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Approximate calculation of the ground-state energy for Potts spin-glass models
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We consider the-state Potts spin-glass model, with quenched couplings taking two different values only. As
an approximation for this model a proper generalization of the random energy model is derived. Formulas of
the resulting diluted generalized random energy mg@&sREM) are applied to calculate the ground-state
energy for the two-dimensional Potts spin-glass model. The semianalytical results are compared with numerical
determinations of the ground-state energy, using multicanonical, random cost, and simulated annealing tech-

nigues.
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I. INTRODUCTION We thus consider a model of integer valued Potts spins
sie{l,...q} Iinteracting via quenched, randomt1

Spin-glass models are used to describe quenched, disorearest-neighbor couplingl, on ad-dimensional hypercu-
dered materials with randomly distributed, competing inter-bic lattice with Hamiltonian
actions[1-4]. Due to the latter property, being the charac-
teristic feature of all spin glasses, numerical investigations of H.o—— 2
this class of models are among the computationally hard ! i3
problems. An important example is the exact calculation of
spin-glass ground states which, in greater than two dimenin the case where the couplindg are drawn from a sym-
sions or generally in the presence of a magnetic field as welhetric distribution, one can rewrite E¢L) into the equiva-
as with periodic boundary conditions, is known to belong tolent form
the class of nonpolynomial NP-hard problefitd. Despite
many recent quite elaborate studies, even for seemingly Ho— —E 3 q s q @)
simple cases such as the Edwards-Anderson Ising spin-glass 2 ) Kg—178% 2(q—-1)|
model in two[6] and thred 7—9] dimensions, the behavior in
the spin-glass phadat zero temperaturgs,7], for low tem-  Of course, for a symmetric distribution of the couplings, the
peratureq 8] and around the freezing poif®]) is still not  two Hamiltonians are completely equivalent, but the second
fully understood. In such a situation it is interesting to look form is more convenient for our purposes. The reason is that
for alternative methods, even if their accuracy is somewhain H, the local contributions to the total energy are also
limited. Making use of numerical data for the correspondingsymmetrically distributed, taking on the two possible values
ferromagneticmodel on the same lattice, we shall calculate +[q/2(q—1)].
in this paper approximate propertiessgfin-glassmodels via In the following section, we derive the DGREM scheme
an analogy with random energy model-like systems. for generalg-state Potts spin-glass modé® and apply this
The random energy mod&@REM) [10] and its generaliza- semianalytical approximation to the determination of the
tions[11-14 have a variety of applications in modern phys- ground-state energy of the two-dimensional models wjith
ics. In Ref. [15] the diluted generalized random energy =2 3, and 4. In Sec. Ill, our results are compared with
model (DGREM) has been suggested and applied to an apnumerical estimates obtained with three different techniques:
proximate calculation of the ground-state energy of the twomulticanonical simulations, the random-cost algorithm, and
dimensional2D) Edwards-Anderson Ising spin-glass model, the standard simulated annealing method. Finally, in Sec. IV,
where each spin can only take on the two different valuesve close with our conclusions and an outlook to future ap-
s==*1. plications.
The purpose of this work is to generalize these ideas to
the g-state Potts spin-glass model, where the spins can be in
one of theq discrete states; e {1, ... q} [17-22. This type
of models is suitable for the description of anisotropic orien- The basic idea of the DGREM scheme is to approximate
tational glasse$23], which can arise from random dilution the system(2) with another(simpler and analytically solv-
of molecular crystals such as,Miluted with Ar[24]. In such  able model with the same number of configuraticgl$ as
materials the model parametgris associated with the  well as the same one- and two-energy level distributions. It is
orientations of the uniaxial molecule in the crystal. Typical easy to calculate the energy distribution for one spin configu-
cases arg =3, when the molecules can align only along theration as well as for two configurations. If we consider the
X, ¥, andz axes of a cubic crystal ang=6, when the face energy distribution for any given spin configuration, in rep-
diagonals are the preferred directions. resentation2) the energy is a sum af=Nd random num-

1
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Il. THE DGREM APPROXIMATION
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bers =[q/2(q—1)] with symmetric distribution. The sym- Nuo)=q"Q(ve)=qNexp(S[E¢(vo)]), 9)

metric distribution of couplingg;, clears the bias ofq/(q

—1)ds s, —0/2(q—1)] and the terms of our sum are inde- whereQ(v,) is a number of configurations with a fraction

pendent. Hence, we have v of active bonds an&(E;) is the associated microcanoni-
cal entropy of the ferromagnetic modd).

