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Softening of first-order transition in three-dimensions by quenched disorder
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We study by extensive Monte Carlo simulations the effect of random bond dilution on the phase transition
of the three-dimensional four-state Potts model that is known to exhibit a strong first-order transition in the
pure case. The phase diagram in the dilution-temperature plane is determined from the peaks of the suscepti-
bility for sufficiently large system sizes. In the strongly disordered regime, numerical evidence for softening to
a second-order transition induced by randomness is given. Here a large-scale finite-size scaling analysis, made
difficult due to strong crossover effects presumably caused by the percolation fixed point, is performed.
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The influence of random, confining geometries on fir
order phase transitions has been the subject of exciting
perimental studies in the past few years. The case of
isotropic to nematic transition ofnCB liquid crystals con-
fined into the pores of aerogels consisting of multiply co
nected internal cavities has been particularly extensiv
studied and led to spectacular results: The first-order tra
tion of the corresponding bulk liquid crystal is drastica
softened in the porous glass and becomes continuous@1#, an
effect that was not attributed to finite-size effects but rat
to the influence of random disorder.

The first attempt to reproduce such a softening scen
using Monte Carlo~MC! simulations was reported by Uzela
et al. @2# who studied a three-dimensional~3D! q-state Potts
model with spin variables~takingq53 and 4 states per spin!
located inside the randomly connected pores of an aer
modeled by diffusion-limited cluster aggregation. Althou
in experimental studies@3# commonly random fields or ran
dom uniaxial anisotropies are suggested to explain the s
ening of the transition, the random disorder chosen in R
@2# is coupled to the energy density and thus more akin
bond dilution.

The qualitative effect of quenched random bond disor
on second-order phase transitions is well understood thro
the Harris relevance criterion@4#, and a beautiful experimen
tal confirmation was reported in a low-energy electron d
fraction investigation of a two-dimensional~2D! order-
disorder transition @5#. For systems with a first-orde
transition in the pure case, randomness generically sof
the transition and, under certain circumstances, may e
induce a second-order transition according to a picture
proposed by Imry and Wortis@6#.

In 2D, the natural candidate for theoretical investigatio
is theq-state Potts model, since in the pure case this mod
exactly known to exhibit regimes with first- and secon
order transitions@7#, depending on the value ofq. With
quenched, random disorder, many results were obtaine
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both regimes in the last ten years@8,9#, including approxi-
mate analytic treatments, MC simulations, transfer-ma
calculations, and high-temperature series expansions. Am
others also quite intricate problems such as self-averag
and multifractality have recently been studied in some de
@9#.

In 3D, to date only the Ising model with site dilution ha
been studied extensively@10#. In accordance with the Harris
criterion the presence of random disorder was found
modify the critical exponents to values close ton
50.684(5), g/n51.96(3), andb/n50.519(8). Concerning
the influence of random disorder on first-order transitio
even less is known in 3D. Apart from the exploratory wo
@11# of Uzelacet al. @2#, only the site diluted three-state Pot
model, which in the pure 3D case has a very weak first-or
transition@12#, has recently been studied via large-scale M
simulations@13#. This study led to the conclusion that th
critical exponentn governing the scaling behavior of th
correlation length is compatible with that of the 3D site d
luted Ising model, whereas theh exponent is definitely dif-
ferent.

The purpose of this paper is to present numerical evide
for softening of the transition when it isstronglyof first order
in the pure system, in order to be sensitive to disorder
fects. The paradigm in 3D is the four-state Potts model, si
the correlation length at the transition temperature of the
perturbed system is small enough (j.3 in lattice spacing
units @14#! to allow simulations of significantly large sys
tems. For the pure 3D five-state Potts model the first-or
transition is already too strong@14#. In the following we,
therefore, consider the four-state bond diluted Potts mode
simple-cubic lattices of sizeV5L3 with periodic boundary
conditions. The Hamiltonian of the system with independe
quenched random interactions is written as2bH
5( ( i , j )Ki j ds i ,s j

, where the spins take the valuess i

51, . . . ,4 and the sumgoes over all nearest-neighbor pai
( i , j ). The coupling strengths are allowed to take two diffe
ent valuesKi j 5K[J/kBT and 0 with probabilitiesp and 1
2p, respectively. The order parameter for a given realizat
of theKi j is defined by the majority orientation of the spin
m5^m&, where m5(qrmax21)/(q21) and rmax is the
maximum value of the density of spinsrs in the q54 pos-
sible spin states. The thermal average over the MC iterat
©2001 The American Physical Society20-1
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is indicated by bracketŝ•••&, and the physical quantities ar

then averaged over disorder realizations, e.g.,m̄5^m&. For
each disorder realization the susceptibility is defined as u
via the fluctuation-dissipation theorem,x5KV(^m2&
2^m&2).

