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Ising spins coupled to a four-dimensional discrete Regge skeleton
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Regge calculus is a powerful method to approximate a continuous manifold by a simplicial lattice, keeping
the connectivities of the underlying lattice fixed and taking the edge lengths as degrees of freedom. The
discrete Regge model employed in this work limits the choice of the link lengths to a finite number. To get
more precise insight into the behavior of the four-dimensional discrete Regge model, we coupled spins to the
fluctuating manifolds. We examined the phase transition of the spin system and the associated critical expo-
nents. The results are obtained from finite-size scaling analyses of Monte Carlo simulations. We find consis-
tency with the mean-field theory of the Ising model on a static four-dimensional lattice.
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I. INTRODUCTION

Spin systems coupled to fluctuating manifolds are a
lyzed as a simple example for matter fields coupled to
clidean quantum gravity. The gravitational action is u
bounded from below due to conformal fluctuations. But th
does not necessarily render its quantum theory useless o
path integral undefined. Indeed, the existence of a well
fined phase was the first and probably most important re
of the numerical simulations in four dimensions@1,2#. Its
existence and stability were explored in some detail using
standard Regge calculus with continuous link lengths
turned out that the well defined phase is stable against va
tions of the measure and the lattice size@3#.

In the discrete Regge model the problem of an unboun
action is not present as in standard Regge calculus. Bec
of the restriction of possible quadratic link lengths to tw
values@4,5# in the discrete Regge model the action can o
reach an extreme but finite value. The expectation value
not diverge if the well defined phase is left. What happen
that the lattice ‘‘freezes’’ at large positive and negative v
ues of the gravitational coupling, as expected for a spin s
tem @6#. To get more precise ideas about the behavior of
four-dimensional discrete Regge model, we coupled Is
spins to the fluctuating manifolds. We examined the ph
transition of the spin system and the associated critical
ponents.

The rest of the paper is organized as follows. In Sec. II
introduce the discrete Regge model and give some detai
the analyzed observables. The results of the Monte C
simulations are presented in Sec. III, and concluding rema
can be found in Sec. IV.

II. MODELS AND OBSERVABLES

The situation for the discrete Regge model is both str
turally and computationally much simpler than the stand
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Regge calculus with continuous link lengths. The restrict
of the edge lengths to just two values was carefully exa
ined in 2D where an interpolation fromZ2 to Z` was per-
formed @7#. It turned out that the phase transition with r
spect to the cosmological constant is universal. This w
tested for pure gravity in 2D and is expected to be the c
also in 4D. Compared with standard Regge calculus, num
cal simulations of the discrete Regge model can be d
more efficiently by implementing look-up tables and usi
the heat-bath algorithm. In the actual computations we to
the squared link lengths asqi j [ql5bl(11es l) with s l61.
The Euclidean triangle inequalities are satisfied autom
cally as long ase,emax. Because a four-dimensional Regg
skeleton with equilateral simplices cannot be embedded
flat space,bl takes different values depending on the type
the edgel. In particularbl51,2,3,4 for edges, face diagonal
body diagonals, and the hyperbody diagonal of a hypercu

We investigated the partition function

Z5(
$s%

E D@q#exp@2I ~q!2KE~q,s!#, ~2.1!

whereI (q) is the gravitational action,

I ~q!52bg(
t

Atd t1l(
i

Vi . ~2.2!

The first sum runs over all products of triangle areasAt times
corresponding deficit anglesd t weighted by the gravitationa
couplingbg . The second sum extends over the volumesVi
of the 4-simplices of the lattice and allows one together w
the cosmological constantl to set an overall scale in th
action. The energy of Ising spinssiPZ2,

E~q,s!5
1

2 (̂
i j &

Ai j

~si2sj !
2

qi j
, ~2.3!
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is defined as in two dimensions@8–10#, with the barycentric
areaAi j associated with a linkl i j ,

Ai j 5 (
t. l i j

1

3
At . ~2.4!

We chose the simple uniform measure as in the pure gra
simulations@6#:

D@q#5)
l

dqlF~ql !. ~2.5!

