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Monte Carlo study of cluster-diameter distribution:
An observable to estimate correlation lengths

Wolfhard Janke and Stefan Kappler
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We report numerical simulations of two-dimensiogastate Potts models with emphasis on a new quantity
for the computation of spatial correlation lengths. This quantity is the cluster-diameter distribution function
G%aMx), which measures the distribution of the diameter of stochastically defined cluster. Theoretically it is
predicted to fall off exponentially for large diameter G%@™xexp(—x/£), where¢ is the correlation length as
usually defined through the large-distance behavior of two-point correlation functions. The results of our
extensive Monte Carlo study in the disordered phase of the modelsqwittD, 15, and 20 on large square
lattices of size 308300, 120120, and 8% 80, respectively, clearly confirm the theoretically predicted
behavior. Moreover, using this observable we are able to verify an exact formula for the correlation length
&4(By) in the disordered phase at the first-order transition p8jnwith an accuracy of about 1%—2% for all
considered values af. This is a considerable improvement over estimates derived from the large-distance
behavior of standardprojected two-point correlation functions, which are also discussed for comparison.
[S1063-651X%97)11907-9

PACS numbsgps): 05.50+q, 75.10.Hk, 64.60.Cn, 11.15.Ha

[. INTRODUCTION tions in the asymptotic limit of large distances. While this
method works perfectly for the 2D Ising model, #§y(3;) of

The physics of phase transitions is essentially governethe 2D g-state Potts models with=10, 15, and 20 we ex-
by the behavior of the spatial correlation lengthwhile in  perienced quite nasty systematic deviations from the exact
some problems, e.g., at a continuous phase transition wheemswer by about 10%—-20%9d.1]. The deviations could be
¢ diverges, it is often sufficient to know the qualitative be-traced back to the unexpected importance of higher-order
havior, there are also many applications which rely on quanexcitations, but even though the Monte Carlo simulations
titative estimates of. This applies in particular to the finite- were performed on quite large lattices and with a high sta-
size scaling behavior near a first-order phase transftign tistics of about 50 000—100 000 uncorrelated measurements,
where ¢ stays finite and sets the length scale above whicheast-squares fits with sufficiently many correction terms
asymptotic considerations should appB}. Since analytical turned out to be too unstable to predict reliable numbers.
predictions are scarce it is therefore of great practical impor- A way out of this problem is to search for a different
tance to develop refined numerical methods for reliable comestimator of¢é which is less affected by correction terms. A
putations of correlation lengths. systematic search is certainly very difficult, but one possible

In order to evaluate the accuracy of a newly proposedandidate was recently suggested in analytical wWdrg]
method one should apply it first to models where analyticamaking extensive use of the Fortuin-Kasteleyn cluster repre-
predictions are available. The best known example is theentation14] of the Potts model. In Refl13] it was shown
two-dimensional2D) Ising model where is exactly known  that the distribution of the cluster diamet&92™(x), decays
at all temperatureg3]. But already the generalization to the exponentially for large diameter, and that the decay con-
2D g-state Potts modé¢l] complicates the theoretical analy- stant is identical to the inverse correlation len¢dls defined
sis considerably, and much less is known analytically. It wagrom the decay of the two-point correlation functjohis
therefore a great success when a few years ago at least theompted us to investigate if the cluster-diameter distribution
correlation lengthéy(8,) in the disordered phasa the first-  function is better suited for a numerical determination of the
order transition poing; for =5 could be calculated exactly correlation length. In the following we report high-statistics
[5-7]. Apart from heuristic arguments, no analytical predic-Monte Carlo simulations of the models with=10, 15, and
tions are available for the correlation lengfh(B;) in the 20, focusing on the properties of the new observable. As the
ordered phase, and previous numerical simulati@sl(| main result it turns out to be indeed very well suited in the
turned out to be difficult to interpret. This was the physicaldisordered phase, allowing for the first time a confirmation
motivation to start a projedtl1,12 with the goal to clarify of the analytical formula foréy(B;) with an accuracy of
conflicting conjectures for the rati§, /&4 at 8;. The idea about 1%-2%. Since we used larger lattices and consider-
was, of course, to test the employed numerical methods firstbly higher statistics than in our previous studi¢g], we
for the exactly known correlation length in the disordereddiscuss for comparison also the newly obtained estimates for
phase[11] and then to proceed to the so-far-unexplored or-£4(8;) from two different projections of the standard two-
dered phasgl2]. point correlation function.

