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Functional form of the Parisi overlap distribution for the three-dimensional
Edwards-Anderson Ising spin glass
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Recently, it has been conjectured that the statistics of extremes is of relevance for a large class of correlated
systems. For certain probability densities this predicts the characteristic largex falloff behavior f (x)
;exp(2aex), a.0. Using a multicanonical Monte Carlo technique, we have measured the Parisi overlap
distribution P(q) for the three-dimensional Edward-Anderson Ising spin glass at and below the critical tem-
perature We find that a probability distribution related to extreme-order statistics gives an excellent description
of P(q) over about 80 orders of magnitude.
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The three-dimensional~3D! Edwards-Anderson@1# Ising
~EAI! spin-glass model is a prototype of a disordered syst
for which conflicting constraints create a rough free-ene
landscape. Such systems are of importance for the un
standing of a wide range of phenomena in physics, chem
try, biology, and computer science. The overlapq between
two replicas of the EAI model serves as an order parame
Its probability densityP(q) is, therefore, a quantity of cen
tral physical interest. More than 20 years ago, Parisi s
ceeded to calculateP(q) in the mean-field approximation
@2#. However, for 3D physical systems the precise form
P(q) in the spin-glass phase, and the very nature of
phase, have remained a subject of debate@3,4#.

We use a multicanonical Monte Carlo~MC! technique
@5,6# for calculatingP(q) numerically, specifically tailored
for the exponentially small tail of the distribution where w
can measure probabilities as small as 102160 with good pre-
cision. In this paper we show that, at the critical point,
modification of Gumbel’s first asymptote~introduced below!
gives a perfect description of the data over about 80 order
magnitude, and the agreement appears to continue below
critical temperature. Although the detailed relationship b
tween extreme-order statistics and the EAI model remain
be understood, it is certainly quite rare that a physical f
mula has been tested over such a large range.

The statistics of extremes was pioneered by Fre´chet,
Fisher and Tippet, and von Mises. A standard result@7,8#,
due to Fisher and Tippet, Kawata, and Smirnov, is the u
versal distribution of the first, second, third, etc. smallest o
set ofN independent identically distributed random numbe
For an appropriate, exponential decay of the random num
distribution, their probability densities are given by

f a~x!5Ca exp@a~x2ex!# ~1!

in the limit of largeN. The exponenta takes the valuesa
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51,2,3, . . . , corresponding, respectively, to the first, secon
third, etc. smallest random number of the set.x is a scaling
variable, which shifts the maximum value of the probabil
density to zero, andCa5aa/G(a) normalizes the integra
over f a(x) to 1. In Gumbel’s book@7# Eq. ~1! is called the
first asymptote, as it holds for the asymptotic extreme-or
statistics of the first of altogether three different classes
random number distributions. In the last years a noninte
value of the exponenta received some attention. For th
probability density of the magnetization of the 2DXY model
Bramwell et al. @9,10# deriveda5p/2 in the spin wave ap-
proximation and conjectured that this exponent describes
least approximately, probability densities of a large class
correlated systems, including~besides the mentioned sys
tems! turbulent flow problems, percolation models and so
self-organized critical phenomena.

For disordered systems Bouchaud and Me´zard@11# noted
that a relationship to extreme order statistics is intuitive
quite obvious. Namely, at low temperatures a disordered
tem will preferentially occupy its low-energy states, whic
are random variables due to the quenched exchange inte
tions of the system. Their investigation of the random-ene
model shows that Gumbel’s first asymptote witha51 corre-
sponds to one-step replica symmetry breaking, and their c
jecture of a relationship between extreme order statistics
disordered systems is certainly far more general. This,
the possible description of a broad range of correlated s
tems by thea5p/2 modification of Gumbel’s first asymp
tote, has motivated us to analyze the overlap probability d
sity of the EAI model at and below the critical point wit
respect to the largex falloff behavior of Eq.~1!.