The functionF ensures that only Euclidean link configur
tions are taken into account, i.e.,F51 if the Euclidean tri-
angle inequalities are fulfilled andF50 otherwise. This is
always guaranteed for the discrete Regge model by cons
tion.

For every Monte Carlo simulation run we recorded t
time series of the energy densitye5E/N0 and the magneti-
zation densitym5( isi /N0, with the lattice sizeN05L4. To
obtain results for the various observablesO at values of the
spin couplingK in an interval around the simulation poin
K0, we applied the reweighting method@11#. Since we re-
corded the time series, this amounts to computing

^O&uK5
^Oe2DKE&uK0

^e2DKE&uK0

, ~2.6!

with DK5K2K0.
With the help of the time series we can compute the s

cific heat,

C~K !5K2N0~^e2&2^e&2!, ~2.7!

the ~finite lattice! susceptibility,

x~K !5N0~^m2&2^umu&2!, ~2.8!

and various derivatives of the magnetization,d^umu&/dK,
d ln^umu&/dK, andd ln^m2&/dK. All these quantities exhibit in
the infinite-volume limit singularities atKc which are shifted
and rounded in finite systems. We further analyzed
Binder parameter,

UL~K !512
1

3

^m4&

^m2&2
. ~2.9!

It is well known that theUL(K) curves for different lattice
sizesL cross around (Kc ,U* ). This allows an almost unbi
ased estimate of the critical spin couplingKc .

III. SIMULATION RESULTS

In four dimensions, after initial discussions@12–14# it is
generally accepted that the critical properties of the Is
model on a static lattice are given by mean-field theory w
logarithmic corrections. The finite-size scaling~FSS! formu-
las can be written as@15,16#

j}L~ logL !1/4, ~3.1!
02400
ty

c-

-

e
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h

x}L2~ logL !1/25@L~ logL !1/4#g/n, ~3.2!

C}~ logL !1/3, ~3.3!

Kc~`!2Kc~L !}L22~ logL !21/65@L~ logL !1/12#21/n,
~3.4!

where the critical exponents of mean-field theory area50,
b51/2, g51, andn51/2. To get more precise ideas abo
these logarithmic corrections, we first simulated the fo
dimensional Ising model on a regular lattice. After this co
parative study we turned to the four-dimensional discr
Regge model@6# with spin fields.

A. Ising spins on a regular lattice

We studied the four-dimensional Ising model on a hyp
cubic lattice with linear sizeL53216, 18, 20, 24, 28, 32
36, 40, using the single-cluster update algorithm~Wolff !
@17#. The simulations were performed with the knowledge
the value of the critical temperature obtained in previo
Monte Carlo simulations and high-temperature series an
ses@18#:

Kc5
J

kBTc
50.149 69460.000 002. ~3.5!

We performedn(L)}N0 /^C(L)& cluster updates betwee
measurements for latticesL<24, with the averaged cluste
size ^C(L)&. After an initial equilibration time of about
10003n(L) cluster updates we took about 50 000 measu
ments for each of the small lattices. For the larger lattices
measured after each cluster update, therefore, we took a
500 000 measurements after an initial equilibration
100 000 cluster updates. Analyzing the time series we fo
integrated autocorrelation times for the energy and the m
netization in the range of unity for the small latticesL<24
and in the range of (428)3L for the larger lattice sizes. The
statistical errors were obtained by the standard jack-kn
method using 50 blocks.

