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Monte Carlo study of cluster-diameter distribution:
An observable to estimate correlation lengths

Wolfhard Janke and Stefan Kappler
Institut für Physik, Johannes Gutenberg-Universita¨t Mainz, Staudinger Weg 7, 55099 Mainz, Germany

~Received 17 July 1996!

We report numerical simulations of two-dimensionalq-state Potts models with emphasis on a new quantity
for the computation of spatial correlation lengths. This quantity is the cluster-diameter distribution function
Gdiam(x), which measures the distribution of the diameter of stochastically defined cluster. Theoretically it is
predicted to fall off exponentially for large diameterx, Gdiam}exp(2x/j), wherej is the correlation length as
usually defined through the large-distance behavior of two-point correlation functions. The results of our
extensive Monte Carlo study in the disordered phase of the models withq510, 15, and 20 on large square
lattices of size 3003300, 1203120, and 80380, respectively, clearly confirm the theoretically predicted
behavior. Moreover, using this observable we are able to verify an exact formula for the correlation length
jd(b t) in the disordered phase at the first-order transition pointb t with an accuracy of about 1% –2% for all
considered values ofq. This is a considerable improvement over estimates derived from the large-distance
behavior of standard~projected! two-point correlation functions, which are also discussed for comparison.
@S1063-651X~97!11907-9#

PACS number~s!: 05.50.1q, 75.10.Hk, 64.60.Cn, 11.15.Ha
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I. INTRODUCTION

The physics of phase transitions is essentially gover
by the behavior of the spatial correlation lengthj. While in
some problems, e.g., at a continuous phase transition w
j diverges, it is often sufficient to know the qualitative b
havior, there are also many applications which rely on qu
titative estimates ofj. This applies in particular to the finite
size scaling behavior near a first-order phase transition@1#
wherej stays finite and sets the length scale above wh
asymptotic considerations should apply@2#. Since analytical
predictions are scarce it is therefore of great practical imp
tance to develop refined numerical methods for reliable co
putations of correlation lengths.

In order to evaluate the accuracy of a newly propos
method one should apply it first to models where analyti
predictions are available. The best known example is
two-dimensional~2D! Ising model wherej is exactly known
at all temperatures@3#. But already the generalization to th
2D q-state Potts model@4# complicates the theoretical analy
sis considerably, and much less is known analytically. It w
therefore a great success when a few years ago at leas
correlation lengthjd(b t) in the disordered phaseat the first-
order transition pointb t for q>5 could be calculated exactl
@5–7#. Apart from heuristic arguments, no analytical pred
tions are available for the correlation lengthjo(b t) in the
ordered phase, and previous numerical simulations@8–10#
turned out to be difficult to interpret. This was the physic
motivation to start a project@11,12# with the goal to clarify
conflicting conjectures for the ratiojo /jd at b t . The idea
was, of course, to test the employed numerical methods
for the exactly known correlation length in the disorder
phase@11# and then to proceed to the so-far-unexplored
dered phase@12#.

One often employed way to extract correlation lengths
to study the exponential decay of two-point correlation fun
561063-651X/97/56~2!/1414~7!/$10.00
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tions in the asymptotic limit of large distances. While th
method works perfectly for the 2D Ising model, forjd(b t) of
the 2Dq-state Potts models withq510, 15, and 20 we ex-
perienced quite nasty systematic deviations from the ex
answer by about 10% –20%@11#. The deviations could be
traced back to the unexpected importance of higher-or
excitations, but even though the Monte Carlo simulatio
were performed on quite large lattices and with a high s
tistics of about 50 000–100 000 uncorrelated measureme
least-squares fits with sufficiently many correction ter
turned out to be too unstable to predict reliable numbers

