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Regge calculus is a powerful method to approximate a continuous manifold by a simplicial lattice, keeping
the connectivities of the underlying lattice fixed and taking the edge lengths as degrees of freedom. The
discrete Regge model employed in this work limits the choice of the link lengths to a finite number. To get
more precise insight into the behavior of the four-dimensional discrete Regge model, we coupled spins to the
fluctuating manifolds. We examined the phase transition of the spin system and the associated critical expo-
nents. The results are obtained from finite-size scaling analyses of Monte Carlo simulations. We find consis-
tency with the mean-field theory of the Ising model on a static four-dimensional lattice.
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[. INTRODUCTION Regge calculus with continuous link lengths. The restriction
of the edge lengths to just two values was carefully exam-

Spin systems coupled to fluctuating manifolds are anained in 2D where an interpolation fro, to Z,, was per-
lyzed as a simple example for matter fields coupled to Euformed [7]. It turned out that the phase transition with re-
clidean quantum gravity. The gravitational action is un-spect to the cosmological constant is universal. This was
bounded from below due to conformal fluctuations. But thatiested for pure gravity in 2D and is expected to be the case
does not necessarily render its quantum theory useless or tgso in 4D. Compared with standard Regge calculus, numeri-
path integral undefined. Indeed, the existence of a well decal simulations of the discrete Regge model can be done
fined phase was the first and probably most important resufhore efficiently by implementing look-up tables and using
of the numerical simulations in four dimensiofis,2]. Its  the heat-bath algorithm. In the actual computations we took
existence and stability were explored in some detail using theéhe squared link lengths ag;=q,=b|(1+€oy) with oy = 1.
standard Regge calculus with continuous link lengths. Itthe Euclidean triangle inequalities are satisfied automati-
turned out that the well defined phase is stable against VariQ;a"y as long as< e, Because a four-dimensional Regge
tions of the measure and the lattice si2g skeleton with equilateral simplices cannot be embedded in

In the discrete Regge model the problem of an unboundeflat spaceb; takes different values depending on the type of
action is not present as in standard Regge calculus. Becaugs edgd. In particularb, = 1,2,3,4 for edges, face diagonals,
of the restriction of pOSSible quadratic link |engthS to two body diagona|s’ and the hyperbody diagona| of a hypercube_
values[4,5] in the discrete Regge model the action can only  we investigated the partition function
reach an extreme but finite value. The expectation values do
not diverge if the well defined phase is left. What happens is
that the lattice “freezes” at large positive and negative val- Z:% f Dlalexd —1(q)—KE(q,s)], 21
ues of the gravitational coupling, as expected for a spin sys-
tem[6]. To get more precise ideas about the behavior of thgyherel (q) is the gravitational action,
four-dimensional discrete Regge model, we coupled Ising
spins to the fluctuating manifolds. We examined the phase
transition of the spin system and the associated critical ex- 1(q)= _/392 Atét“‘zi: Vi
ponents.

The rest of the paper is organized as follows. In Sec. Il weThe first sum runs over all products of triangle aréasimes
introduce the discrete Regge model and give some details @brresponding deficit angle$ weighted by the gravitational
the analyzed observables. The results of the Monte C&H@oup”ng Bg- The second sum extends over the voluries
simulations are presented in Sec. I, and concluding remarksf the 4-simplices of the lattice and allows one together with
can be found in Sec. IV. the cosmological constant to set an overall scale in the

action. The energy of Ising spirsse Z,,

(2.2

Il. MODELS AND OBSERVABLES
_e.)\2
The situation for the discrete Regge model is both struc- E(q,s)= 1 Z A (si—sy) 2.3
turally and computationally much simpler than the standard ' 26 A
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is defined as in two dimensiofi8—10], with the barycentric
areaA;; associated with a link;; ,

1
A= 3A (2.4
tDlij
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x*L?%(logL)*?=[L(logL)"4]""", (3.2
Coc(logL)*3, (3.3

Ke(20) = Kg(L)cL ™ ?(logL) ~Y=[L(logL)**? ",
(3.9

We chose the simple uniform measure as in the pure gravity

simulations[6]:

D[q]=H dgF(a). (2.5

where the critical exponents of mean-field theory areO,
B=1/2, y=1, andv=1/2. To get more precise ideas about
these logarithmic corrections, we first simulated the four-
dimensional Ising model on a regular lattice. After this com-
parative study we turned to the four-dimensional discrete

The functionF ensures that only Euclidean link configura- Regge mode[6] with spin fields.

tions are taken into account, i.ec=1 if the Euclidean tri-
angle inequalities are fulfilled an#=0 otherwise. This is

always guaranteed for the discrete Regge model by construc-

tion.