Applying the reweighting technique we first determin
the maxima of C, x, d^umu&/dK, d ln^umu&/dK, and
d ln^m2&/dK. The locations of the maxima provide us wit
five sequences of pseudo-transition pointsKmax(L) for which
the scaling variablex5@Kc2Kmax(L)#@L(logL)1/12#1/n should
be constant. Using this fact we then have several possibil
to extract the critical exponentn from ~linear! least-square
fits of the FSS ansatz with multiplicative logarithmic corre
tions considering Eq.~3.4!,

dUL /dK>@L~ logL !1/12#1/n f 0~x! ~3.6!

or

d ln^umup&/dK>@L~ logL !1/12#1/n f p~x!, ~3.7!

to the data at the variousKmax(L) sequences. For compariso
we also performed fits of a naive power-law FSS ansatz

dUL /dK>L1/n f 0~x! ~3.8!
8-2
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TABLE I. Fit results for 1/n with a power-law ansatz with logarithmic corrections, using the data for
N largest lattices. The average is computed by weighting each entry with its inverse squared error. For
at our best estimate ofKc50.149 697(2) the uncertainty due to the error inKc is indicated by the numbers
in square brackets.

fit type N 1/n Q

dU/dK at Kmax
C 22 1.990~5! 0.68

d ln^umu&/dK at K inf
ln^umu& 18 1.989~4! 0.94

d ln^m2&/dK at K inf
ln^m2& 18 1.998~5! 0.93

weighted average 1.993~3!

dU/dK at Kc 18 1.991~5!@1# 0.73
d ln^umu&/dK at Kc 18 1.992~5!@2# 0.94
d ln^m2&/dK at Kc 18 2.000~5!@2# 0.94
weighted average 1.995~3!

overall average 1.994~2!
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d ln^umup&/dK>L1/n f p~x!. ~3.9!

The exponents 1/n resulting from fits using the data for theN
largest lattice sizes are collected in Tables I and II.Q denotes
the standard goodness-of-fit parameter. For all exponen
timates the FSS ansatz with the logarithmic corrections le
to the weighted average 1/n51.993(3), which is in perfect
agreement with the mean-field value 1/n52, see Fig. 1~a!.
With the naive power-law ansatz one also gets an estim
for 1/n in the vicinity of the mean-field value, but this i
clearly separated from the mean-field result, verifying
significance of the multiplicative logarithmic correction, c
Table II.

Assuming thereforen50.5 we can obtain estimates fo
Kc from linear least-square fits to the scaling behavior of
variousKmax sequences, as shown in Fig. 1~b!. Using the fits
with L>12, the combined estimate from the five sequen
leads toKc50.149 697(2), which is in agreement with the
results using Monte Carlo computer simulations@18# and
series expansions@19,20#.

Knowing the critical coupling we may reconfirm our e
timates of 1/n by evaluating the above quantities atKc . As
02400
s-
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can be seen in Tables I and II, the statistical errors of the F
fits at Kc are similar to those using theKmax sequences.
However, the uncertainty in the estimate ofKc has also to be
taken into account. This error is computed by repeating
fits atKc6DKc and indicated in Tables I and II by the num
bers in square brackets. In the computation of the weigh
average we assume the two types of errors to be indepen
As a result of this combined analysis we obtain strong e
dence that the exponentn agrees with the mean-field valu
of n50.5.

To extract the critical exponent ratiog/n we use the scal-
ing

xmax>@L~ logL !1/4#g/n ~3.10!

as well as the scaling ofx at Kc , yielding in the rangeL
510240 estimates ofg/n52.037(9) with Q50.95 and
g/n52.008(5)@5# (Q50.46), respectively. These estimat
for g/n are consistent with the mean-field value ofg/n52.
In Fig. 2~a! this is demonstrated graphically by comparin
the scaling ofxmax with a constrained one-parameter fit
the form xmax5c@L(logL)1/4#2 with c50.526(2) (Q50.38,
L>6).
TABLE II. Fit results for 1/n with a pure power-law ansatz usingKc50.149 697(2). Theaverages and
statistical errors are computed as in Table I.

fit type N 1/n Q

dU/dK at Kmax
C 18 2.041~9! 0.81

d ln^umu&/dK at K inf
ln^umu& 18 2.056~5! 0.75

d ln^m2&/dK at K inf
ln^m2& 18 2.066~5! 0.63

weighted average 2.059~3!