The present MC simulations consist of two parts. Firs
scan of the dilution-temperature plane in order to determ
the phase diagram, and second, a large-scale finite-size
ing ~FSS! study atp50.56 up toL596 in the dilution re-
gime exhibiting second-order transitions. The spin upda
were performed with the cluster-flipping method@15# in the
Swendsen-Wang formulation that turned out to be better
haved than the Wolff single-cluster version for high dilutio
~small p), where small clusters connected by nonvanish
bonds are more likely to appear. We made sure that, by
justing the length of the runs, at least ten tunneling eve
between the two coexisting phases of the pure systemp
51) were observed up to lattice sizeL516. To improve the
accuracy, for weak dilutions (p between 1 and 0.68! where
we obtained evidence for first-order transitions, we also u
multicanonical algorithms@16#. For the determination of the
maxima of observables we applied standard histogram
weighting techniques in order to extrapolate the results o
a temperature range around the simulation point.

At each probabilityp and for each realization of the ran
dom couplings, between 153103 and 303103 MC sweeps
per spin were performed, resulting in at least 250~almost!
independent measurements of the physical quantities for
largest lattice size considered. This turned out to be suffic
for reliable thermal averages. For the average over diso
realizations, between 2 000 and 5 000 samples were ge
ated.

The phase diagram is determined from the locations of
maxima of the average susceptibility,Kmax, obtained for sys-
tems of increasing sizes up toL516. Theoretically we ex-
pect that the transition remains of first order in the regime
low impurity concentrations. For increasing concentration
regime of second-order transitions should appear from a~tri-!
critical concentration until the percolation threshold
reached where the transition vanishes altogether. After
percolation threshold, no ordered phase can exist at any fi
temperature. Two points are known in thep2kBT/J plane:
The transition temperatureTt of the pure system@14#
kBTt(p51)/J.1.590 76, andkBTt(p5pc)/J50 at the per-
colation thresholdpc'0.2488. As can be inspected in Fig.
the temperatures of the susceptibility maxima for differe
lattice sizes are very stable and already for 103 spins an
accurate transition line is obtained. Also shown is the re
of a simple mean-field argument taking into account the
erage number of neighbors,kBTt(p)/ z̄J5const, where the
constant is chosen such thatTt of the pure system is repro
duced. This leads to a simple linear approximation of
transition line, kBTt(p)/J51.590 763p, which is surpris-
ingly accurate over a significant range ofp values.

By monitoring the FSS behavior of various thermod
namic quantities as well as the~pseudo-! dynamics of the
update algorithm, we estimate the tricritical point to be
03612
al

a
e
al-

s

e-

g
d-
ts
(

d

e-
er

he
nt
er
er-

e

f
a

is
ite

t

lt
-

e

-

cated betweenp50.68 and 0.84: The shape of the ener
probability densities as well as the Binder cumulants sugg
a first-order transition atp50.84 and above while a clea
second-order signal is observed atp50.68 and below. For
the investigation of the critical properties in the second-or
regime we have chosen a dilutionp50.56 where the correc
tions to scaling are seemingly relatively small, since the
fective transition temperatures corresponding to the sus
tibility maxima remain almost constant in the range of siz
2<L<16 used for the determination of the phase diagra

In order to convince ourselves that forp50.56 the tran-
sition is indeed of second order, let us first consider the
erage probability densities of the energy,P(e). In Fig. 2 their
shapes close toKmax are depicted for various lattice sizes u
to L596. We see that the system exhibits for small sizes t

FIG. 1. Phase diagram of the bond diluted four-state Potts mo
in 3D. The solid line is a spline interpolation to guide the eye, a
the dashed line shows the transition line within a simple mean-fi
argument,Tt(p)5pTt(1).

FIG. 2. The probability density of the energy atp50.56 for
sizesL516, 20, 25, 30, 50, 64, and 96, reweighted to the tempe
ture where the two peaks are of equal height. The inset shows
associated effective interface tension.
0-2
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distinct peaks that clearly collapse into a single peak w
one approaches the thermodynamic limit. This is precis
what is expected at a second-order phase transition, whi
the case of a first-order transition the double-peak struc
should persist for all sizes and, in fact, should become e
more pronounced when the system size increases. Physi
a two-peak structure would reveal the presence of two ph
at the transition temperature, and this coexistence is the c
acteristic feature of a first-order transition. More quanti
tively we have confirmed that the effective interface tens
sod derived from the usual relationPmin /Pmax;exp
@22sod(L)Ld21# vanishes in the infinite-volume limit; se
the inset of Fig. 2.

