
L54,10,12,16, and 24, we considered again 100 differ
realizations per lattice size and used the same FSS ansa
the infinite-volume extrapolations as in the multicanonic
simulations. All our results for the ground-state energy
collected in Table I, see also Fig. 2.

Our combined ground-state estimateemin521.397
60.002 ~using an average over the three methods used! is
thus consistent with previous estimates@26,30,33–37#.

B. 2D q-state Potts spin glass withqÄ3 and 4

Next, we considered the 2Dq-state Potts spin-glass mod
with q53 and 4 states per spin where no~quasi-! exact
ground-state energies are available. Here, we thus relied
the Monte Carlo procedures tested in the Ising case. In
numerical work it was more convenient to work with th
Hamiltonian

H2852(̂
ik&

Jikdsi ,sk
, ~40!

instead ofH1 or H2 of Eq. ~1! or ~2!. Again, si51, . . . ,q,
and Jik561 are quenched, random couplings which a
drawn with equal probability. The~total! energy is, thus,
given asE8(b)5@^H28&#av5@^2(^ ik&Jikdsi ,sk

&#av, such that,

recalling the normalization ofH2 , Emin5@q/(q21)# Emin8 .
For both values ofq, we used the multicanonical algo

rithm and investigated 100 different realizations for the l
tice sizes L54,8,10,16,20, and 24. We also perform
random-cost simulations and investigated another 100 dif
ent realizations for the same lattices sizes. For the la

FIG. 3. Finite-size scaling of the ground-state energiesEmin8 /N of
the 2D three-state Potts spin-glass model using multicanon
~muca! and random-cost~RC! simulations.
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lattices the random-cost algorithm turned out to be ill b
haved, and by closer inspection~e.g., much longer runs in
some cases!, we convinced ourselves that it is difficult to fin
reliable ground-state configuration with this method. As o
final estimate for the ground-state energy, we therefore t
the infinite-volume extrapolation~again in 1/L2) of the mul-
ticanonical data, i.e.,emin8 (q53)520.83260.002 andemin8 (q
54)520.83660.002. All results are collected in Tables
and III, see also Figs. 3 and 4.

C. Comparison with the DGREM approximation

For the evaluation of the DGREM approximation~34!, we
need the energy of the corresponding ferromagnetic mode
a function of temperature. To this, end we performed Mo

FIG. 5. The energy of the 2D three-state Potts ferromagnet
function of inverse temperature as obtained from Monte Ca
simulations on a 1003100 lattice with periodic boundary cond
tions ~filled circles!. The two solid lines show for comparison low
and~dual! high-temperature series expansions@38# up to order 45 in
the respective variables.

FIG. 4. Finite-size scaling of the ground-state energiesEmin8 /N of
the 2D four-state Potts spin-glass model using multicanon
~muca! and random-cost~RC! simulations.
01610
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Carlo ~MC! simulations of the two-dimensional ferromag
netic models in the relevantb-range. Since here one ma
employ a cluster algorithm for updating the Potts spins,
could easily simulate sufficiently large lattices and thus av
finite-size effects, at least for all practical purposes. This
illustrated in Fig. 5, where the MC data of a 1003100 lattice
for the three-state Potts model are compared with low-
~dual! high-temperature series expansions@38# to very high
order. By using the ferromagnetic energies as obtained in
MC simulations and performing the integration in Eq.~34!
numerically, we arrived at the numbers forq52, 3, and 4
given in the third column of Table IV. For comparison th
numerically determined ground-state energiesEmin /N5@q/(q
21)#Emin8 /N are compiled in the fourth column, and the la
column showing the ratio of the DGREM and MC estimat
indicates the relative accuracy of the DGREM approximat
which turns out to be about 5%–10%.

Let us finally mention an upper bound forEmin(q) with
q>3, which follows from the trivial inequality

2Emin~q!5
q

q21 F S (̂ik&
JikdsiskD

max$si51, . . . ,q%
G

av

>
q

q21 F S (̂ik&
JikdsiskD

max$si51,2%
G

av

5
q

2~q21!
@2Emin~q52!#. ~41!

Inserting the~almost! exact result for the ground-state ener
of the Ising (q52) spin-glass model, we obtain the~almost!
exact bounds

Emin~q53!/N<21.0510, ~42!

Emin~q54!/N<20.9343. ~43!

IV. CONCLUSIONS

From Monte Carlo data for the energy as a function
temperature of theq-state Pottsferromagnet, we give an ap-
proximate expression for the ground-state energy of
q-state Pottsspin-glassmodel by using the analogy with th
DGREM scheme. The accuracy in two dimensions is ab
5%–10%. The suggested method can be applied to o
situations when graph theoretical or direct Monte Carlo
vestigations of the ground-state energy are too complica

a
o

al

TABLE IV. Ground-state energiesEmin /N of 2D q-state Potts
spin-glass models withq52, 3, and 4 as obtained from the REM
scheme, the semianalytical DGREM approximation, and Mo
Carlo ~MC! minimization methods.

q REM DGREM MC DGREM/MC

2 21.5599 21.4758 21.40193(2) 1.0527
3 21.4020 21.3156 21.248(3) 1.054
4 21.3333 21.2297 21.115(3) 1.103
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