A way out of this problem is to search for a differe
estimator ofj which is less affected by correction terms.
systematic search is certainly very difficult, but one possi
candidate was recently suggested in analytical work@13#
making extensive use of the Fortuin-Kasteleyn cluster rep
sentation@14# of the Potts model. In Ref.@13# it was shown
that the distribution of the cluster diameter,Gdiam(x), decays
exponentially for large diameterx, and that the decay con
stant is identical to the inverse correlation length~as defined
from the decay of the two-point correlation function!. This
prompted us to investigate if the cluster-diameter distribut
function is better suited for a numerical determination of t
correlation length. In the following we report high-statisti
Monte Carlo simulations of the models withq510, 15, and
20, focusing on the properties of the new observable. As
main result it turns out to be indeed very well suited in t
disordered phase, allowing for the first time a confirmati
of the analytical formula forjd(b t) with an accuracy of
about 1%–2%. Since we used larger lattices and consi
ably higher statistics than in our previous studies@11#, we
discuss for comparison also the newly obtained estimates
jd(b t) from two different projections of the standard two
point correlation function.

The remainder of the paper is organized as follows.
Sec. II we first recall the definition of the model and som
1414 © 1997 The American Physical Society
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56 1415MONTE CARLO STUDY OF CLUSTER-DIAMETER . . .
exact results. We then discuss the simulation techniques
in particular describe the various estimators used to mea
the correlation length. The results of our simulations are p
sented in Sec. III, and in Sec. IV we conclude with a br
summary of the main results and some final remarks.

II. MODEL AND OBSERVABLES

In our Monte Carlo simulations we used the standard d
nition of the Potts model partition function@4#,

Z5(
$si %

e2bE, E52(̂
i j &

dsisj
, si51, . . . ,q, ~1!

whereb5J/kBT is the inverse temperature in natural uni
i denote the lattice sites of a square lattice,^ i j & are nearest-
neighbor pairs,dsisj

is the Kronecker delta symbol, andq is
the number of states per spin. In all simulations we u
periodic boundary conditions to minimize finite-size effec

In the following we report results for the models wi
q510, 15, and 20, employing lattices of sizeV5L3L with
L5300, 120, and 80, respectively. All simulations were p
formed in the canonical ensemble at the infinite-volume fi
order transition pointb t5 ln(11Aq), at which the ordered
and disordered phase can coexist. In a Monte Carlo sim
tion, the system can be biased into one of the two phase
the choice of the initial spin configuration. To update t
spins we used the Wolff single-cluster algorithm@15#. From
a previous comparative study@11# we knew that in the dis-
ordered phase this algorithm clearly outperforms all ot
standard algorithms such as the Metropolis, heat-bath,
Swendsen-Wang multiple cluster@16# algorithms.

The lattice sizes were chosen such that, for each valu
q, L'28jd(b t), with jd(b t)510.559 519. . . ,
4.180 954. . . , and2.695 502 . . . forq510, 15, and 20, re-
spectively @5–7#. Starting from a completely random con
figuration of spins it is then extremely probable that the s
tem will stay in the disordered phase for a sufficiently lo
time, allowing statistically meaningful measurements
quantities being characteristic for the pure disordered ph
More precisely, by recalling that the escape probabilityP is
proportional to exp(22sodL) and that in two dimensions th
interface tensionsod can be expressed in terms of the cor
lation length of the disordered phase@7#, sod51/2jd(b t),
one easily arrives at the order-of-magnitude estimateP
}exp@2L/jd(bt)#'exp(228)'10212. Finite-size corrections
in the pure disordered phase are expected to be of the s
order.

In this work we mainly focused on measurements of
probability distribution of the cluster diameter, diamCi 0

,
which, in general, is defined as the maximal extension o
cluster in any of theD coordinate directions of a hypercub
lattice; for an illustration see Fig. 1. The cluster-diame
distribution functionG

diam
(x) is then the probability

G
diam

~x!5m~diamCi 0
5x! ~2!

that the clusterCi 0
connected to a lattice sitei 0 has a given

diameterx @13#. To increase the statistics we took advanta
of the periodic boundary conditions and averagedG

diam
(x)
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over all lattice sitesi 0. In practice this amounts to recordin
a histogramHdiam(x), whose entries atx5diamC are incre-
mented by the size or weightuCu of each simulated cluster. I
properly normalized,Hdiam(x) is then an estimator of the
probability distributionG

diam
(x). As discussed in the Intro

duction the theoretically expected asymptotic behavior
G

diam
(x) in the disordered phase is an exponential decay g

erned by the correlation lengthjd @13#,

G
diam

~x!5aexp~2x/jd!1•••. ~3!