Our final goal is a quantitative characterization of t
critical behavior by providing estimates for the critical exp
nents of the transition. To this end we have performe
standard FSS analysis atp50.56. As can be inspected in Fig
3, the corrections to asymptotic FSS forx̄max seem to be-
come quite small aboveL530. The data are thus linearl
fitted toaxLg/n for L in the rangesLmin.30 toLmax596, and
the resulting exponents are collected in Table I. Selecting
fits with the smallest chi-squared per degree of freedo
x2/d.o.f, we take as the final result the lines in bold fa
e.g.,g/n51.5060.02. The quantity]Kln m̄ gives an estima-
tion of the exponentn, (]Kln m̄)Kmax

}L1/n. Here our analysis

leads to an estimate of 1/n51.3360.03 or n50.752
60.014, in agreement with the stability condition of the ra
dom fixed point (n>2/D50.666 . . . ) andsignificantly dif-
ferent from the estimate for the site diluted 3D Ising mod
@n50.684(5)#. The same procedure was applied to the m
netization evaluated at the temperature where the suscep
ity is maximal. Judging the values ofx2/d.o.f would lead to
the result given in bold face in Table I, but the effecti

FIG. 3. Finite-size scaling behavior of the susceptibility, t

magnetization and ofdln m̄/dK at Kmax ~the quantities have bee
shifted in the vertical direction for the sake of clarity!. The scaling
behavior for small lattice sizes is presumably governed by the
colation fixed point, and above a crossover length scale it reach
new ~random! fixed point.
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exponent for the magnetization is clearly not yet stable.
therefore also considered the FSS behavior of higher~ther-
mal! moments of the magnetization,^mn&, which should
scale with a dimensionnb/n. The results for the first mo-
ments exhibit, however, again much stronger corrections
scaling than we observed forx̄ or ]Kln m̄, leading to our final
estimate ofb/n50.6560.05.

From the log-log plots of the three quantities in Fig. 3 o
can clearly observe a crossover from a percolation-type
havior at small sizes, characterized by the exponents@17#
g/n.2.05, 1/n.1.124, andb/n.0.45, towards a new re
gime at large sizes, which presumably corresponds to
random fixed point, with exponents as given above. The
merical evidence for this interpretation is quite striking, b

FIG. 4. Plot of thex2 deduced from linear fits ofx̄max(L)
5axLg/n(11bxL2v) in the range 25<L<96. The exponents are
fixed parameters and the amplitudes are free. The base plane
the ranges of variation of the exponents: 1.25<g/n<1.75 and 0
<v<5. A cutoff at x2550 has been introduced for clarity of th
figure.

r-
s a

TABLE I. Linear fits for x̄max, (]Kln m̄)Kmax
, andm̄Kmax

.

Lmin Lmax g/n x2/d.o.f

35 96 1.500„14… 0.044
40 96 1.502~17! 0.054
50 96 1.506~27! 0.065

Lmin Lmax 1/n x2/d.o.f

35 96 1.362~13! 1.011
40 96 1.353~16! 0.887
50 96 1.330„25… 0.419

Lmin Lmax b/n x2/d.o.f

35 96 0.592~13! 2.778
40 96 0.608~15! 2.145
50 96 0.645„24… 0.311
0-3
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with the present system sizes we can of course not c
pletely rule out the possibility of corrections to scaling,
particular since for the 3D disordered Ising model it is w
known that such corrections at the random fixed point
strong ~with a correction-to-scaling exponent aroundv
50.4). In order to investigate this question for the 3D fou
state Potts model, we tried to fit the physical quantities to
standard expression, e.g.,axLg/n@11bxL2v1•••#, includ-
ing a subdominant correction-to-scaling term. Since fo
parameter nonlinear fits are notoriously unstable, we p
formed linear fits where the exponents are kept fixed
only the amplitudes are free parameters. In Fig. 4, we sho
3D plot of the totalx2 for the susceptibility fits as a functio
of g/n and v. We observe a clear, stretched valley, whi
confirms thatg/n is close to 1.5, but obviously this does n
allow any reliable estimation of the correction-to-scaling e
ponentv. The same procedure for 1/n gives qualitatively the
same picture and confirms our previous estimate ofn
51.33. Forb/n, on the other hand, thex2 landscape turns
out to be very flat and extremely sensitive to the fit rang

To conclude, from large-scale MC simulations of the 3
v.

l,
s.
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four-state bond diluted Potts model we obtained~a! the phase
diagram in thep-T plane in very good agreement with~res-
caled! mean-field theory,~b! the approximate location of the
tricritical point aroundpTCP50.76(8), and~c! at the dilution
p50.56 clear evidence for softening of the rather stro
first-order phase transition in the pure case towards a c
tinuous transition with estimates for the critical exponents
n50.752(14), g/n51.50(2), g51.13(4), b/n50.65(5),
andb50.49(5). These are clearly different from the value
for both the 3D disordered Ising@n50.684(5), g/n
51.963(5)] and thethree-state Potts model@n50.690(5),
g/n51.922(4)] models.
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