One often employed way to extract correlation lengths is The remainder of the paper is organized as follows. In
to study the exponential decay of two-point correlation func-Sec. Il we first recall the definition of the model and some

1063-651X/97/562)/14147)/$10.00 56 1414 © 1997 The American Physical Society



56 MONTE CARLO STUDY OF CLUSTER-DIAMETR . .. 1415

exact results. We then discuss the simulation techniques and .
in particular describe the various estimators used to measure i
the correlation length. The results of our simulations are pre- R R e B
sented in Sec. lll, and in Sec. IV we conclude with a brief N o
summary of the main results and some final remarks. 10

Il. MODEL AND OBSERVABLES

In our Monte Carlo simulations we used the standard defi- N R e
nition of the Potts model partition functidd], Y

L

z=> e P E=-2> &, s=1...a, (O S
{si} T [

where 8=J/kgT is the inverse temperature in natural units, F|G. 1. lllustration of the definition of the cluster diameter
i denote the lattice sites of a square lattii¢) are nearest- diamC; =max/x,/y}.
neighbor pairsﬁsisj is the Kronecker delta symbol, angis

the number of states per spin. In all simulations we used@ver all lattice sites,. In practice this amounts to recording
periodic boundary conditions to minimize finite-size effects.a histogramH%@"(x), whose entries at=diamC are incre-

In the following we report results for the models with mented by the size or weight| of each simulated cluster. If
g=10, 15, and 20, employing lattices of sive=L X L with properly normalizede'i’_“(X) is then an estimator of the
L =300, 120, and 80, respectively. All simulations were per-probability distributionG"™" (x). As discussed in the Intro-
formed in the canonical ensemble at the infinite-volume firstduction the theoretically expected asymptotic behavior of
order transition poin{3,=In(1+aq), at which the ordered G**"(x) in the disordered phase is an exponential decay gov-
and disordered phase can coexist. In a Monte Carlo simulasined by the correlation lengty [13],
tion, the system can be biased into one of the two phases by
thg choice of the initial s_pin configuration._To update the Gdiam(x):aexq—xlgd)Jr . 3)
spins we used the Wolff single-cluster algoritfirb]. From

a previous comparative studg1] we knew that in the dis- gy taking the logarithm of5%@™ and performing linear two-
ordered phase this algorithm clearly outperforms all othetarameter fits it is then straightforward to extrégt
standard algorithms such as the Metropolis, heat-bath, and for comparison we considered also in the new simula-
Swendsen-Wang multiple clustgt6] algorithms. tions thek™ =27n/L momentum projectioni = (i,i,)]

The lattice sizes were chosen such that, for each value of y @
g, L=~28&(B), with  &(8)=10.559519. ., 1 o
4.180954 .., and2.695502. .. fom=10, 15, and 20, re- g (i, i = E-E G(i,j)e'y (y=iy, (4
spectively[5-7]. Starting from a completely random con- yly
figuration of spins it is then extremely probable that the sys- . . . .
tem will stay in the disordered phase for a sufficiently IongWlth n=0 and 1 of the two-point correlation function
time, allowing statistically meaningful measurements of 1
quantities being characteristic for the pure disordered phase. G(i ,j)E< Ses — _>_ (5)
More precisely, by recalling that the escape probabifitis g

proportional to exp{2o,4L) and that in two dimensions the

interface tensiomr,4 can be expressed in terms of the corre-FOr the measurements we actually decomposed the whole
lation length of the disordered phafg], o= 1/2¢4(8B,), spin configuration mto_ stochastic Swendsgn—WémgItlpIe)

one easily arrives at the order-of-magnitude estimate Ccluster and used the improved cluster estimaiof

xexd —L/&(B) |~exp(—28)~10"12 Finite-size corrections g-1

g]r(;z? pure disordered phase are expected to be of the same G(i,j)= T<®(i ), (6)