By taking the logarithm ofGdiam and performing linear two-
parameter fits it is then straightforward to extractjd .

For comparison we considered also in the new simu
tions theky

(n)52pn/L momentum projections@ i 5( i x ,i y)#

g~n!~ i x , j x!5
1

L (
i y , j y

G~ i , j !eiky
~n!

~ i y2 j y!, ~4!

with n50 and 1 of the two-point correlation function

G~ i , j ![ K dsisj
2

1

qL . ~5!

For the measurements we actually decomposed the w
spin configuration into stochastic Swendsen-Wang~multiple!
cluster and used the improved cluster estimator@17#

G~ i , j !5
q21

q
^Q~ i , j !&, ~6!

whereQ( i , j )51, if i and j belong to the same cluster, an
Q50 otherwise. In particular, for small average sing
cluster sizes~cf. Table I!, this procedure is more efficien
than using directly the corresponding improved sing
cluster estimator.

As discussed previously@11#, to extractjd from the large-
distance behavior of Eq.~4!, nonlinear four-parameter fits o
the form

g~n!~x![g~n!~ i x,0!5a coshS L/22x

jd
~n! D 1b coshS c

L/22x

jd
~n! D ,

~7!

FIG. 1. Illustration of the definition of the cluster diamet
diamCi 0

5max$l x ,l y%.
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1416 56WOLFHARD JANKE AND STEFAN KAPPLER
with

jd'jd
~n!/A12~2pnjd

~n!/L !2 ~8!

are necessary. Below we shall report results for the first
projections withn50 andn51. While then50 projection
has been studied before on smaller lattices@11#, the use of
the n51 projection in the disordered phase is actually a
new. Originally this projection was applied in the order
phase where it is essential for removing constant backgro
terms caused by the nonzero magnetization@10,12#. Notice
that for the large lattice sizes used in this study,L'28jd ,
the difference in Eq.~8! between the fit parameterjd

(n) and
jd is only about 2.4%.

The computer code was implemented on a T3D para
computer in a trivial way by running 64 independent sim
lations in parallel. This allowed us to generate the very h
statistics compiled in Table I. Here we followed the usu
convention and definedV/^uCu&SC single-cluster steps as on
Monte Carlo update sweep~MCS!, where^uCu&SC is the av-
erage cluster size, and rescaled the integrated autocorrel
time of the internal energy,t int,e, to this unit of time. Per
t int,e we performed about two measurements of the projec
correlation functions. The size and diameter of the clus
were measured for each generated cluster. The statistica
ror bars are estimated from the fluctuations among the
independent copies by using the standard jackknife pro
dure@18#. The total running time of the simulations amoun
to about 5 years of CPU time on a typical workstation.

III. RESULTS

In all simulations we monitored the time evolution of th
energy and magnetization to convince ourselves that the
tem never escaped into the ordered phase. As a more q
titative measure we also computed energy and magnetiza
moments@19# which can be compared with exact@4,20# or
series expansion results@21#. The average and maximum
cluster sizes and the maximum cluster diameter found in
simulations are given in Table I. As a result of these tests
are convinced that, despite the very long run times, our

TABLE I. The average and maximum cluster size^uCu& and
uCumax, the maximum cluster diameter~diam Ci 0

) max, the inte-
grated autocorrelation timet int,e of the energy, the number o
Monte Carlo update sweeps~MCS! in units of t int,e , and the num-
ber of measurementsNmeas.

b5b t , disordered phase, single-cluster algorithm

q510 q515 q520
3003300 1203120 80380

^uCu&
SC

38.093~17! 10.2254~11! 5.87776~75!