B 1 (= Let us calculate,(E) in Eq. (5) at afixedvalue ofv,. As
P1(E.2)=(dHy(s)~ EDJ_ﬁJiwdkeXF{ —kE products of spins{*) are different, we should considgtq
—1) different situations when considering E§). We then
+zlIn cos)‘( ﬁﬂ 3 have
2(q-1)/ )
where in Eq.(3) the average is taken over all possible 1 [i»
choices of the coupling®, . Note that the right-hand side of P2y(E)= Z—J’ dkexp —kE
Eq. (3) doesnot depend on the given spin configuratien
={s;},i=1,... N. One has a simple formula for the super- kq
position of two distributiong3) q—2+2003?6 Tl)
+2(1—vg)ln . (10

q
JdEldE2p1(Elazl)pl(E_E2122):p1(E121+22)-
(4) For small energiesE~ \/N) this expression simplifies to a

Gaussian distribution,

Let us now consider two spin configuratioes) and s(®,
ie., (q-1)?

P2y (E)~exp{—fE2 .
p2(E)=(8[Ha(s) =Hy(s?)~E])y s s,  (5) ’ 49(1~vo)z
and let us look atH,(sV)—H,(s?@), which may be ex- Recall thatpz,UO(E) is the density of energy differences for

pressed as two configurations with a fixed fraction, of equal bonds.
The relation with the densitg,(E) in Eq. (5) is obviously

11

Z(1-vo)

Hy(sM)—Hy(s@)=— >

Jik——=1[ 041 1)
(641 |kq_1[ ST S

1
pa(E)= Jo dvoMuo)pa,,(E). (12
- si(z),s(kz)]- (6)

_ . . We thus know the one-energy level distribution for our sys-
Here,z=Nd is again the total number of bonds apglis the  tem and the distribution for the difference of two levels.
fraction of bonds with identical produc§S; of complex  There is some ambiguity in the choice of the one level dis-
valued spinsS;=exp(27s/q) in the two configurations, or tribution. The HamiltoniarH, is a peculiar choice due to its
in terms of the integer valued spins of Ed4) and (2):  symmetry properties; that is why we have chosen it and its

stV—sM+q,mod(@) =s'?—s{?+ g, mod(q). corresponding distributiofB).

To calculate the distribution of for different realiza- Let us now construct a simple REM approximation for
tions s1),s(® one should consider thierromagneticPotts ~ our case without going too much into the details. We con-
model with Hamiltonian siderg" energy levels with independent distributiof®

_ g . P(E11E2)E<5[H2(5(1))_E1]5[H2(5(2))_E2]>J

=-2> 85,5~ , (7)
®lla=h =3 @b = p1(E1.2)p1(E.2). 13

where, s,=sY—s(®+q,mod(q). With this normalization

the ferromagnetic energy varies betweehld for T=0 and

0 in the limit T—oo, and forq=2 all expressions reduce N

smoothly to the standard Ising model notatiovith _255i 5 Z=E expl — BE)), (14)

—1 replaced byojo; and o;==1). For the Hamiltonian i=1

(7), we can express the energy via the fractigrof “active”

b0nd5[5si 5= 8(s;—sc+q,mod(@)],00=1] as where 8=1/T is the inverse temperature. N=In(q“)/In(q)
is the number of Potts spirjin the original model2) for-
mulated via spin-spin interactiohghen the REM approxi-

z. (8)  mation has a free parameter

Here, one has for the partition functi@ghan expression

q 1

Ei(vg)=— q—_lvo_ q-1

So, we derive the number of situations with for a choice

of all different configurations(*),s(?, “

4
N’ (15
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Following Refs.[11,12, we note that at high temperatures functions to simulate those of the mod#2). To succeed with
the system is in the paramagnetic phase, and in this phas®ntrivial expressions we have to introduce DGREM, a gen-
guenched and annealed expressions for the free energy agelized version of REM. As before one can define DGREM
the same, with the one-energy distributiof8). In addition there is now

a K level hierarchical structurdater, we will take the limit
K—o) with a parametew for the ith hierarchy levelv
=i/K, O=<v=1. If we denote the branching number at level
(16 i by f;, the total number of branches at leveiKv is given
HiKzlfiEeXF[S(U)]. At the last level of the hierarchy, we
uire for the total number of end points