A. Ising spins on a regular lattice

We studied the four-dimensional Ising model on a hyper-

For every Monte Carlo simulation run we recorded theCubic lattice with linear sizé =316, 18, 20, 24, 28, 32,

time series of the energy densiy=E/N, and the magneti-
zation densitym==;s; /Ny, with the lattice sizeNy=L*. To
obtain results for the various observab@sat values of the

36, 40, using the single-cluster update algoritliviiolff)
[17]. The simulations were performed with the knowledge of
the value of the critical temperature obtained in previous

spin couplingK in an interval around the simulation point Monte Carlo simulations and high-temperature series analy-

Ko, we applied the reweighting methgd1]. Since we re-
corded the time series, this amounts to computing

(05|,

<o>|K=—<e_AKE>|KO : (2.6

with AK =K — K.

ses[18]:

Ke =0.149 694~ 0.000 002.

" KgTe @9
We performech(L)=Ny/{C(L)) cluster updates between

measurements for latticds< 24, with the averaged cluster
size (C(L)). After an initial equilibration time of about

With the help of the time series we can compute the spe1000x n(L) cluster updates we took about 50 000 measure-

cific heat,

C(K)=K®No((e*) —(e)?), 2.7
the (finite lattice) susceptibility,

X(K)=No((m?) —(|m[)?), (2.9

and various derivatives of the magnetizatial|m|)/dK,
d In{/m)/dK, andd In{m?)/dK. All these quantities exhibit in
the infinite-volume limit singularities & . which are shifted

ments for each of the small lattices. For the larger lattices we
measured after each cluster update, therefore, we took about
500000 measurements after an initial equilibration of
100000 cluster updates. Analyzing the time series we found
integrated autocorrelation times for the energy and the mag-
netization in the range of unity for the small latticess 24
and in the range of (4 8) X L for the larger lattice sizes. The
statistical errors were obtained by the standard jack-knife
method using 50 blocks.

Applying the reweighting technique we first determined

and rounded in finite systems. We further analyzed thehe maxima of C, x, d({|m|)/dK, dIn{m)/dK, and

Binder parameter,

L 1(mY
UL(K)—1—§<m2>2.

(2.9

It is well known that theU (K) curves for different lattice
sizesL cross aroundK.,U*). This allows an almost unbi-
ased estimate of the critical spin coupliKg .

Ill. SIMULATION RESULTS

In four dimensions, after initial discussiop2—14 it is

generally accepted that the critical properties of the Ising

dIn(m?)/dK. The locations of the maxima provide us with
five sequences of pseudo-transition poidts,,(L) for which

the scaling variable=[ K. — K (L) [L(log L)**?]*” should

be constant. Using this fact we then have several possibilities
to extract the critical exponent from (linearn least-square
fits of the FSS ansatz with multiplicative logarithmic correc-
tions considering Eq.3.4),

dU, /dK=[L(logL)¥?¥f(x) (3.6

or

d In{|m|P)/dK=[L(logL)**4*f (x), 3.7

model on a static lattice are given by mean-field theory with

logarithmic corrections. The finite-size scaliffeSS formu-
las can be written akl5,16]

£xL(logL)v4, (3.1

to the data at the variou§,,,(L) sequences. For comparison
we also performed fits of a naive power-law FSS ansatz

dU, /dK=LY"fq(x) (3.9
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TABLE |. Fit results for 14 with a power-law ansatz with logarithmic corrections, using the data for the
N largest lattices. The average is computed by weighting each entry with its inverse squared error. For the fits
at our best estimate d¢€.=0.149 697(2) the uncertainty due to the erroKinis indicated by the numbers
in square brackets.

fit type N 1/v Q
dU/dK atK§,,, 22 1.9905) 0.68
d Inmjy/dK at Km) 18 1.9894) 0.94
d In(n?/dK at K™ 18 1.9985) 0.93
weighted average 1.9
dU/dK atK, 18 1.9915)[1] 0.73
d In(m))/dK at K 18 1.99%5)[2] 0.94
d In{mP)/dK at K 18 2.0005)[2] 0.94
weighted average 1.96%
overall average 1.992)
or can be seen in Tables | and Il, the statistical errors of the FSS
o » fits at K, are similar to those using thK ., sequences.
dIn([m[P)/dK=L""f (). (3.9 However, the uncertainty in the estimatelaf has also to be

. . . taken into account. This error is computed by repeating the
The exponents L/resulting from fits using the data for tine fits atK .+ AK,, and indicated in Tables I and Il by the num-

largest lattice sizes are collected in Tables | an@ltdenotes . X .
i bers in square brackets. In the computation of the weighted
the standard goodness-of-fit parameter. For all exponent es-

timates the FSS ansatz with the logarithmic corrections lea verage we assume the two types of errors to be independent.

to the weighted average i##1.9933), which is in perfect Rs a result of this combined analygs we obtaln.strong evi-
) . . dence that the exponemtagrees with the mean-field value
agreement with the mean-field valuevH2, see Fig. ().