dU/dK at Kc 18 2.043~9!@2# 0.81
d ln^umu&/dK at Kc 18 2.059~5!@2# 0.81
d ln^m2&/dK at Kc 18 2.067~5!@2# 0.70
weighted average 2.061~4!

overall average 2.060~2!
8-3
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FIG. 1. ~a! Least-square fits of the FSS ansatz with logarithmic corrections at the maxima locations. Together with the fits atKc this leads
to an overall critical exponent 1/n51.994(2). ~b! FSS extrapolations of pseudo-transition pointsKmax vs @L(log L)1/12#21/n, assumingn
50.5. The error-weighted average of extrapolations to infinite size yieldsKc50.149 697(2).
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Concerning the specific heat we expect in the case of
mean-field exponenta50 a logarithmic divergence of th
form

C~x,L !5A~x!1B~x!~ logL !1/3. ~3.11!

Indeed, the data at the different fixed values ofx can all be
fitted nicely with this ansatz. In particular, for the fit ofCmax
with 17 points (L>6) we obtain A520.324(32), B
51.038(23), with a totalx2511.7 (Q50.70). Wealso tried
an unbiased three-parameter fit using the ansatz

C~x,L !5A8~x!1B8~x!~ logL !k(x), ~3.12!

which in the case of the fit ofCmax and 16 data points give
A8'20.36, B8'1.75, andk50.33(40), with a slightly im-
proved totalx2510.8 Q50.62). In Fig. 2~b! we compare
these two linear least-square fits. It should be noted, h
ever, that the three-parameter fit is highly unstable and
hibits strong correlations between the three parameters
illustrate this instability we plot in Fig. 3~a! the exponentk
as a function of the smallest lattice sizeLmin , being the lower
02400
e

-
x-
To

bound of the fit range@Lmin,40#. For comparison we show in
Fig. 3~b! the behavior ofg/n results of the fit corresponding
to Eq. ~3.10!.

B. Ising spins on a discrete Regge model

We simulated the gravitational degrees of freedom~the
squared link lengths! of the partition function~2.1! using the
heat-bath algorithm. For the Ising spins we employed ag
the single-cluster algorithm. Between measurements we
formed n510 Monte Carlo steps consisting of one latti
sweep to update the squared link lengthsqi j followed by two
single-cluster flips to update the spinssi .

The simulations were done fore50.0875, cosmologica
constantl50 and two different gravitational couplings,bg
524.665 andbg522.3. These twobg-values correspond to
the two phase transitions of the pure discrete Regge m
@6#, as shown in Fig. 4. The transition at positive gravit
tional coupling of the standard Regge calculus was descr
in great detail in Ref.@21# and shown to be of first orde
whereas the transition at negative coupling turned out to
of second order for the discrete Regge model@6#. Together
g

FIG. 2. ~a! FSS of the susceptibility maximaxmax. The exponent entering the curve is set to the mean-field valueg/n52 for regular

static lattices.~b! FSS of the specific-heat maximaCmax. The logarithmic fitCmax5A1B(log L)k and a constrained logarithmic fit assumin
the mean-field predictionk51/3 are almost indistinguishable on the scale of the figure.
8-4
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FIG. 3. ~a! Instability of the logarithmic fitCmax5A1B(log L)k. The exponentk as a function of the lower bound of the fit range
plotted.~b! g/n as a function of the lower bound of the fit range is plotted for the fitxmax}@L(log L)1/4#g/n.
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with an eventual second-order transition of the Ising part,
latter one is a candidate for a possible continuum limit. T
lattice topology is given by triangulated tori of sizeN05L4

with L53 up to 10. From short test runs we estimated
location of the phase transition of the spin model and set
spin couplingK050.024'Kc in the long runs for both val-
ues ofbg , see Fig. 5.