+Ninq,

. - B
(INZ(B))=In(Z(B))=aNIn COS*(Z(q— 1)

where the average is now taken over the energy distributioﬁg
(3), with the number of couplings=Nd replaced byN«. To q

obtain Eq.(16), we used the identity exds(1)]=q". (21)
f dE exp(— BE)p(E)=exd f(B)], Let us put random variableg, at each branch with the
—o distribution
. (17)
=18 <¢ 5) (22
P(E)—Z—WiJiixdkexr[—kEij(k)]. pi| Ui

The solution(16) is correct at high temperatures. At some W& Put our energy configurations at the end points of the
finite temperature T,=1/8, the entropy (InZ(B)) tree. Every end point has a single path, connecting it with the

— B(d(In 2)/dB) vanishes origin of the tree. One defines an energy of a given configu-
' ration, located at the point as
Bcq ) Bcd r( Bcq )
N| Incos - tan =———=||+NIn
“ r{2<q—1> 2(g-1) " 12(g-1) f E=2 . (23
=0. (18

According to the property4) all the energy configurations
This is the main peculiar feature of REM. While in usual have again the energy distribution
physical systems the entropy vanishes at zero temperature,
here it happens already at a finite temperature. At this tem- p(E)=pi(E,2). (24)
perature the system is frozen in the spin-glass phase with o _ )
(InZ(8,) given by Eq.(16). If we assume that the system is Before_ derlylng an expression for the two-point correlator,
frozen into some low-level energy configuration with zerol€t s first give expressions for the free eneftyyZ),,, where
entropy, then below that freezing temperatufie Z(3)) the average is now over distributions o_f all Thermody-.
should be proportional t@. Since the free energy is a con- namlcally'DGREM is equivalent to a'chaln of REM's having
tinuous function of temperature, we thus have in the low2/ K couplings ands’(v)/Inq](ZK) spins @ valued. In the

temperature phase limit of large K one can consider K/ as differentialdv. We
have thats(v) is a monotonic function witts(0)=0 and

(INZ(B¢)) s(1)=NIng. The part of hierarchy fromv=0 up tov, is

—BF=(In Z(B»:TIB frozen in the spin-glass phase, ang<v<1 holds in the

paramagnetic phase. We calculate the free energy of our sys-
tem as a sum of the paramagnetic part with-l.)z cou-
plings ands(v.)/In q spins[14,15 and the spin-glass part

Bca ) 19

e
=pBaN tan
PeNag-1 *M2a-1)
To derive the last expression, we made use of (E6).

_ q
The spin-glass phase exists only for large connectivity (InZ(B))=(1-vc)zIn cos)‘( 2(q— 1)) +S(ve)
a>a.. The critical valuex, can be obtained by considering

the limit T.—0, B.— in Eq. (18), leading to zf3q f k(Bo(vl)q)
+ 20a=1)Jo dv,tan 20q-1)) (25
Ing
T n2- (20 where the function3y(v4) is defined as the solution of the
equation
For the case =4 this estimate givea.=2, i.e., the bound
d=2 forg=4 org=<4 in d=2 for the existence of a spin- Bog Boq Bod s'(vq)
glass phase. It is unlikely that a spin-glass phase exists al” COS”( 2(q—1)) T 2g-1) tanb'( 2(q—1)> =
finite temperatures. (26)