In this work we mainly focused on measurements of the

probability distribution of the cluster diameter, digm, ~ Where®(i,j)=1,if i andj belong to the same cluster, and

which, in general, is defined as the maximal extension of e@zo otherwise. In particular, for small average single-

cluster in any of thé coordinate directions of a hypercubic Cluster sizes(cf. Table ), this procedure is more efficient

lattice; for an illustration see Fig. 1. The cluster-diameterthan using directly the corresponding improved single-

o _ diam, . . cluster estimator.
distribution functionG " (x) is then the probability As discussed previousfiL1], to extract, from the large-

diam distance behavior of Ed4), nonlinear four-parameter fits of

G (X)=,U,(dialTCiO=X) 2 the form

that the clusteC; connected to a lattice siig has a given (v (i X L/2—x
diameterx [13]. To increase the statistics we took advantage9 (x)=g™(i,,0)=a cos £m +b cosh c &)
of the periodic boundary conditions and avera@dc'flm(x) (7)
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TABLE I. The average and maximum cluster sid€|) and C T T T T T T T
MC data o

|Clmax, the maximum cluster diametédiam Ci)) max: the inte- L E
grated autocorrelation time;,; . of the energy, the number of
Monte Carlo update sweegsICS) in units of 7, o, and the num-

ber of measurementscas 10

B=pB;, disordered phase, single-cluster algorithm 10~
gq=10 q=15 q=20
300x 300 120x 120 80x 80 1079

(|C|>SC 38.09317) 10.225411) 5.8777675)
<|C|>SW 2.72641161) 2.11786618) 1.85413%26) 102 -
|Cl max 9353 1908 846 z
(diam C; ) max 197 73 51
~59 ~18 ~25 Boow e
MCS/7in e 600 000 9 000 000 4200 000 o B MC dafa et
Nmeas 1600 000 12 800 000 10 395 000

10-2

10-*

£y 01— (2 EPIL)? ® o

are necessary. Below we shall report results for the first two ;-
projections withn=0 andn=1. While then=0 projection
has been studied before on smaller lattitg$], the use of
the n=1 projection in the disordered phase is actually also T T T - T T T T
new. Originally this projection was applied in the ordered tfa_ 9" {"éxr}:‘gg—
phase where it is essential for removing constant background ] 3 para fit —
terms caused by the nonzero magnetizafibd,12. Notice °
that for the large lattice sizes used in this stutlys 28¢,,
the difference in Eq(8) between the fit parametgf” and
&4 is only about 2.4%. 107
The computer code was implemented on a T3D parallel
computer in a trivial way by running 64 independent simu- 4}
lations in parallel. This allowed us to generate the very high
statistics compiled in Table I. Here we followed the usual
convention and defined/(|C|)sc single-cluster steps as one 0
Monte Carlo update sweeCS), where(|C|)sc is the av- x
erage cluster size, and rescaled the integrated autocorrelation
time of the internal energyriy e, to this unit of time. Per FIG. 2. Semilogarithmic plot of the cluster-diameter distribution
Tine We performed about two measurements of the projected™"(x) and the projected correlation functigi®(x) for q= 10,
correlation functions. The size and diameter of the clusterss, and 20 atg, in the disordered phase. For clarity some data
were measured for each generated cluster. The statistical gisints are omitted fog= 10 and 15.
ror bars are estimated from the fluctuations among the 64
independent copies by using the standard jackknife proce- . o . .
dureIE18]. The tolial run)r/ﬂng tig"le of the simuIa{tions amorl)mts sults for.gd can be identified with theure disordered phase
to about 5 years of CPU time on a typical workstation. ~ correlation length.
The data forG%™x) and g(®(x) are shown forg=10,
15, and 20 in the semilogarithmic plots of Fig. 2. The solid
lines are one- and three-parameter fits toAnsaze (3) and