After an initial equilibration time we took about 100 00
measurements for each lattice size. Analyzing the time se
we found integrated autocorrelation times for the energy
the magnetization in the range of unity for all consider
lattice sizes. As in the simulations of the regular lattices
statistical errors were obtained by the standard jack-k
method using 50 blocks.

Completely analogously to the Ising system on a regu
lattice we applied reweighting to locate the maxima and u
the FSS formulas~3.6!–~3.9!. The exponents 1/n resulting
from fits using the data for theN largest lattice sizes ar
collected in Tables III and IV forbg524.665, and in Tables
V and VI for bg522.3, respectively. For the simulations
bg524.665 all exponent estimates with the logarithmic c
rections and consequently also their weighted averagen

FIG. 4. Expectation values of the average squared link leng
as a function of the gravitational coupling for the pure discr
Regge model on a 44 lattice.
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52.025(6) are in agreement with the mean-field valuen
52, see Fig. 6~a!. Forbg522.3 the scatter in the estimates
similar and the weighted average 1/n52.028(6) is again
compatible with 1/n52. With the naive power-law ansat
one also gets an estimate for 1/n in the vicinity of the mean-
field value, but this is clearly separated from the mean-fi
result, cf. Tables IV and VI.

Assuming thereforen50.5 we can obtain estimates fo
Kc from linear least-square fits to the scaling behavior of
various Kmax sequences, as shown in Fig. 6~b! for bg5
24.665. Using the fits withL>4, the combined estimate
from the five sequences leads toKc50.02464(4) forbg5
24.665, and forbg522.3 we findKc50.02339(4), again
with L>4.

With the knowledge of the critical couplings we may r
confirm our estimates of 1/n by evaluating the above quan
tities at Kc . As can be inspected in Tables III and V, w
obtain from this combined analysis strong evidence that
exponentn agrees with the mean-field value ofn50.5.

To extract the critical exponent ratiog/n we use the FSS
formula ~3.10! for xmax as well as the scaling ofx at Kc ,
yielding for bg524.665 in the rangeL54210 estimates of
g/n52.039(9) with Q50.42 and g/n52.036(7)@4# (Q
50.85), respectively. The corresponding values forbg

s
e FIG. 5. Binder cumulant curves from the short runs atbg5

24.665 leading to a critical spin couplingKc'K050.024.
8-5
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TABLE III. Fit results for 1/n with a power-law ansatz with logarithmic corrections forbg524.665,
using the data for theN largest lattices. The average is computed by weighting each entry with its inv
squared error. For the fits at our best estimate ofKc50.02464(4) the uncertainty due to the error inKc is
indicated by the numbers in square brackets.

fit type N 1/n Q

dU/dK at Kmax
C 8 2.003~10! 0.47

d ln^umu&/dK at K inf
ln^umu& 7 2.032~10! 0.59

d ln^m2&/dK at K inf
ln^m2& 7 2.038~10! 0.55

weighted average 2.025~6!

dU/dK at Kc 7 1.981~17!@13# 0.70
d ln^umu&/dK at Kc 7 2.027~9!@2# 0.95
d ln^m2&/dK at Kc 7 2.034~9!@2# 0.85
weighted average 2.025~6!

overall average 2.025~4!

TABLE IV. Fit results for 1/n with a pure power-law ansatz forbg524.665. The averages and statistic
errors are computed as in Table III.

fit type N 1/n Q

dU/dK at Kmax
C 7 2.068~18! 0.60

d ln^umu&/dK at K inf
ln^umu& 7 2.122~10! 0.37

d ln^m2&/dK at K inf
ln^m2& 7 2.128~10! 0.35

weighted average 2.118~7!

dU/dK at Kc 7 2.068~18!@12# 0.59
d ln^umu&/dK at Kc 7 2.116~9!@2# 0.83
d ln^m2&/dK at Kc 7 2.124~9!@2# 0.64
weighted average 2.116~7!

overall average 2.117~5!