With the naive power-law ansatz one also gets an estimat%f v=05. . :
To extract the critical exponent ratig' v we use the scal-

for 1/v in the vicinity of the mean-field value, but this is in

clearly separated from the mean-field result, verifying the 9

significance of the multiplicative logarithmic correction, cf.

Table II. Xmac=[L(logL) V4] (3.10
Assuming therefores=0.5 we can obtain estimates for

K. from linear least-square fits to the scaling behavior of theas well as the scaling of at K., yielding in the range-

variousK 5 Sequences, as shown in FigblL Using the fits =10—40 estimates ofy/»=2.037(9) with Q=0.95 and

with L=12, the combined estimate from the five sequenceg/v=2.008(5]5] (Q=0.46), respectively. These estimates

leads toK.=0.1496972), which is in agreement with the for y/v are consistent with the mean-field value@gfr=2.

results using Monte Carlo computer simulatigris] and In Fig. 2(a) this is demonstrated graphically by comparing

series expansior4.9,20. the scaling ofymay With @ constrained one-parameter fit of
Knowing the critical coupling we may reconfirm our es- the form yma=c[L(logL)¥#]? with c=0.526(2) Q=0.38,

timates of 1/ by evaluating the above quantitieskéf. As  L=6).

TABLE II. Fit results for 14 with a pure power-law ansatz usikg,=0.149 6972). Theaverages and
statistical errors are computed as in Table I.

fit type N v Q
dU/dK atK§,, 18 2.0419) 0.81
d In{m|y/dK at K!n{m 18 2.0565) 0.75
d In(mAY/dK at K™ 18 2.0665) 0.63
weighted average 2.089

dU/dK atK, 18 2.0439)[2] 0.81
d In{|m))/dK at K 18 2.0595)[2] 0.81
d In{mP)/dK at K 18 2.0675)[2] 0.70
weighted average 2.064)

overall average 2.060)
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FIG. 1. (a) Least-square fits of the FSS ansatz with logarithmic corrections at the maxima locations. Together with tKe fitissdeads
to an overall critical exponent &+ 1.9942). (b) FSS extrapolations of pseudo-transition poilts,, vs [L(logL)**?]~Y*, assumingy
=0.5. The error-weighted average of extrapolations to infinite size yklds0.149 6972).

Concerning the specific heat we expect in the case of thgound of the fit rangéL y,,40]. For comparison we show in
mean-field exponen&=0 a logarithmic divergence of the Fig. 3(b) the behavior ofy/ v results of the fit corresponding
form to Eq.(3.10.

C(x,L)=A(x)+B(x)(logL) (3.11)

B. Ising spins on a discrete Regge model
Indeed, the data at the different fixed valuesxafan all be
fitted nicely with this ansatz. In particular, for the fit Gf,
with 17 points (=6) we obtain A=-0.324(32), B
=1.038(23), with a totay>=11.7 (Q=0.70). Wealso tried
an unbiased three-parameter fit using the ansatz

We simulated the gravitational degrees of freed@he
squared link lengthsof the partition function(2.1) using the
heat-bath algorithm. For the Ising spins we employed again
the single-cluster algorithm. Between measurements we per-
formed n=10 Monte Carlo steps consisting of one lattice
sweep to update the squared link lengtfisfollowed by two
single-cluster flips to update the spigss

The simulations were done far=0.0875, cosmological
constantA =0 and two different gravitational coupling8y