The energy function of theJ561 EAI spin-glass model
is given by@1#

E52(̂
ik&

Jiksisk , ~2!

where thesi561 are the spins of the system and the sum
over the nearest-neighbor pairs of a cubicL3 lattice with
periodic boundary conditions. The coupling constantsJik are
©2002 The American Physical Society02-1
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quenched random variables, which take on the values61,
with equal probabilities. A set of coupling constants define
realizationJ5$Jik% of the system. The two-replica overla
~Parisi order parameter! is defined by

q5
1

L3 (
i 51

L3

si
(1)si

(2) , ~3!

where thesi
(1) andsi

(2) are the spins of two copies~replica!
of the realizationJ and the sum is over all sites. The overla
probability density is given by the average over the proba
ity densitiesPJ(q) of all realizations

PL~q!5
1

NJ
(J PJ~q!, ~4!

where NJ is the number of realizations used andL is the
lattice size. There is a long history of MC studies of th
model ~see@12–19# and references therein!, which have led
to a wealth of information. Here we introduce only two r
sults.

~1! The model has a freezing transition at a finite tempe
ture, which according to the most recent estimates@16,19# is
consistent withTc51.14.

~2! References@14–16,18# reported results that were con
sistent with a Kosterlitz-Thouless@20# ~KT! type line of criti-
cal points belowTc , quite similar to the 2DXY model.

In our context, this is of interest in view of the descriptio
of this model by Eq.~1! with a5p/2 @9#. Note, however,
that one of the most recent EAI investigations@19# claims to
rule out the KT scenario.

At T51.14 we generated 8192 realizations forL54, 6,
and 8; 1024 realizations forL512; and 256 realization fo
L516. Figure 1 shows our normalizedP(q) probability den-
sities. Due to the MC method, the error bars of neighbor
entries are strongly correlated. This results in smooth cur
of varying thickness, which represents the error. The pea
these data are the tails of the distributions, which~for L
516) are accurate down to 102160 ~for uqu towards 1!. This
is achieved by simulating the system in a (J dependent!
statistical ensemble for which the distribution ofq values is

FIG. 1. Overlap probability densitiesPL(q) versusq for the EAI
model onL3 lattices at the critical temperature.
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approximately flat@6#, instead of using the Gibbs canonic
ensemble. After the simulation, results for the Gibbs e
semble are obtained through an exact reweighting proced
In this way computer simulations allow to probe easier in
the extremes of materials than real experiments. Alongs
with our data at the critical point, we analyze our data fro
our simulations@17,18# at T51, below the critical point. In
that case we generated 8192 realizations forL54, 6, 8, and
640 realizations forL512. In the tails the data~for L512)
at T51 are accurate down to 10253.

We first ask the question whether, up to finite-size corr
tions, the probability densities depicted in Fig. 1 scale.
method to investigate this is to plotsLPL(q) versus (q
2q̂L)/sL , whereq̂L is the mean value ofq with respect to
the distributionPL(q) andsL is its standard deviation~here
q̂L50 because thePL(q) are even functions!. A visual in-
spection shows that the data scale indeed and we proce
fit the standard deviations to the two-parameter formsL
5c1L2b/n to obtain

b

n
50.312~4!, Q50.32 for T51.14, ~5!

and

b

n
50.230~4!, Q50.99 for T51. ~6!

Here the numbers in parentheses denote error bars with
spect to the last digits andQ is the goodness of fit. ForT
51.14 we plot in Fig. 2P8(q8)5PL(q)/Lb/n versusq8
5Lb/nq and see that the five probability densities collap
onto a single curve. To enlarge the scale, we restrict o
selves to theq>0 range. The~relative! error bars of the lines
in Fig. 2 are the~relative! error bars of Fig. 1. Not to obscur
the agreement, we include only one representative error
for each lattices size,L516,12, . . . from right to left in Fig.
2 ~for L<8 they are barely visible on the scale of the figur!.
For our data atT51 a similar analysis is already given i
@18#. The small discrepancy in the estimates of the criti
exponentb/n ~0.255 in@18# instead of 0.230! is due to using
different methods of data analysis. Note that the error bar

FIG. 2. Rescaled overlap probability densities for the E
model onL3 lattices at the critical temperature. In the lower part t
deviationP168 (q8)2Pfit8 (q8)6nP168 (q8) of someL516 data from
the fit is shown. It has been shifted upwards by 0.2 to fit inside
figure.
2-2
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the b/n estimates~5! and ~6! reflect only the fluctuations o
our two-parameter fit and additional~systematic! errors are
expected from corrections to scaling.