TABLE V. Fit results for 1/n with a power-law ansatz with logarithmic corrections forbg522.3. The
average is computed by weighting each entry with its inverse squared error. For the fits at our best e
of Kc50.02339(4) the uncertainty due to the error inKc is indicated by the numbers in square brackets

fit type N 1/n Q

dU/dK at Kmax
C 8 1.981~10! 0.64

d ln^umu&/dK at K inf
ln^umu& 7 2.043~9! 0.61

d ln^m2&/dK at K inf
ln^m2& 7 2.049~9! 0.67

weighted average 2.028~6!

dU/dK at Kc 8 1.993~10!1 0.76
d ln^umu&/dK at Kc 7 2.039~9!@2# 0.32
d ln^m2&/dK at Kc 7 2.045~9!@2# 0.49
weighted average 2.027~6!

overall average 2.028~4!
024008-6
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TABLE VI. Fit results for 1/n with a pure power-law ansatz forbg522.3. The averages and statistical
errors are computed as in Table V.

fit type N 1/n Q

dU/dK at Kmax
C 7 2.086~11! 0.72

d ln^umu&/dK at K inf
ln^umu& 7 2.134~10! 0.54

d ln^m2&/dK at K inf
ln^m2& 7 2.139~9! 0.59

weighted average 2.122~6!

dU/dK at Kc 8 2.098~10!@1# 0.57
d ln^umu&/dK at Kc 7 2.130~9!@2# 0.35
d ln^m2&/dK at Kc 7 2.135~9!@2# 0.48
weighted average 2.122~6!

overall average 2.122~4!

FIG. 6. ~a! Least-square fits of the FSS ansatz with logarithmic corrections forbg524.665 lead to an overall critical exponent 1/n
52.025(4). ~b! FSS extrapolations of pseudo-transition pointsKmax vs @L(log L)1/12#21/n for bg524.665, assumingn50.5. The error-
weighted average of extrapolations to infinite size yieldsKc50.02464(4).

FIG. 7. ~a! FSS of the susceptibility maximaxmax. The exponent entering the curve is set to the mean-field valueg/n52 for regular
static lattices.~b! Specific heat at the critical spin coupling as a function of the lattice sizeL.
024008-7



s

al
m

il
ra

-

b

t
is

rns
ic

nts
as

m
pin
the

nd
th-
er

ar-
9-
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522.3, using the same fit range, areg/n52.052(8) (Q
50.57) andg/n52.052(6)@4# (Q50.01). These estimate
for g/n are compatible with the mean-field value ofg/n
52. In Fig. 7~a! this is demonstrated by comparing the sc
ing of xmax with a constrained one-parameter fit of the for
xmax5c@L(logL)1/4#2 with c54.006(10) (Q50.17, L>6)
for bg524.665 andc54.244(10) (Q50.001, L>6) for
bg522.3, respectively.

The data for the specific heatC at the critical spin cou-
pling Kc are presented in Fig. 7~b!. The fact thatC increases
very slowly with the size of the lattice means that one w
need data from bigger lattices and more statistical accu
to get an estimate or bound for the critical exponenta from
a direct measurement ofC. Especially, if we assume a loga
rithmic divergence ofC as in the four-dimensional Ising
model on regular lattices, we need lattices of compara
size, cf. Fig. 2~b!.

IV. CONCLUSIONS

We have performed a study of the Ising model coupled
fluctuating manifolds via Regge calculus. Analyzing the d
m
ion

ys

.

av

02400
-

l
cy

le

o
-

crete Regge model with two permissible edge lengths it tu
out that the Ising transition shows the predicted logarithm
corrections to the mean-field theory. The critical expone
of the phase transition of the Ising spins on a static lattice
well as on a discrete Regge skeleton@22# are consistent with
the exponents of the mean-field theory,a50, b5 1

2 , g51,
andn5 1

2 . In summary, our consistent analysis with unifor
computer codes yields that the phase transition of a s
system coupled to a discrete Regge skeleton exhibits
same critical exponents and the same logarithmic@16# cor-
rections as on a static lattice.
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