^uCu&
SW

2.726411~61! 2.117866~18! 1.854135~26!

uCumax 9353 1908 846
~diam Ci 0

) max 197 73 51
t int,e '59 '18 '25
MCS/t int,e 600 000 9 000 000 4 200 000
Nmeas 1 600 000 12 800 000 10 395 000
o
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sults forjd can be identified with thepure disordered phase
correlation length.

The data forGdiam(x) and g(0)(x) are shown forq510,
15, and 20 in the semilogarithmic plots of Fig. 2. The so
lines are one- and three-parameter fits to theAnsätze~3! and
~7!, respectively, withjd held fixed at its theoretical value
(510.559 519. . . , 4.180 954. . . , and 2.695 502 . . . for
q510, 15, and 20@5–7#!. Let us first concentrate on the ne
observable, the cluster-diameter probability distributi
Gdiam(x). At first sight the constrained one-parameter fit
Gdiam looks less perfect than the constrained three-param
fit to g(0), since the data points are more randomly scatte
around the fit. The reason is that the correlations between
estimates atx andx1Dx are much smaller forGdiam(x) than

FIG. 2. Semilogarithmic plot of the cluster-diameter distributi

G
diam

(x) and the projected correlation functiong(0)(x) for q510,
15, and 20 atb t in the disordered phase. For clarity some da
points are omitted forq510 and 15.
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56 1417MONTE CARLO STUDY OF CLUSTER-DIAMETER . . .
for g(0)(x). This can be understood by noting that a clus
of diameter x0 contributes only to theone estimate of
Gdiam(x) at x5x0, but to all estimates ofg(0)(x) with
x<x0 @recall the cluster estimator~6!#.

The correlation-length estimates resulting from vario
unconstrained two-parameter fits toGdiam in intervals
xmin . . . xmax with xmax5130, 50, and 40 forq510, 15, and
20, respectively, are collected in Table II. We see that
results are in very good agreement with the theoretically
pected values, with only slight systematic deviations of ab
1% –2%. Contrary to the results@11# obtained from
g(0)(x) the fitted values tend now to be overestimates
small xmin . This tendency becomes obvious in Fig. 3 whe
we show the effective correlation lengths

jd
eff~x!51/ln@C~x!/C~x11!#, ~9!

with C5Gdiam or g(0). Thejd
eff(x) are just the inverse of the

local slopes in Fig. 2. By recalling that neighboring values
Gdiam are much less correlated than those ofg(0), this ex-
plains the much larger error bars on the data forjd

eff derived

TABLE II. Results for jd(b t) from two-parameter fits~3! to

G
diam

(x) for different fit intervalsxmin•••xmax, with xmax5130, 50,
and 40 forq510, 15, and 20, respectively. Also shown are resu
of four-parameter fits tog(0)(x) and g(1)(x) according to theAn-
sätze ~7!, ~8!, with xmax5150, 60, and 40 forq510, 15, and 20,
respectively.

Observable q510 q515 q520
3003300 1203120 80380

exact 10.559519 . . . 4.180954 . . . 2.695502 .

xmin jd xmin jd xmin jd

Gdiam 40 10.90~2! 20 4.297~4! 13 2.766~3!

48 10.92~3! 23 4.286~5! 15 2.761~3!

56 10.88~3! 26 4.267~8! 17 2.752~5!

64 10.84~5! 29 4.26~2! 19 2.744~7!

72 10.75~8! 32 4.25~2! 21 2.74~1!

80 10.6~2! 35 4.27~3! 23 2.73~2!

88 10.5~2! 38 4.25~4! 25 2.70~3!

96 10.3~3! 40 4.23~6! 27 2.68~4!

g(0)(x) 10 8.9~1! 5 3.56~2! 3 2.30~1!

12 9.0~1! 6 3.60~2! 4 2.33~1!

14 9.1~2! 7 3.63~2! 5 2.36~2!