C(x,L)=A"(x)+B’(x)(logL)*™, (3.12
which in the case of the fit of,,, and 16 data points gives
A’'~—0.36,B’'~1.75, andx=0.33(40), with a slightly im- —4.665 andB,=22.3. These twg-values correspond to
proved totaly?=10.8 Q=0.62). InFig. 2(b) we compare the two phase transitions of the pure discrete Regge model
these two linear least-square fits. It should be noted, how[6], as shown in Fig. 4. The transition at positive gravita-
ever, that the three-parameter fit is highly unstable and exional coupling of the standard Regge calculus was described
hibits strong correlations between the three parameters. Tia great detail in Ref[21] and shown to be of first order
illustrate this instability we plot in Fig. (&) the exponenkk  whereas the transition at negative coupling turned out to be
as a function of the smallest lattice sizg;,, being the lower of second order for the discrete Regge mdddl Together
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FIG. 2. (a) FSS of the susceptibility maximg,.x. The exponent entering the curve is set to the mean-field value2 for regular
static lattices(b) FSS of the specific-heat maxin@, ... The logarithmic fitC,,,=A+B(log L)* and a constrained logarithmic fit assuming
the mean-field predictior =1/3 are almost indistinguishable on the scale of the figure.
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FIG. 3. (a) Instability of the logarithmic fitC,,,,=A+B(logL)“. The exponeni as a function of the lower bound of the fit range is
plotted. (b) y/» as a function of the lower bound of the fit range is plotted for the fite[L(log L)Y4]"".

with an eventual second-order transition of the Ising part, the=2.025(6) are in agreement with the mean-field value 1/
latter one is a candidate for a possible continuum limit. The=2, see Fig. @). For 8,=22.3 the scatter in the estimates is
lattice topology is given by triangulated tori of sidyg=L*  similar and the weighted averager#2.028(6) is again
with L=3 up to 10. From short test runs we estimated thecompatible with 1#=2. With the naive power-law ansatz
location of the phase transition of the spin model and set thene also gets an estimate for1h the vicinity of the mean-
spin couplingK,=0.024~K_ in the long runs for both val- field value, but this is clearly separated from the mean-field
ues of B4, see Fig. 5. result, cf. Tables IV and VI.

After an initial equilibration time we took about 100000  Assuming therefores=0.5 we can obtain estimates for
measurements for each lattice size. Analyzing the time serigs. from linear least-square fits to the scaling behavior of the
we found integrated autocorrelation times for the energy andarious K., sequences, as shown in Figg for gy=
the magnetization in the range of unity for all considered—4.665. Using the fits with.=4, the combined estimate
lattice sizes. As in the simulations of the regular lattices thefrom the five sequences leads kKQ=0.02464(4) forB,=
statistical errors were obtained by the standard jack-knife-4.665, and forBy=22.3 we findK,=0.0233%4), again
method using 50 blocks. with L=4.

Completely analogously to the Ising system on a regular With the knowledge of the critical couplings we may re-
lattice we applied reweighting to locate the maxima and usedonfirm our estimates of #/by evaluating the above quan-
the FSS formulag3.6)—(3.9). The exponents 1/resulting tities atK,. As can be inspected in Tables Il and V, we
from fits using the data for th&l largest lattice sizes are obtain from this combined analysis strong evidence that the
collected in Tables Ill and IV foB = —4.665, and in Tables exponentr agrees with the mean-field value of 0.5.

V and VI for B,=22.3, respectively. For the simulations at  To extract the critical exponent ratig/ v we use the FSS

Bg= —4.665 all exponent estimates with the logarithmic cor-formula (3.10 for x.,.x as well as the scaling of at K.,

rections and consequently also their weighted average llyielding for 84=—4.665 in the rangé =4 — 10 estimates of
vlv=2.039(9) with Q=0.42 and y/v=2.036(7]4] (Q

2.145 ; ; . ‘ . . . =0.85), respectively. The corresponding values {8y
014 | 0.6
0.55 |
2.135 -
&
v 05
213 t o
> i
045 | 4
2.125 + ;
0.4 )
212 L L L L ! !,[, L= ......... e
10 - 30 9’ [=8 -—&—- -
0.35 : : :
0.024 0.0245 0.025 0.0255 0.026
K

FIG. 4. Expectation values of the average squared link lengths
as a function of the gravitational coupling for the pure discrete FIG. 5. Binder cumulant curves from the short runsigt=
Regge model on a“lattice. —4.665 leading to a critical spin coupling.~Kq,=0.024.
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TABLE lIlI. Fit results for 1 with a power-law ansatz with logarithmic corrections f@y= —4.665,
using the data for th&l largest lattices. The average is computed by weighting each entry with its inverse
squared error. For the fits at our best estimat& of 0.02464(4) the uncertainty due to the erroKp is
indicated by the numbers in square brackets.

fit type N 1/v Q
du/dK atK§,, 8 2.00310) 0.47
d In|mjy/dK at KIndm 7 2.03210) 0.59
d In(mPy/dK at K™ 7 2.03810) 0.55
weighted average 2.009

du/dK atK, 7 1.98117)[13] 0.70
dIn{mY/dK at K 7 2.0279)[2] 0.95
dIn{m?)/dK at K 7 2.0349)[2] 0.85
weighted average 2.08%

overall average 2.028)