In all simulations we monitored the time evolution of the (7), respectively, withy held fixed at its theoretical value

energy and magnetization to convince ourselves that the syé=10.559519.., 4.180954.., and 2.695502... for

tem never escaped into the ordered phase. As a more qua#= 10, 15, and 205-7]). Let us first concentrate on the new
titative measure we also computed energy and magnetizatiotbservable, the cluster-diameter probability distribution
moments[19] which can be compared with exdet,20] or Gdfa"‘(x). At first sight the constrained one-parameter fit to
series expansion resulf@1]. The average and maximum G%Mlooks less perfect than the constrained three-parameter
cluster sizes and the maximum cluster diameter found in thét to ‘%), since the data points are more randomly scattered
simulations are given in Table I. As a result of these tests waround the fit. The reason is that the correlations between the
are convinced that, despite the very long run times, our reestimates at andx-+ Ax are much smaller fo&%2™(x) than

with

lll. RESULTS
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TABLE II. Results for £4(8;) from two-parameter fit§3) to T T T T T T
G"™"(x) for different fit intervalSX- - - Xmax, With Xma= 130, 50, . uf s ‘l -
and 40 forq=10, 15, and 20, respectively. Also shown are results & m
of four-parameter fits tg®(x) and g‘®(x) according to theAn- 2L % -
saze (7), (8), with Xma= 150, 60, and 40 fog=10, 15, and 20, G™ (2) ﬁﬂ l H%
respectively. ok °§9§1 T J.l ﬁf&—kﬂ’r .

- ]
Observable g=10 gq=15 q=20 ° mot
300% 300 120< 120 80x 80 o JUCLPTE ’
M MG data to
exact 10.559519...  4.180954...  2.695502... ite Pt =
©
Xmin fd Xmin gd Xmin é—‘d [} ZIO 4I0 GIO 810 llil)O ];0 1<IIO
X
Gdiam 40 10.9G2) 20 4.2974) 13 2.7663)
48 10.923) 23 42865 15 2.7613) A ' ' B
56 10.843) 26 4.26718) 17 2.7525) S 5T I
64 10.845) 29 4.262) 19 2.7447) il % |
72 10.7%8) 32 4282 21 2.741) ' G*(2), w%%ﬁl
80 10.62) 35 4273 23 2732 W& K i
88 10.52) 38 4.2%4) 25 2743
96 10.33) 40 4.236) 27 2.684) s b .
99(x) 10 8491 5 3562 3 2301 3k oo o 00 MC data ret -
12 941 6 3602 4 2331 ) Pkt 22
14 912 7 3632 5 2362 25 —H—L ” p” - pn =
16 942) 8 3663 6 2393 e
20 943 9 3704 7 2419 . ' ' . . . .
22 954 10 3735 8  2.435) _aal? i% |
24 976 11 3.786) 9  2.466) o I
g@®(x) 10 8887 5 3551 3 2.2937) 2f G (‘?owo“’%%ﬂﬁ% T LL : .
12 8969 6 35920 4  2.331) a5l o T3 [ i
14 911 7 3642 5 2.362 b e i
16 922 8 3683 6 2382 Zj o
20 933 9 3693 7 2403 N g i
22 953 10 3724 8 2434 e e W MC data to1 |
24 964 11 3785 9  2.446) BE S PRy iy
16 0 I; 1|0 1'5 2|0 2Ia 3;0 3:5 410

T

for g(®(x). This can be understood by noting that a cluster
of diameter x, contributes only to theone estimate of
GYam(x) at x=x,, but to all estimates ofg(®(x) with
X=<Xq [recall the cluster estimatdb)].

The correlation-length estimates resulting from varioussgy, gdiam Opserve that th%gﬁ obtained fromG%aM de-

unconstrained two-parameter fits t6%3™ in intervals velop a much more pronounced plateau € 15 and 20

Xmin - - - Xmax With Xma,=130, 50, and 40 fog=10, 15, and  han forq= 10, before also here the statistical errors increase
20, respectively, are collected in Table Il. We see that theyhq the data start to fluctuate around the theoretically ex-
results are in very good agreement Wlth the t_he_oretlcally ®Xpected value. To conclude this subsection, by using the
pected values, with only slight systematic deviations of abou,ster-diameter probability distribution as an estimator for

106"_2%' Contrary to the result§11] obtained from ho correlation length, we succeeded to confirm the theoret-
g@(x) the fitted values tend now to be overestimates forical prediction foréy(B;) at a 1%—2% level.

