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We present a pseudospin model which should be experimentally accessible using solid-state devices and,
being a variation on the compass model, adds to the toolbox for the protection of qubits in the area of quantum
information. Using Monte Carlo methods, we find for both classical and quantum spins in two and three
dimensions Ising-type Néel ordering of energy fluctuations at finite temperatures without magnetic order. We
also readdress the controversy concerning the stability of the ordered state in the presence of quenched
impurities and present numerical results which are at clear variance with earlier claims in the literature.
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I. INTRODUCTION

The prospect of topological quantum computation to
implement fault-tolerant quantum bits has led to considerable
interest in the field1 over the past years. A particular route
within this area is the construction of simple �spin� models,
as microscopic models of topological field theories, that al-
low a direct experimental realization. A hallmark is the so-
called Kitaev model,2 which is exactly solvable and known
to be implementable as well as controllable using optical
devices.3 Very recently, related efforts have been spent to
construct similar models which can be realized using solid-
state techniques.4 Guided by a few principles—a degenerate
ground-state manifold and a gap to excited states—the so-
called compass model �CM�, with the Hamiltonian

HCM = Jx�
i

Si
xSi+ex

x + Jz�
i

Si
zSi+ez

z , �1�

on an L�L lattice, was proposed as a simple model allowing
for the protection of qubits.5 The CM is realizable by a par-
ticular arrangement of Josephson-junction devices and can
be described by a Z2 Chern-Simons topological quantum
field theory.5 Extensions of Eq. �1� to global interactions pos-
sess even better fault-tolerant properties.6

Originally introduced as an orbital model for Mott
insulators,7 research into the actual CM has been pushed by
several groups, which established degenerate ground-state
properties,8 first-order quantum phase transitions,9 relation to
p+ ip superconductivity,10 and the existence of directional
order.11–13 Reference 12 argues that quantum spins support a
resistivity of the ordered phase toward quenched disorder,
which is in sharp contrast to classical degrees of freedom for
which the ordered phase vanishes rapidly with increasing
disorder. By a detailed Monte Carlo �MC� study13 of the
quantum and classical CM, we have recently shown that this
conclusion, however, needs further support as the CM shows
unusual and extremely slowly converging finite-size scaling
�FSS� properties on periodic lattices, which were used in
Ref. 12. Recently, an interesting extension of Eq. �1� to in-
clude a magnetic field term hS was performed leading to
thermal canting of spin order.14

In the search for other fundamental spin models and to
gain further insights into the field around the Kitaev model,

we propose here a different—geometric—modification of the
CM and concisely report on its intriguing physics. Our main
result is the establishment of an interesting ordering that can
be described by a crystallization and modulation of local
energy contributions but which lacks conventional magnetic
order. We show that the proposed model falls into the Ising
universality class and that it possesses well-behaved FSS
properties in contrast to the CM. In the last part of this paper,
we use this advantage to investigate the influence of �weak�
quenched disorder in form of random vacancies to study
their influence on the nature of the phase transition. We show
that long-range order is completely lost already for very
weak impurity concentrations.

II. MODEL

The plaquette orbital model �POM� is defined by the
Hamiltonian

HPOM = JA �
�i, j�A

Si
xSj

x + JB �
�i, j�B

Si
zSj

z, �2�

where Sx and Sz are components of a two-component spin S,
which can represent both classical and quantum degrees of
freedom. In the latter case Sx and Sz are represented by the
usual S=1 /2 Pauli matrices while in the classical case they
denote projections of a continuous spin parameterized by an
angle � on the unit sphere. The bonds �i , j�A and �i , j�B on
sublattices A and B are arranged as depicted in Fig. 1. The
coupling strengths JA and JB are in principle arbitrary. Here,
we are interested in the isotropic case JA=JB=J=1. The sign
of J has no relevance since it can be transformed away on
bipartite lattices.11 With N=Ld we denote the number of
spins on a cubic lattice of linear extension L and dimension
d. It should be emphasized that in contrast to the CM in three
dimensions �3D� or the Kitaev model in two dimensions
�2D�, quantum MC investigations of the POM can easily be
done also in 3D since there is no sign problem.

Note that the Hamiltonian �2� is Z2 symmetric under ex-
change of sublattices A and B and spin indices x and z.
Define further four-spin operators

Pr = Sr
zSr+ex

z Sr+ey

z Sr+ex+ey

z �3�

and
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Ql = Sl
xSl+ex

x Sl+ey

x Sl+ey+ex

x , �4�

with ex and ey being unit vectors on the lattice and r�l� a site
pointing to the lower left corner of A �B� plaquettes. We can
show that �HPOM, Pr�= �HPOM,Ql�=0 are local symmetries.
Hence, on A plaquettes the operations Si

x→−Si
x , Si

z→Si
z are

symmetries with the analog expression on B plaquettes read-
ing Si

x→Si
x , Si

z→−Si
z.8 For any r and L�2, there further

exists at least one index l such that �Pr ,Ql��0.15 This shows
that every energy eigenvalue of HPOM is at least twofold
degenerate. Performing an exact diagonalization employing
invariant subspaces of the operator P �see Ref. 8�, we could
obtain all eigenvalues on a N=4�4 cluster confirming this
conclusion. The POM hence possesses the same behavior as
the CM in this regard. Whether the excitation gap persists in
the infinite-volume limit remains to be investigated. The 3D
extension of the model is obvious. Every plaquette becomes
a cube, otherwise all arguments stay the same.

