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Information geometry of the ising model on planar random graphs

W. Janket D. A. Johnstorf, and Ranasinghe P. K. C. Malmini
Linstitut fir Theoretische Physik, Universttheipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany
’Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, Scotland
3Department of Mathematics, University of Sri Jayewardenepura, Gangodawila, Sri Lanka
(Received 25 July 2002; published 20 November 2002

It has been suggested that an information geometric view of statistical mechanics in which a metric is
introduced onto the space of parameters provides an interesting alternative characterization of the phase
structure, particularly in the case where there are two such parameters, such as the Ising model with inverse
temperature3 and external fieldh. In various two-parameter calculable models, the scalar curv&uéthe
information metric has been found to diverge at the phase transition gpiahd a plausible scaling relation
postulatedR~|B— B¢|* 2. For spin models the necessity of calculating in nonzero field has limited analytic
consideration to one-dimensional, mean-field and Bethe lattice Ising models. In this paper we use the solution
in field of the Ising model on an ensemble of planar random grdplhere a=—1, 8=1/2, y=2) to
evaluate the scaling behavior of the scalar curvature, andRind3— 8. 2. The apparent discrepancy is
traced back to the effect of a negatiwe
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|. GENERALITIES: THE INFORMATION GEOMETRY has been advanced f® in the critical region. The hypoth-
esis, on dimensional grounds, is that the curvature depends
Various authors, motivated by ideas in parametric statison the correlation volume for a second-order transitfon
tics[1], have discussed the advantages of taking a geometri~ ¢4 where¢ is the correlation length and is the dimen-
cal perspective on statistical mechan{@&-8]. The “dis-  sjon of the system. This is reasonable siticés the only
tance” between two probability distributions in parametric physical scale in the system near criticality.
statistics can be measured using a geodesic distance that isCombined with hyperscalingyd=2—a, and standard
calculated from the Fisher information matrix for the system.scaling assumptions, this leads to
In a statistical mechanical context the probability distribu-

tions of interest are Gibbs measures 73”|,3—,3c|a_2- @)
r
p(x| g):exp( —> #H{(x)~InZ(6) |, (1)  Inthe abovew is the standard exponent characterizing the
i=1 scaling of the specific heat, so consideration7ofclearly

offers a way of determining critical exponents in a nonstand-

where x characterizes the state of the systérg., sping ard manner.

Hi(x) are the various terms in the Hamiltoniaf(6) is the Analytic determination ofR in spin models has been lim-

.« . oy . | .
normalizing partition function, and' are the various param- jiaq py the necessity of carrying out calculations in field. One
eters such as the inverse temperairehe external fieldh, case where this is possible is the one-dimensiéta) Ising

etc. ) . . model[3], where the curvature was calculated to be
The manifold M of parameters is endowed with a natural

Riemannian metric, the Fisher-Rao metrid, which mea-
sures the distance between different configurations. For a
spin model in fieldM is a two-dimensional manifold param-
etrized by @,6%) =(B,h). The components of the Fisher- With 7= V?’i”ii h+e*". The 1D Ising model can be thought
Rao metric take the simple for;;=a,;f in this case, of as having a zero—temperaéture transmon,_ so looking at
wheref is the reduced free energy per site ape 9/0¢'. A =0, B— we see thaR~e?’, corresponding to the ex-
natural object to consider in any geometrical approach is theecteda=1. Similarly, it is possible to obtain an expression

scalar or Gaussian curvature which may be calculated as for the scalar curvature for the Ising model on a Bethe lattice
[6], where the scaling behavior is also verified. Both these

afgf gt o2t examples have unsatisfactory aspects—the 1D Ising model

R=1+ 5 coshh (4)

1 3 5 5 has no real transition and the Bethe lattice Ising model is
R=- 2G2? 2 Tgont  Ipdnf |, 2 mean field in nature.
Igonf  dgant  dpf Given the relative paucity of models which are soluble in
field, any further explicit calculations would be welcome,
whereG=det(G;;). particularly in a non-mean-field model with a genuine finite-