small Xnis - This tendency becomes obvious in Fig. 3 where ¢ \ould of course be unfair to compare the final estimates
we show the effective correlation lengths obtained fromG¥3™x) of the present study with the results
from g(®(x) of previous work{11] which used smaller lat-
tices and lower statistics. In the present study we have there-
fore analyzed agaig®)(x). Furthermore, we discuss for the
with C=G%m or g, The ££(x) are just the inverse of the first time alsog™)(x) in the disordered phase. In Fig. 2 we
local slopes in Fig. 2. By recalling that neighboring values ofsee that the constrained three-parameter fig{fdyield an
GYaM are much less correlated than thoseg8?, this ex-  excellent description of the falloff af(®)(x) over more than
plains the much larger error bars on the data.ﬂ‘jﬁfrderived four decades. Still, from an unconstrained four-parameter fit

FIG. 3. Effective correlation lengths fay=10, 15, and 20 at
B¢ in the disordered phase derived from the correlation functions
shown in Fig. 2.

£Mx) =1 C(x)/C(x+1)], (9)
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over the sama range with¢, as a free parameter we obtain

for, e.g.,q=10 an about 10% smaller value &§=9.5(4). ME B g
This confirms our earlier observation in Rgt1] that four- Fpas it
parameter fits t@(®) systematically underestimatg. This .
is demonstrated in more detail in Table Il where we have

collected the results of various fits in the intervals g
Xmin® - * Xmax=L/2. For all three values off we observe a

clear tendency of increasing estimates §gmwith increasing e, i

Xmin- Still, the estimates in the last line for
g (x) are about 8% —-10% below the theoretical values.
This tendency is also clearly visible in the behavior of the
£M(x) of g(© shown in Fig. 3. Compared with RefL1] the
linear lattice sizes of the present simulations are larger by a
factor of 2 and the statistics is higher by more than one order o %
of magnitude. This allowed us to include largewalues in ‘
the fits and, as expected, improved the estimateg;ofin
particular forg=15 and 20. This clearly indicates that by
further increasing the statistics also the remaining discrepan-
cies could be removed. We can therefore conclude that there
is nothing wrong, in principle, in using the standard two-
point correlation function to estimatg . Numerically, how-
ever, accurate estimates would require an enormous effort

&

and would thus be a rather expensive enterprise. s ME data H
In Table Il we also give the results of unconstrained four- o " - - m pm
parameter fits of the forrti7) to g(*)(x) where, by using Eq. z

(8), we have already convertgd") to £;~1.02%{"). We see
that the estimates from(®) andg*) are strongly correlated,
so that in the disordered phase nothing is gained by studyin
also the higher momentum projections.

Further investigations of the cluster-diameter distribution

in the disordered phase of the two-dimensional Isingnice agreement with the exact value. A fit 672 in the
(9=2) and three-state Potts models revealed, however, thagiterval x=80, . . .,100 with¢;=5.6(3), on theother hand,
the new observable is not always advantageous. Our resulgeviates again considerably by about 7%.

for the Ising model from a very long simulation of a  Finally we show in Fig. 6 our results for the
80X 80 lattice with MCS#ip; ¢~12 288 006= Nypeqs in the  two-dimensional three-state Potts model at
disordered phase g=0.703 408 88-0.83. are shown in  8=0.951 795 03-0.953, (where 8*=1.06). Here the lat-
Fig. 4. For B<pB. the exact expression for the 2D Ising tice size is 16& 160, MCSft,~2 285000, and
model correlation length igy=1/(8*—B8) [3], where the Npeas=3 200 000. For smalk we observe the influence of
dual inverse temperature8* is given by [exp(B)—1]  higher excitations irg(® which, however, die out rapidly.
x[exp(8")—1]=q=2. We see that here trg“@” derived from  Discarding therefore the smallest distances and choosing a fit
GYam * clearly overshoot the exact value of interval of x=7,...,80=L/2 we obtain an estimate of

£4=2.6202906... before they slowly approach it from éa=2.8382), which is shown as the horizontal line in the
above. Notice that3 was adjusted such thai, agrees lower plot of Fig. 6. Here the cluster-diameter distribution

diam ; i
roughly with the value of the=20 model at3, . Theggff of G is already slightly better behaved than for the two-