So far, we have only considered the one-energy distribu-
tion. In the REM approach all energy configurations de-which is identical to Eq(18) for B with a=zIng/s'(v,). At
couple and, thus, there are no nontrivial two-point correlatothe critical valuev., we have the relation
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Bolve) =B, 27 (1+y) In(1+y) + (1-y) In(1-y) = 2x

which can be derived from the extremum condition of Eq. 1
(25) with respect ta,. 2n2
We should next construct a DGREM, which has the same

distribution[with Hamiltonian(2)] for one-energy as well as
for two-energy levels. To have a correct one-energy distribu-
tion it is sufficient to takez=dN, i.e., a=d. Let us now
consider the distribution for the difference of two-energy lev-
els. The difference between energies of two configurationsx
. . 3V
comes from they, at higher levels of the hierarchy. If two
configurations one and two meet at levebf the hierarchy,

then their difference is defined as 05 ¢ I
1 1
Ei—Eo= 2 1~ 2 Yo,y (29)
V1=V vo=U
. . . 0.0
wherev,l1 andv,,l, identify the branches at the hierarchy -1.0 -0.5 0.0 0.5 1.0
levelsv, andv,, respectively. The labdl;, corresponds to y

the branch on the path connecting the end point 1 with the ) i _

origin of the tree and, to the path connecting the end point F!G. 1. Graphical representation of E§2) for y(x), illustrat-
2. Let us calculate the distribution fd&,— E, by analogy ing that forx—In 2 the solutiony approaches:1, the limits of the
with Eg. (10) (the distribution(3) is equivalent to the distri- allowed range for real values of

bution of the sum ofz independent variables-[q/2(q There is an important principal aspect here. When consid-
—1)]). Only when calculating Eq10), we were limited by  ering Eq.(9) one observes that/{v,) is monotonic in the
the constraint/; # i, ; now those are independent and we region 14<v,<1, then it falls off after the point = 1/q.
obtain On the other hand, on hierarchical lattices we have that the
equivalent of M(vo) (the number of all branches between
levels of hierarchy andi + 1) grows all the time. In formula

. 1 (i« (30), we constructed the DGREM scheme, which imitates
p2,(BE)=5—=| dkexp —kE our finite-dimensional model for the values wf in the re-
' gion 1g<vy<l1.
kq Next, we rewrite Eq(25) via integrating by parts in the
q°—2q+2+2(q- 1)008?‘((1_—1) limit B—c0. To this end, we first introduce the abbreviation
+z(1-v) In ,
Y q* yztan)'( Pod ) (31
) 2(q-1))
;)Z(E)ZE ;’Z,Ui(E)(fi_l)_H f; It is t'hen tedious but straightfor_ward to show that the self-
j=i+1 consistency Eq(26) can be rewritten as
(29)

%Jldvﬁz (E)elsh-slg () (1+y)In(1+y)+(1-y)In(1-y)=2x, (32
0 Y '

with x=s"(v4)/z. For a graphical illustration see Fig. 1.

Using the identityS' (E;) = B8, (inverse temperature of the
ferromagnetic model7), that is, H; in Eq. (1) with J;
=1), and inserting8,;=x=s'(v4)/z into Eq. (26) we re-
write Eq.(25) as

Here,;Bz,,,(E) is the energy distribution for two configura-
tions with a crossing point at hierarchy leuel By compar-
ing Eq. (29 with Eq. (10) for small values of energies, we
find (ignoring the prefactojsthat

Z Ve s'(v
a1-vo) _ _ K <In2(ﬂ>>=% 1—vc+f dvly( (Z 1))
q-1 =(1-v), v= Nd’ I 0
s(v)=NIng—S(—vNd), (30 289 s'(ve)
. ] ) :EEF:B l-v.togy 5

where E; is the energy(8) and S(E;) the microcanonical L
entropy in Eq.(9) of the ferromagnetic model. For our s'(vy)
proper choice of the ferromagnetic Hamiltoniéf) the pa- y( ! )
rameter v, thus, indeed, varies in the interval<Q@ _J”Cdvlvl z . (33)
=—(E;{/Nd)=<1. dv,
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-1.24 ' ' ' ' B Ing
126 | muca x| ta“”(m) ZV(T)' 39
1 RC +—&—
128 T Berg, Celik ---e--- _ _ _
13| N SA ran and from Eq(19), we obtain the purely analytical expression
Z ) | .\ \'\_\
< 1% gNd Inq
uF -1.34 ¢+ —Emm=my o/ (36)
-1.36 |
-1.38 with y(In g/d) determined as solution of E¢32).
1.4t As an example, for the cagsk=2, q=3, we obtain from
] 4;2 Eq. (36) by solving Eq.(32) numerically
' 5 10 15 20 25
L Emin/N~—1.4020 (REM), (37)