Our aim is to relate the probability distribution of Fig. 2
the first asymptote of extreme-order statistics Eq.~1!. In the
neighborhood ofx50 the expansion

x2ex5212 1
2 x21O~x3! ~7!

holds. To get the position of the maximum ofP8(q8) right,
we have to choose

x5b~q82qmax8 !, ~8!

whereqmax8 is theq8.0 argument for which the probability
densityP8(q8) takes on its maximum value. We then have
find an exponenta to reproduce the data forx5b(q8
2qmax8 ).0. For x5b(q82qmax8 ),0, however, the behavio
~1! cannot be quite correct. The reason is that thex,0
asymptotic behavior

exp@ax#5exp@a b~q82qmax8 !# ~9!

predicts, on a logarithmic scale, a constant slopea with de-
creasingx, while for the data of Fig. 2 the slope levels o
and atq850 ~i.e., x52bqmax8 ) the derivative ofP8(q8) be-
comes zero, what is impossible with Eq.~9!. A simple solu-
tion is to replace the firstx on the right-hand side of Eq.~1!
by c tanh(x/c), where c.0 is a constant. For smallx the
Taylor expansion~7! still holds, while for largeuxu the hy-
perbolic tangent functionc tanh(x/c) approaches quickly6c
@note that in the limitc→` the original form~1! is recov-
ered#. For x→2` ~practically already atq850) the thus
modified Gumbel distribution becomes constant. Therefo
the symmetric expression forP8(q8) is obtained by multi-
plying the above construction with its reflection about t
q850 axis

P8~q8!5C expH aFc tanhS 1
b

c
(q82qmax8 ) D

2exp[1b(q82qmax8 )] G J
3expH aFc tanhS 2

b

c
(q81qmax8 ) D

2exp@2b~q81qmax8 !#G J . ~10!

Of course, the important largex behavior of Eq.~1! is not at
all affected by our manipulations.

The calculation of the parametersa, b, c, andC is done by
using the logarithm of Eq.~10!. Starting values are dete
mined by the following parts of the distribution:C by the
height of the peak atq85qmax8 ~now off the maximum loca-
tion by a tiny shift which can be neglected; in the fits w
usedqmax8 51.135 972 forT51.14 andqmax8 51.115 056 for
04510
e,

T51), a andb by theq8.qmax8 tails of the distribution andc
by the value atq850. This allows to iterate to our fina
estimates

a50.448~40! for T51.14, ~11!

and

a50.446~37! for T51. ~12!

The nonuniversal coefficients areb55.35(11), c
53.37(41), C57.55(88) forT51.14, andb58.23(17), c
54.48(43),C516.8(2.2) forT51. The error bars rely on a
jackknife analysis.

For T51.14 our best fit to Eq.~10! is already included in
Fig. 2. To demonstrate its quality we plot in the lower part
the figure the deviation from the fit for~a subset of! the L
516 data. Good consistency between the data and the
found over the plotted range ofq8.

In Fig. 3, we follow the tails of our distributions by plot
ting ln@P8(q8)# versusq8 for q8>1.5. BesidesT51.14, the
results forT51 are also included in this figure. On the sca
of Fig. 3 the error bars are not visible. As in Fig. 2, w
indicate the accuracy of theL516 data forT51.14 in the
lower part of the figure. Figure 3 exhibits the finite-size e
fect, due to which, forq close to 1, the smaller lattices un
dershoot the larger ones. It is quite clear that something
this has to happen, because the data from each lattice
terminates atq51, whereas Eq.~10! has no corresponding
singularity. When calculating our fit parameters, we take t
into account by restraining our use of data toq8,2,
ln@P8(q8)#.243.4 for theT51.14, L516 lattice, and to
q8,1.62, ln@P8(q8)#.225.6 for theT51, L512 lattice. The
agreement of our fits with those data stretches then over
siderably larger ranges. Statistically significant discrepanc
of the L516 data with the fit begin only around ln@P8(q8)#
52200 . Discrepancies of theT51, L512 lattice with the
fit are encountered around ln@P8(q8)#5235. However, the
T51.14, L512 data deviate already around ln@P(q8)#5
210 from theL516 data. This is possible, because corre
tions to theL0.312 scaling factor are not traced by the acc