It is worth remarking that, unlike most standard statisticaltemperature phase transition. In the sequel we discuss one
mechanical observables, the curvatRedepends on third such case, the Ising model on dynamical planar random
order derivatives. Nonetheless, a plausible scaling relatiographs.
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Il. PARTICULARS: THE ISING MODEL where theN— oo limit is to be taken to pick out the planar
ON PLANAR GRAPHS diagrams and the potential appropriate fbf (4-regulay
random graphs has been shown.
When the matrix integral is carried out the solution is
given in parametric form by

The solution of the Ising model on an ensembledst
(4-regulaj or ®2 (3-regulaj planar random graphs was first
presented by Boulatov and Kazak{®;10|, who were moti-
vated by string-theoretic considerations, since the continuum 1 7z 1(zdt 1 [z dt
limit of the theory represents matter coupled to 2D quantum Z= Eln—— —f Tg(t)+ Ff Tg(t)z, (9
gravity. They considered the partition function for the Ising 9 9 9-Jo
model on a singlen vertex planar graph with connectivity
matrix Gj]

0

where the functiorg(z) is

1.,z 1 ) zB
Zsingh;’(Gn,B,h):{Eo} eXF{B(IE’” Ginj‘Ti‘Tj"_hEi gil, g(Z)—§C z +§ (1_2)2_C + (1_22)2 (10)

5
® andB=2[coshf)—1].
then summed it over at vertex graphgG"} resulting in In the thermodynamic limit the reduced free energy per
site is given by
Zy= 2 Zsingle(GnuB:h): (6) —4cg(zp)
{G"} f= In( m) ,

(11)

before finally forming the grand-canonical sum over graphs
with different numbers of vertices where zy=2z(B,h) is the appropriate low- or high-
. temperature solution of’(z)=0. Whenh=0 this may be
z=3 —4gc |" 7 solved in closed form, and although the solution is not avail-
TE(1-c®)?) @ able explicitly for nonzerdh it can still be developed as a
power series irh around the zero-field solutions in order to
wherec=exp(—2p). This last expression could be calculated obtain expressions for quantities such as the energy, specific
exactly as matrix integral oveéd X N Hermitian matrices, heat, magnetization and susceptibility. It was found that the
L critical exponents were given by=—1, B=1/2, y=2, so
. > 2 the transition waghird order with, intriguingly, the same
2=-In f Dé1 D exp{ _Tr{i(‘ﬁﬁ $2) = Ch1¢2 exponents as the 3D spherical model on a regular Igttite
If we carry out a perturbative expansion for the high-
) ) temperature solution, which is symmetric linand hence a
' series in even powers, we find

-G (gte g

1 (u-1)(2u”-2u+1) P 1)(2u?—2u+1)(4u®—10u*+10u®—5u?+5u+1) Ha
Zp=1———

u (2u—1)* 24(2u—1)° T

., (12

where the coefficients in the series are most naturally exwheree=B.— 8 anda,,a; are the scaling dimensions for
pressed in terms af=exp(—B)=\/c, as above. the energy and spin operators. ot 0, i.e., in the unbroken
high-temperature phase, we can use standard scaling assump-

tions to write this as
I1l. GENERALITIES: SCALING

OF THE SCALAR CURVATURE

_ _lla, —ay/a,
The expected scaling form of the various components of f(eh)=e" i, (he ®n'a), (14)

‘R for a generic spin model in field is discussed at some

length in Ref.[4], and we now recapitulate these results . , . .

briefly for comparison with the specific results for the Ising Where#. is a scaling function and we also defiAe=1/a,
model on planar random graphs in the following section. Thé"dC=—an/a, for later convenience. In terms of the stan-

starting point is the scaling form of the free energy per spirfiard critical exponent&=2—a andA+C=g. _
near the critical point, This generic scaling form can now be substituted into Eq.