FIG. 2. Finite_-size scaling of the_ ground-_state energy result_s fokvhile, upon inserting into Eq(34) the numerically deter-
the 2D EAI spin-glass model using multicanonical simulationsmined energy of the ferromagnetic model as a function of

(muca, the random-cost algorithtRC), and simulated annealing temperaturefor more details see belowour DGREM ap-
techniques(SA). For comparison also the multicanonical data of proach gives

Berg and Celil{26] are shown.
Emin/N~—1.3156 (DGREM). 38
Changing the integration variable,— 8,(v,)=5s'(v4)/z, min ( ) 38)
using the identities v;=—E{(B1)/Nd, y(s'(v1)/2)
=y(B4), and considering the limig—o, y(s'(v.)/2)—1
and in this limits’(v.)/z=In 2, we transform Eq(33) into

In the following section, these values will be compared with
numerically determined estimates of the ground-state energy
using Monte Carlo minimization methods.

In two dimensions, another interesting phenomenon

B qNd [ 3 J"”Z —Ei(B1) dy(B1) should happen at=4. Here afT=0, if the spin-glass phase
mn2(g—-1) 1 Nd dgy does exist, is a multicritical point or the edge of the spin-
glass phase. Let as assume, that there exists some spin-glass
~gNd 1o f'“z —E«(B1) 2 phase with some frozen spins. Such spins carry information
-~ 2(q-1) 1 Nd 1+y(B1) | N In 4. On the other hand, our couplings carry an information
”m 2NIn2. So in some sense the information content of the

random couplings equals that of the spins in vacuum con-
(34) figurations. Such qualitative arguments show that the spin-
glass transition point is improbable fde=2, q=4.
The lower boundB,(v=0)=0 follows because the energy
of Hamiltonian (2) is zero at zero inverse temperature and
the last fraction in the second line is judy(B4)/dB;, as
calculated from Eq(32). This is the central result of the To judge the quality of the approximate calculations based
DGREM approximation. on the DGREM approach, we have performed a direct
It is interesting to compare this result with the REM esti- ground-state energy computation for the models at hand us-
mate for the energy of REM withld couplings,«=d. Re-  ing three different methods: the multicanonical algorithm
calling Eg. (31), the solutiong. of Eq. (18) can then be [25,26], the random-cost algorith27], and the simulated
expressed as annealing techniquig28].

IIl. NUMERICAL RESULTS

TABLE I. Results for the ground-state energy of the 2D EAI spin-glass model from our multicanonical
simulations(muca in comparison with those by Berg and Celi®6]. Also shown are the results from the
random cost and simulated annealing studies.

L Muca Berg and Celik Random cost Simulated annealing
4 —1.304+0.013 —1.275-0.029 —1.341+0.013 —1.312+0.013
10 —1.389+0.005 - —1.393+0.004 —1.385+0.005
12 —1.399+0.005 —1.375-0.015 —1.391+0.004 —1.391+0.004
16 - - —1.389+0.003 —1.394+0.003
24 —1.404+0.002 —1.388£0.008 —1.381+0.002 —1.388+0.002
0 —1.407£0.002 —1.394+0.007 —1.386£0.002 —1.395+0.002
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TABLE Il. Ground-state energ¥,;/N of the 2D three-state -0.74 — : : '
Potts spin-glass model. 075 + 0 muca ---e--
L A RC »-=

L Muca Random cost -0.76 A
077 | i

4 —0.754+0.014 —0.781t0.015 078 | |

8 —0.820+0.007 —0.822+0.007 < 0.79

10 —0.822+0.007 —0.822£0.006 LuE -~ I

16 —0.830+0.003 —0.828+0.004 08 |

20 —0.830+0.003 —0.819+0.003 -0.81

24 —0.827+0.003 —0.816£0.002 -0.82 |

% —0.832-0.002 —0.821+0.002 083 |
-0.84 : ' ' .