16 9.2~2! 8 3.66~3! 6 2.39~3!

20 9.4~3! 9 3.70~4! 7 2.41~4!

22 9.5~4! 10 3.73~5! 8 2.43~5!

24 9.7~6! 11 3.76~6! 9 2.46~6!

g(1)(x) 10 8.88~7! 5 3.55~1! 3 2.293~7!

12 8.96~9! 6 3.59~2! 4 2.33~1!

14 9.1~1! 7 3.62~2! 5 2.36~2!

16 9.2~2! 8 3.65~3! 6 2.38~2!

20 9.3~3! 9 3.69~3! 7 2.40~3!

22 9.5~3! 10 3.72~4! 8 2.42~4!

24 9.6~4! 11 3.75~5! 9 2.44~6!
r
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from Gdiam. Observe that thejd
eff obtained fromGdiam de-

velop a much more pronounced plateau forq515 and 20
than forq510, before also here the statistical errors incre
and the data start to fluctuate around the theoretically
pected value. To conclude this subsection, by using
cluster-diameter probability distribution as an estimator
the correlation length, we succeeded to confirm the theo
ical prediction forjd(b t) at a 1% –2% level.

It would of course be unfair to compare the final estima
obtained fromGdiam(x) of the present study with the resul
from g(0)(x) of previous work@11# which used smaller lat-
tices and lower statistics. In the present study we have th
fore analyzed againg(0)(x). Furthermore, we discuss for th
first time alsog(1)(x) in the disordered phase. In Fig. 2 w
see that the constrained three-parameter fits tog(0) yield an
excellent description of the falloff ofg(0)(x) over more than
four decades. Still, from an unconstrained four-paramete

s

FIG. 3. Effective correlation lengths forq510, 15, and 20 at
b t in the disordered phase derived from the correlation functi
shown in Fig. 2.
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1418 56WOLFHARD JANKE AND STEFAN KAPPLER
over the samex range withjd as a free parameter we obta
for, e.g.,q510 an about 10% smaller value ofjd59.5(4).
This confirms our earlier observation in Ref.@11# that four-
parameter fits tog(0) systematically underestimatejd . This
is demonstrated in more detail in Table II where we ha
collected the results of various fits in the interva
xmin•••xmax5L/2. For all three values ofq we observe a
clear tendency of increasing estimates forjd with increasing
xmin . Still, the estimates in the last line fo
g(0)(x) are about 8% –10% below the theoretical valu
This tendency is also clearly visible in the behavior of t
jd

eff(x) of g(0) shown in Fig. 3. Compared with Ref.@11# the
linear lattice sizes of the present simulations are larger b
factor of 2 and the statistics is higher by more than one or
of magnitude. This allowed us to include largerx values in
the fits and, as expected, improved the estimates ofjd , in
particular for q515 and 20. This clearly indicates that b
further increasing the statistics also the remaining discrep
cies could be removed. We can therefore conclude that t
is nothing wrong, in principle, in using the standard tw
point correlation function to estimatejd . Numerically, how-
ever, accurate estimates would require an enormous e
and would thus be a rather expensive enterprise.

In Table II we also give the results of unconstrained fo
parameter fits of the form~7! to g(1)(x) where, by using Eq.
~8!, we have already convertedjd

(1) to jd'1.02jd
(1) . We see

that the estimates fromg(0) andg(1) are strongly correlated
so that in the disordered phase nothing is gained by stud
also the higher momentum projections.