(2) to find the scaling behavior of the various components
and the scalar curvatui@) itself near criticality(i.e. h=0,
f(e,h)=N"1f(er3 ha2n), (13 e—0),
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AA-1)e* 2y, (0) 0 ATy (0)
1
R=——| ~AA-1)(A-2)"*y.(0) 0 —(A+2C)M 27 YL (0)|, (15
2G
0 —(A+2C) 201y (0) AT3CyL(0)
|
where the scaling of the metric determinant is +h symmetry all odd derivatives of the scaling function
B PAL2C-2 . with respect toh will vanish so d3f=0 rather than
G=A(A-1)e ¥+(0)y=(0). (16 e*3Cy(0). This does not affect the stated scaling rela-

Expanding the determinant one finds two terms of similations . .
order contributing to give However, one feature of these scaling relations does have

an impact on the observed scaling for the Ising model. Ge-

nerically one expects thaff = A(A—1)e*~ 2y (0), which

contributes to both the metric and the determinant involved

in calculatingR. If A>2, i.e.,a<0, this naively suggests a

vanishingaéf at criticality, which will in generahot be the

case. There would instead be a contribution from a regular

(18  term, which would give a constant at the critical point. Hav-
ing such a constant term modifies the scaling formRoin

The discussion in Ref4] was intended to be as general asthe casex<0, A>2 to

possible, one should note that for Ising-like models with a

(A+2C)[(A+2C)—(A—-2)] _
ST G Lo ¢ @

or, translating back to the standard critical exponents,

y(y—a) I

R = a)1-a)p.(0) €

A(A—1)¢(0) 0 20y (0)
1
R=—— —AA-1)(A—2)e* 3y, (0) 0 —(A+2C)eM 2"y (0)|, (19
2G
0 —(A+2C) A2y (0) A5y (0)
|
where we have denoted the constantAfA—1)¢(0). The IV. PARTICULARS: THE SCALAR CURVATURE
scaling forG is also modified to FOR ISING
G=A(A—1)eA"2C(0) /. (0). (20) We can now take the series expansion fgrfrom Eqg.

(12), insert this intog(z) and use the resulting expression for
fin Eq. (11) to calculate the various terms that appear in the
scalar curvaturéRk as a power series in?. We find that the
leading terms ath=0, with e,=u—u.,,=€/2+ ... and
u.,=1/2, and using3,h as co-ordinates are

When expanded, the expression forcontains two terms
that now have differing orders ia. The leading term foA
>2, the case which we are interested in, is

A+2C)2
_ A0 21) %245 3.
2A(A—1)(0) 225 20¢u
1 1072 3
or ——_— | = 0 — 8
R==5c2| s 20% | B
¥ 3
- -2 ~
R - (l—a)h(0) ¢ @2 0 e

so the critical exponen& no longer appears in the scaling 88

exponent. The determinant of the metric scales@s 375552+ Cee
By virtue of the Boulatov and Kazakov solution, the Ising

model on planar random graphs allows us to explicitly con

firm these observations, as we see in the following section.

Sincea=—1, B=1/2, y=2, we haveA=3, C= —5/2 and 225 225

~ e = 2L
the modified discussion of scaling should apply. R 704%u 176° @49

so the final scaling expression for the scalar curvature is
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A glance back at Eqs(19—(22) shows that the modified small, using the expansion fay in Eq. (12). Writing
scaling forA>2 that these incorporate is, indeed, followed
for the individual components in E419), the metric in Eq. R=Ro+R,h*+ ..., (25
(20) and the scalar curvature itself in Eq21) and (22).