A. 2D Edwards-Anderson Ising spin glass 5 10 15 20 25
L

As a benchmark case let us first consider the Edwards-
Anderson Ising(EAI) spin-glass model with Hamiltonian FIG. 3. Finite-size scaling of the ground-state energigs/N of
[29] the 2D three-state Potts spin-glass model using multicanonical
(mucag and random-costRC) simulations.
Hz <|Ek) Tk, 39 emin=—1.4015(3)(Ref. [35], mixed genetic and cluster ex-
act approximatio)) en,i,=—1.4024(12)(Ref. [36], transfer-
where oi=*1 and Jy=*1 are quenched, random matrix calculations ande;,=—1.407(8)(Ref.[37], replica
couplings which are drawn with equal probability. We al- ponte Carlg. There is a clear consensus amongst these re-
ways assume periodic boundary conditions. Tteal) en-  gyits of a central value between1.401 and—1.402, which
ergy is given asE(B)=[(Hz)]a~[(—Z(kJikoiola,  is compatible with our multicanonical estimates.
where(- - -) is the usual thermodynamic expectation value After this test, we turned to the random-c¢RC) algo-
and[ - - - Joy denotes the average over the quenched disordefithm and simulated annealin@A) runs. On lattices of size
On two-dimensional lattices of siz&=L* with L | =4,10,12,16, and 24, we considered again 100 different
=4,10,12, and 24 we performed multicanonical simulationsyealizations per lattice size and used the same FSS ansatz for
studying 100 different realizations per lattice size. We usedhe infinite-volume extrapolations as in the multicanonical
these results to check our codes on results in the |iteratur§mu|ation5_ All our results for the ground-state energy are
[26], see Fig. 2 and Table I. For the estimate of the infinite-collected in Table I, see also Fig. 2.
volume ground-state energy per spi,=Eqmn/N, we used Our combined ground-state estimate,,,=—1.397
a finite-size scaling(FSS fit of the form ey (L)=€nn  +0.002 (using an average over the three methods uged

+c/L2 Applied to our multicanonicalmuca data in Table |  thus consistent with previous estimafe$,30,33-3T.
this ansatz works perfectly with g per degree of freedom

of 0.7.

For the 2D Ising spin-glass model much more accurate
estimates are available in the literature for further compari- Next, we considered the 2®state Potts spin-glass model
son. Using a combinatoric matching method to find for awith q=3 and 4 states per spin where fguasi) exact
given disorder realization thexactground-state energy on ground-state energies are available. Here, we thus relied on
lattices as big as 18001800, Palmer and Adlef30] re- the Monte Carlo procedures tested in the Ising case. In the
cently extrapolated31] an infinite-volume limit of [32] numerical work it was more convenient to work with the
emin=—1.401932). Other recent estimates include,,, Hamiltonian
=—1.4015(8) (Ref. [33], using similar methods e,

B. 2D g-state Potts spin glass withg=3 and 4

=—1.400(5) (Ref. [34], pure cluster exact approximatipn HYy= _% JiBs, 50 (40)
TABLE Ill. Ground-state energye, /N of the 2D four-state
Potts spin-glass model. instead ofH, or H, of Eq. (1) or (2). Again,s;=1, ... 4,
and J,==*=1 are quenched, random couplings which are

L Muca Random cost drawn with equal probability. Thétotal) energy is, thus,
4 —0.796+0.015 ~0.791+0.014 given asE’ (B) = [(H2) lav=[{— Z(ik)Jik s, .s) Jav, Such that,
8 —0.831+0.007 —0.832+0.007 recalling the normalization dfl,, E,=[a/(q—1)]EL,-
10 —0.832+0.006 —0.832+0.006 For both values ofy, we used the multicanonical algo-
16 —0.834+0.004 —0.838+0.004 rithm and investigated 100 different realizations for the lat-
24 —0.834+0.003 —0.833+0.003 tice sizesL=4,8,10,16,20, and 24. We also performed
o —0.836+0.002 —0.836+0.003 random-cost simulations and investigated another 100 differ-