TABLE IV. Fit results for 1k with a pure power-law ansatz f@,= —4.665. The averages and statistical
errors are computed as in Table lIl.

fit type N 1/v Q
du/dK atKS,, 7 2.06819) 0.60
d In(jm)/dK at Kndm> 7 2.12210) 0.37
d In(mA)/dK at K™ 7 2.12810) 0.35
weighted average 2.118

dU/dK atK, 7 2.06818)[12] 0.59
dIn{m|)/dK at K, 7 2.1189)[2] 0.83
dIn{m?)/dK at K 7 2.1249)[2] 0.64
weighted average 2.118

overall average 2.11%)

TABLE V. Fit results for 14 with a power-law ansatz with logarithmic corrections f8y=22.3. The
average is computed by weighting each entry with its inverse squared error. For the fits at our best estimate
of K.=0.02339(4) the uncertainty due to the erroikip is indicated by the numbers in square brackets.

fit type N /v Q
du/dK atKS,, 8 1.98110) 0.64
d In|mjy/dK at Kndm 7 2.0439) 0.61
d In(mPy/dK at K™ 7 2.0499) 0.67
weighted average 2.008

dU/dK atK, 8 1.993101 0.76
d In(mly/dK at K 7 2.0399)[2] 0.32
dIn{m?)/dK at K 7 2.0459)[2] 0.49
weighted average 2.06)

overall average 2.028)
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TABLE VI. Fit results for 1& with a pure power-law ansatz fg#,=22.3. The averages and statistical
errors are computed as in Table V.

fit type N /v Q
dU/dK atK§,, 7 2.08611) 0.72
d In¢m()/dK at K fm) 7 2.13410) 0.54
d In(mPy/dK at K™ 7 2.1399) 0.59
weighted average 2.1
du/dK atK, 8 2.09810)[1] 0.57
d In(jm|)/dK at K 7 2.13@9)[2] 0.35
d In{m?)/dK at K 7 2.13%9)[2] 0.48
weighted average 2.1
overall average 2.122)
1000 0.09 , . . , . .
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L L2 (log LY/

FIG. 6. (a) Least-square fits of the FSS ansatz with logarithmic correctiongfer —4.665 lead to an overall critical exponent1/
=2.0254). (b) FSS extrapolations of pseudo-transition poilg., vs [L(logL)¥*?~ " for 4= —4.665, assuming'=0.5. The error-
weighted average of extrapolations to infinite size yie{ds-0.024644).
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FIG. 7. (a) FSS of the susceptibility maximg,.x. The exponent entering the curve is set to the mean-field value2 for regular
static lattices(b) Specific heat at the critical spin coupling as a function of the latticelsize
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=22.3, using the same fit range, af¢r=2.052(8) Q  crete Regge model with two permissible edge lengths it turns

=0.57) andy/v=2.052(6]4] (Q=0.01). These estimates out that the Ising transition shows the predicted logarithmic

for y/v are compatible with the mean-field value @fvr  corrections to the mean-field theory. The critical exponents

=2. In Fig. 7a) this is demonstrated by comparing the scal-of the phase transition of the Ising spins on a static lattice as

ing of xmax With a constrained one-parameter fit of the formwell as on a discrete Regge skele{@2] are consistent with

Ymax=CL(logL)¥#]? with c=4.006(10) Q=0.17, L=6) the exponents of the mean-field theows 0, =3, y=1,

for By=—4.665 andc=4.244(10) Q=0.001,L=6) for ~andv= 3. In summary, our consistent analysis with uniform

Bg=22.3, respectively. computer codes yields that the phase transition of a spin
The data for the specific he& at the critical spin cou- system coupled to a discrete Regge skeleton exhibits the

pling K are presented in Fig.(). The fact thaC increases same critical exponents and the same logarithfi) cor-

very slowly with the size of the lattice means that one will rections as on a static lattice.

need data from bigger lattices and more statistical accuracy

to get an estimate or bound for the critical exponerftom

a direct measurement &f. Especially, if we assume a loga- . .
rithmic divergence ofC as in the four-dimensional Ising ~ E-B. was supported by Fonds zurrBerung der Wissen-

model on regular lattices, we need lattices of comparabl€chaftlichen Forschung under project P14435-TPH and
size, cf. Fig. 2b). thanks the Graduiertenkolleg “Quantenfeldtheorie: Math-

ematische  Struktur und  Anwendungen in der
Elementarteilchen- und Festiprphysik” for hospitality
during his extended stay in Leipzig. W.J. acknowledges par-
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