Further investigations of the cluster-diameter distribut
in the disordered phase of the two-dimensional Is
(q52) and three-state Potts models revealed, however,
the new observable is not always advantageous. Our re
for the Ising model from a very long simulation of
80380 lattice with MCS/t int,e'12 288 0005Nmeas in the
disordered phase atb50.703 408 88'0.8bc are shown in
Fig. 4. For b,bc the exact expression for the 2D Isin
model correlation length isjd51/(b!2b) @3#, where the
dual inverse temperatureb! is given by @exp(b)21#
3@exp(b!)21#5q52. We see that here thejd

eff derived from
Gdiam clearly overshoot the exact value o
jd52.620 290 6 . . . before they slowly approach it fro
above. Notice thatb was adjusted such thatjd agrees
roughly with the value of theq520 model atb t . Thejd

eff of
g(0), on the other hand, coincide with the exact value alre
for very smallx, and a simple two-parameter fit of the for
~7! with b5c50 in the rangex51, . . . ,405L/2 yields
jd52.620 29(14), in perfect agreement with the exact res
A fit of Gdiam according to Eq.~3! using only largex values
in the intervalx540, . . . ,56 gives a considerably higher e
timate of jd52.89(8) which, despite its large error bar,
only barely compatible with the theoretical value. The dev
tion is still about 10%.

If we chooseb50.789 184 7'0.9bc ~the dual inverse
temperature ofb!50.98), such that the exact correlatio
length is twice as large,jd55.240 581 2. . . , we obtain
qualitatively the same picture. This is shown in Fig. 5 fo
simulation of a 1603160 lattice with MCS/t int,e

'3 200 0005Nmeas. Here the linear fit of the data forg(0) in
the rangex51, . . . ,805L/2 yields jd55.2400(6), again in
e

.
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nice agreement with the exact value. A fit ofGdiam in the
interval x580, . . . ,100 withjd55.6(3), on theother hand,
deviates again considerably by about 7%.

Finally we show in Fig. 6 our results for th
two-dimensional three-state Potts model
b50.951 795 03'0.95bc ~where b!51.06). Here the lat-
tice size is 1603160, MCS/t int,e'2 285 000, and
Nmeas53 200 000. For smallx we observe the influence o
higher excitations ing(0) which, however, die out rapidly
Discarding therefore the smallest distances and choosing
interval of x57, . . . ,805L/2 we obtain an estimate o
jd55.838(2), which is shown as the horizontal line in th
lower plot of Fig. 6. Here the cluster-diameter distributio
Gdiam is already slightly better behaved than for the tw
dimensional Ising model, and a fit in the interv
x580, . . . ,106 gives a compatible value ofjd56.0(2),
which now deviates only by about 2% from the result
g(0).

IV. DISCUSSION

Our numerical results clearly show that the clust
diameter distributionGdiam(x) is very well suited to extract
the correlation lengthjd(b t) of two-dimensionalq-state
Potts models with relatively large values ofq. While analy-
ses of the standard~projected! two-point function are
plaqued by large systematic errors, with the new observa
we succeeded for the first time to reproduce the theoretic
expected values at a 1% –2% level.

For small values ofq, however, the standard correlatio
function gives much more reliable results. For reasons
well understood to date, the two quite different correlato

FIG. 4. Correlation functions~upper plot! and effective correla-
tion lengths ~lower plot! for the 2D Ising model at
b50.703 408 88. The horizontal line in~b! shows that exact value
of jd52.620 290 6 . . . .
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56 1419MONTE CARLO STUDY OF CLUSTER-DIAMETER . . .
thus seem to behave complementary to each other.
Also for the three-dimensionalq-state Potts models with

q53, 4, and 5, which undergo a first-order phase transit
already forq>3, our results@22# for Gdiam and g(0) in the
disordered phase at the transition pointb t as well as the
corresponding effective correlation lengths look qualitativ
as for the 2D Ising model in Fig. 4. Also in these cases
found thatg(0) gives much more reliable estimates ofjd .
This suggests that the behavior ofGdiam does depend cru
cially on the value ofq, but certainly not on the fact that th
two-dimensional Potts models withq510, 15, and 20 were

FIG. 5. Correlation functions~upper plot! and effective correla-
tion lengths ~lower plot! for the 2D Ising model at
b50.789 181 47. The horizontal line in~b! shows that exact value
of jd55.240 581 2 . . . .
.

ic

s

l

n

e

studied at their first-order transition pointb t . The details of
the 3D study will be published elsewhere@22#.
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