ent realizations for the same lattices sizes. For the larger
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-0.77 T T T T TABLE IV. Ground-state energieE,,,/N of 2D g-state Potts
spin-glass models witq=2, 3, and 4 as obtained from the REM
-0.78 | scheme, the semianalytical DGREM approximation, and Monte
079 + Carlo (MC) minimization methods.
> 087 q REM DGREM MC DGREM/MC
g -081¢ 2 —15599 —1.4758 —1.40193(2) 1.0527
“oos2 b 3 -14020 -13156 —1.248(3) 1.054
4 —1.3333 —1.2297 —1.115(3) 1.103
-0.83
-0.84 . . . .
Carlo (MC) simulations of the two-dimensional ferromag-
-0.85 : : : : netic models in the relevan®-range. Since here one may
5 10 15 20 25  employ a cluster algorithm for updating the Potts spins, we
L could easily simulate sufficiently large lattices and thus avoid

o . , finite-size effects, at least for all practical purposes. This is
FIG. 4. Finite-size scalmg.Of the ground'State.ene@ﬁﬁlN of . fllustrated in Fig. 5, where the MC data of a 20Q00 lattice

the 2D four-state Potts splr_1-glas_s model using multlcamonlcallOr the three-state Potts model are compared with low- and

(mucg and random-costRC) simulations. (dua) high-temperature series expansidB8] to very high

lattices the random-cost algorithm turned out to be ill be_order._ By us_ing the ferromagr_1etic ene_zrgies as ob_tained in the
haved, and by closer inspectig¢a.g., much longer runs in MC S|r_nulat|ons anq performing the integration in E84)
some casgswe convinced ourselves that it is difficult to find n_umerycally, we arrived at the numbers for=2, 3, gnd 4
reliable ground-state configuration with this method. As ourdiven in the third c_olumn of Table IV. For comparison the
final estimate for the ground-state energy, we therefore takgumerrlcally determlngd g'round—state enerdigg, /N=[d/(q
the infinite-volume extrapolatiotagain in 1L.2) of the mul- —DIEmi/N are complleq in the fourth column, and th_e last
ticanonical data, i.e/.. (q=3)=—0.832-0.002 ande., (q  Colmn showing the ratio of the DGREM and MC estimates
—4)=—0.836+0.002. All results are collected in Tables Il md_lcates the relative accuracy of the DGREM approximation
and Ill, see also Figs. 3 and 4. which turns out to be about 5%—-10%.

' Let us finally mention an upper bound f&,;,(q) with

. ) . g=3, which follows from the trivial inequality
C. Comparison with the DGREM approximation

For the evaluation of the DGREM approximati¥), we CE(q)= q | S 3.0
need the energy of the corresponding ferromagnetic model as min qa-1/\ @@ ik Os;sy N }
a function of temperature. To this, end we performed Monte L T Uy
q
2.0 ' ' ' " = _q—l ((Zk) Jik s,sk> ]
g=3 L max{s;=1,2} av
e - L ) @1
° L=100 / 2(q_1) min q .
Inserting the(almos) exact result for the ground-state energy
% 1.0 | i of the Ising @=2) spin-glass model, we obtain tk@mos}
Y exact bounds
Emin(g=3)/N<—1.0510, (42)
0.5 | |
Emin(0=4)/N=<—0.9343. (43)
0.0 . ) ) . IV. CONCLUSIONS
~0.0 0.2 0.4 0.6 0.8 1.0

B From Monte Carlo data for the energy as a function of
temperature of the-state Pott§erromagnetwe give an ap-
FIG. 5. The energy of the 2D three-state Potts ferromagnet as Broximate expression for the ground-state energy of the
function of inverse temperature as obtained from Monte Carlod-state Pottspin-glassmodel by using the analogy with the
simulations on a 108100 lattice with periodic boundary condi- DGREM scheme. The accuracy in two dimensions is about
tions (filled circles. The two solid lines show for comparison low- 5%—10%. The suggested method can be applied to other
and(dua) high-temperature series expansi¢88] up to order 45in  Situations when graph theoretical or direct Monte Carlo in-
the respective variables. vestigations of the ground-state energy are too complicated.
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