FIG. 3. Tails of the rescaled overlap probability densities of F
2: ln@P8(q8)# versusq8. For T51.14 we show in the lower part the
deviation 20@ ln P168 (q8)2 ln Pfit8 (q8)6D ln P168 (q8)# of someL516
data from the fit, shifted downwards by 300.
2-3
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racy of our data~in particularL516 has low statistics due t
computer time limitations!. Therefore, it is not entirely clea
whether the large range, which we find for the agreemen
the fit with ourL516 lattice, is to some extent a statistic
accident. Taking it at face value, we have the remarka
range of 200/ln(10)'87 orders of magnitude.

Our coefficienta differs from the 2DXY coefficient of
Bramwellet al. @9#, a5p/2. This means that the EAI and th
2D XY models are certainly in quite different universali
classes of extreme-order statistics. However, the fact
both distributions can be described by it at all might help
explain the observed similarities. Our temperatureT51 is
below the criticalTc , but with our lattice sizes it appear
impossible to resolve the question, whether the here-repo
behavior reflects the existence of a critical line belowTc or
just the closeness ofT51 to Tc . Before comparing to
extreme-order statistics, we@18# tried to fit theq.qmax tails
of our distributions to the theoretical predictions that ha
been made@21–23# based on the replica mean-field a
proach. None of these fits was particularly good and e
when pushing the adjustment of free parameters to t
is
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limits only small parts of the tails of our distributions cou
be covered.

In summary, we have presented strong numerical e
dence that the Parisi overlap distribution of the EAI mod
can be described by Eq.~10!. The excellent agreement ove
many decades suggests a deep relation to simple, but fu
mental statistical properties, presumably also presen
many other correlated systems. The detailed relationship
tween the EAI model and extreme-order statistics remain
be investigated and it is certainly a challenge to extend
work of Bouchaud and Me´zard @11# to the more involved
scenarios of the replica theory. On the other hand, it could
that replica symmetry breaking is not the driving mechani
of the EAI model phase transition and that our observati
are rooted in general relations@9# between extreme-order sta
tistics and certain universality classes of correlated syste
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@2# M. Mézard, G. Parisi, and M.A. Virasoro,Spin Glass Theory
and Beyond~World Scientific, Singapore, 1987!.

@3# D.S. Fisher and D.A. Huse, Phys. Rev. B38, 386 ~1988!.
@4# Spin Glasses and Random Fields, edited by A.P. Young~World

Scientific, Singapore, 1997!.
@5# B.A. Berg and T. Neuhaus, Phys. Rev. Lett.68, 9 ~1992!.
@6# B.A. Berg and W. Janke, Phys. Rev. Lett.80, 4771~1998!.
@7# E.J. Gumbel,Statistics of Extremes~Columbia University

Press, New York, 1958!.
@8# J. Galambos,The Asymptotic Theory of Extreme Order Stat

tics, 2nd ed.~Krieger, Malabar, FL, 1987!.
@9# S.T. Bramwellet al., Phys. Rev. Lett.84, 3744~2000!.

@10# S.T. Bramwellet al., Phys. Rev. E63, 041106~2001!.
@11# J.-P. Bouchaud and M. Me´zard, J. Phys. A30, 7997~1997!.
@12# A.T. Ogielski, Phys. Rev. B32, 7384~1985!.
@13# R.N. Bhatt and A.P. Young, Phys. Rev. B37, 5606~1988!.
-

@14# N. Kawashima and A.P. Young, Phys. Rev. B53, R484~1996!.
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