It is an easy matter to calculaf for any u whenh is  the first two coefficients are given by

_ (6u®+43u’+357°+ 1265°+ 21231 + 1841°+ 783u%+ 75U+ 3)
2(6u°+27u*+56u%+54u’+18u+3)?(2u—1)?

o X (2u2+2u+1)(u+1)(u?+1) (26

and
Ro=%(u+1)(u?+1)u(u+2)[144u'+ 1008u1"— 32764%0— 31 18— 79 106:14— 129 78@&i*3— 135 42411°— 92 09t
— 78 64%10— 37 4991°+ 54 94118+ 245 6581” + 410 78&1°+ 328 76@°+ 139 98@1* + 33 183>+ 5331u%+ 765U
+45)/[ (6uS+27u*+56u°+ 54u’+ 18u+3)3(2u—1)7], (27)

which give the scaling of Eq(24) whenu is set equal to dvA
1/2+e,. o5 T (The)ln-oVAVE=N(s)V, (30

In Fig. 1 we have |<6)Iottedz close tou,,=1/2 using a
series correct up t®(h®) terms. The scaling region inis
very narrow, with the approximation t&® rapidly giving (F2B)|hzovﬁvﬂzo' (3D
large negative values outside this region due to the increas- ) .
ingly strong divergences in the series coefficients uas The first of these equations fg#(s) always has a solution
—,u,, for increasing order if. This turnover is just visible and the second require$’},)|,_o=0. This is satisfied for
on the edges of the plotted surface. The sensitivityhto the Ising model on planar random graphs because the Christ-
would have to be carefully handled in any numerical inves-offel symbolT'}; vanishes ah=0 for the same reason as in
tigations of R. Within the domain of validity of the expan-
sion inh it appears thaR is positive. It has been remarked
[3,5] that R is positive in the thermodynamic limit for Ising
models when the parameters take physical values, with th
only divergence being at the critical point, and the Ising
model here provides another example. This feature is appal
ently not universal, calculations ofR for the one-
dimensional Potts mod¢ll2] and field theorieg8] do not
give positive curvatures throughout the physical parameteisooo -
space.

It has been observed that the line 0 is a geodesic of the 80001
metric for the one-dimensional Ising and Potts mod&d.
The geodesic equations using co-ordingéels are given in - 7000
general by

6000 -
B

dv:
—— +TLVAVEL 2T A VAV T VIV =\ (s) VA,

ds 5000 -
(29)

4000 ]
h

dV/
gs T T heVAVE+ 20 B VAV TR VIV =\ (V"
(29

100000 h

where s parametrizes the flow linesyVA=dg/ds, V"

-

=dh/ds, thel are the Christoffel symbols ands) allows 051

for the possibility of a nonaffine parameter choice. FIG. 1. A plot of R close tous,=1/2. Note that the external
A vector field with a flow line alondi=0 hasV"=0, so  field h is scaled by a factor of Poand so covers a very narrow

in this case Eqs28) and (29) reduce to range.
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the one-dimensional models—the off-diagonal componentélthough a=—1 for this model, R~ ¢ 2 rather than the

of the metricdza,f areO(h) in all cases. We therefore find
that for the Ising model on planar random graghsO is
also a geodesic line in the,h plane.

We close with a remark on the infinite temperatuiie (
—ow, B—0, u—1) limit of R whenh=0. In this limit R
was found to be 2 for the one-dimensional Ising mddg!
andz/2 for the Ising model on & co-ordinated Bethe lattice
[6]. Here we find thaR(T=«)=4060/168%2.415..., so
if we accept the suggestion in RdB] that R—R(T=x)

R~ e 2 one might have expected naively from general scal-
ing arguments. This discrepancy was traced back to the ef-
fect that a negative value af had on the scaling of the
various components of the metric and the terms that contrib-
uted toR.

Various qualitative features of the calculatRdtally with
earlier observations of one-dimensional and mean-field Ising
models. It is positivewithin the domain of the applicability
of our semiperturbative calculatipand diverges only at the

should be taken as a measure of fluctuations caused by tlegitical point. The zero-field line is seen to be a geodesic, just
spin interactions the correct measure of the deviation fronas for the one-dimensional Ising and Potts models.

ideal paramagnetism for the Ising model on planar random

graphs isR —4060/1681.

V. CONCLUSIONS

It would be an interesting exercise to calcul&édor other
models where some form of solution in field was accessible.
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