. . dimensional Ising model, and a fit in the interval
(0) ,
g'™’, on the other hand, coincide with the exact value alread =80,...,106 gives a compatible value @f=6.0(2),

for very smallx, and a simple two-parameter fit of the form \ich now deviates only by about 2% from the result of
(7) with b=c=0 in the rangex=1,...,40=L/2 yields g(O)
£4=2.620 29(14), in perfect agreement with the exact result. '
A fit of G%™ according to Eq(3) using only largex values IV. DISCUSSION
i_n the intervalx=40,... . ’5.6 gives a cqnsiderably higher ®S" Our numerical results clearly show that the cluster-
timate of £4=2.89(8) which, despite its large error bar, is y oo distributiorG%@™(x) is very well suited to extract
gg?igasrteillﬁlacboomu?itcl&é with the theoretical value. The dev'a'the correlation .Iengthg.d(ﬁt) of two-dimension_alq—state

. Potts models with relatively large values @f While analy-

It we choose3=0.789184 #0.95, (the dual inverse o5 of the standardprojected two-point function are
temperature of3”=0.98), such that the exact correlation pjaqued by large systematic errors, with the new observable
length is twice as large¢q=5.2405812.., we obtain e succeeded for the first time to reproduce the theoretically
qualitatively the same picture. This is shown in Fig. 5 for aexpected values at a 1%—2% level.
simulation of a 166160 lattice with MCStiy. For small values ofj, however, the standard correlation
~3 200 006= N,eas Here the linear fit of the data fgf® in  function gives much more reliable results. For reasons not
the rangex=1,...,86=L/2 yields {4=5.240(6), again in  well understood to date, the two quite different correlators

FIG. 4. Correlation functiongupper plo} and effective correla-

ion lengths (lower ploy) for the 2D Ising model at

=0.703 408 88. The horizontal line i) shows that exact value
of £4=2.6202906. .. .
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T T T T T T T T T T T T T T

re— 0)( MC data -
. ME data Jed@ MC data 18 |
2 para fit — 7 8 2 para it —

102 F e b 0
T S8,

107 s 107

: ®
1076 | Ising =*8e B 10°F g=3 @, -
- © _ ™
L=160 2o, L=160 -
@ @ L
10-3 1 L 1 1 L 1 1 | 10-3 1 1 !
0 10 20 30 40 50 60 70 80 90 0 20 40 60 80 100
xr x
T T T L) T T T T T ¥ T T T L} T
ESS 12 f‘ =_ 12| @
-] @ . T3
U7 4 o7

: i Il I L=160 . liy
 L=160 Mo g n I X ME g .
2 (b) 1 1 ] 1 1 1 [ 2 (b) I 1 1 L 1 1 1 1l
0 10 20 30 40 50 60 70 80 90 1] 10 20 30 40 50 60 70 80 90
X T
FIG. 5. Correlation functiongupper ploj and effective correla- FIG. 6. Correlation functiongupper ploj and effective correla-

tion lengths (lower ploty for the 2D Ising model at tion lengths(lower ploY) for the 2D three-state Potts model at
B5=0.789 181 47. The horizontal line iib) shows that exact value B=0.951 795 03. The horizontal line {bv) shows our best numeri-
of £4=5.2405812. ... cal estimate 0£;=5.83§2).

thus seem to behave Comp|ementary to each other. studied at their first-order transition pOlm The details of
Also for the three-dimensional-state Potts models with the 3D study will be published elsewhe[22].
g=3, 4, and 5, which undergo a first-order phase transition
already forq=3, our result§22] for G%™ and g(® in the
disordered phase at the transition pofit as well as the
corresponding effective correlation lengths look qualitatively ~W.J. thanks the DFG for financial support and S.K. grate-
as for the 2D Ising model in Fig. 4. Also in these cases wefully acknowledges support by the Graduiertenkolleg
found thatg(® gives much more reliable estimates &j. “Physik and Chemie supramolekularer Systeme.” Work
This suggests that the behavior 6f™ does depend cru- supported by computer Grant Nos. hkf001 of HLRZichu
cially on the value ofy, but certainly not on the fact that the and bvpfO3 of Norddeutscher VektorrechnerverbNy'V)
two-dimensional Potts models with= 10, 15, and 20 were Berlin-Hannover-Kiel.
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