We now turn to a stochastic investigation of the model
using established MC methods ranging from Metropolis
sampling for classical variables to the quantum stochastic
series expansion �SSE�.16,17 Key to succesfully simulate the
model of Eq. �2� on large lattices is the use of parallel tem-
pering methods to avoid barriers and reduce autocorrelation
times. Details of our approach can be found in Ref. 13.

III. RESULTS

A. Néel ordering

The exchange symmetry �A⇔B� provides the possibility
for spontaneous symmetry breaking. To see if this exchange
symmetry is broken for some temperature T�Tc a suitable
order parameter should be defined. Let us just consider en-
ergy fluctuation on the two sublattices. Then, following Refs.
12, 13, and 18 we define the quantity

D =
1

N
�EA − EB� , �5�

where EA=JA��i , j�A
Si

xSj
x is the energy contribution on sublat-

tice A with the obvious relation for EB. The suitability of that
quantity can be seen in Figs. 2�a� and 2�b� which show snap-
shots of the energy distribution at high and low temperatures.
We can clearly observe a phase transition and the low-
temperature phase can be described as a crystalline Néel
state expressing up-down energy modulations. Further, this
state is entirely described by energy fluctuations as there is
no sign of long-ranged magnetic order seen in Figs. 2�c� and
2�d� as expected.11 A quantity directly probing a crystalline
state as in Fig. 2�b� is, for example, a plaquette structure
factor defined by

Spl = �1/N��
r

N

�− 1�xr+yrSP�0�SP�r� , �6�

where

SP�r� = SrSr+ex
+ Sr+ey

Sr+ex+ey
+ SrSr+ey

+ Sr+ex
Sr+ex+ey

�7�

is a four-site spin operator on a plaquette. The sign of
�−1�xr+yr alternates between A and B plaquettes. We will
show below that Spl is indeed an order parameter.

B. Monte Carlo simulations

Having visualized the onset of crystalline order, we now
turn to a more careful discussion of the phase transition from
comprehensive MC runs. Finite lattices are studied using two
types of boundary conditions. In principle, we do not expect
unwanted excitation as in the CM which spoil the FSS on
periodic lattices,13 but we also study open boundary condi-
tions to gain further confidence in our results. Open bound-
ary conditions have the additional advantage that they prefer
one sublattice over the other thus possibly stabilizing the
ordered phase from the surface. In the latter case the �¯ � in
Eq. �5� can be also left away from the definition of the order
parameter. In 2D, simulations were performed of both the
classical and quantum cases for various lattice sizes
L=10, . . . ,96, which proved to be sufficiently large. Our
analysis to obtain the critical temperatures is based on D,
rather than Spl because it is easier measured and is less sus-
ceptible to statistical noise. Detection of the phase boundary
proceeds, as usual, by considering the susceptibility

� = N��D2� − �D�2� , �8�

or the Binder parameter defined as

B = 1 − �D4�/�3�D2�2� . �9�

Figure 3�a� summarizes data obtained for the classical model
for the order parameter D as well as the structure factor Spl
�in inset�. Both quantities clearly numerically establish the
existence of crystalline order. In Fig. 3�b�, data for B and the
susceptibility � �in inset� is given which suggests a second-
order phase transition at Tc;cl=0.0855�4� from the crossing of
the Binder parameter. The value of B�Tc�=0.610�5� at the
critical temperature is consistent with the usual 2D Ising

Sx
i Sx

j

Sz
i Sz

j

A

A

B

B

FIG. 1. �Color online� Illustration of the POM lattice. The blue
�solid� bonds indicate SxSx terms while the red �dashed� bonds stand
for SzSz links. The lattice is closely related to a checkerboard. The
generalization to the 3D POM is straightforward with sublattices A
and B being cubes rather than plaquettes.
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value on the torus topology.19,20 We further investigate the
critical temperature by a FSS analysis of the maxima of the
susceptibility �. By fitting the corresponding data in Fig. 3�c�
to the usual ansatz

Tmax�L� = Tc + aL−1/� + bL−w, �10�

we obtain Tc;cl=0.0860�2� and Tc;qu=0.048�1� for the classi-
cal and quantum cases, respectively. Here, we assume the 2D
Ising exponent �=�2D Ising=1 �justified by the fit quality and
independent fits to the slopes of the Binder parameter� and
the effective correction term 	L−w is used only in fits for
open boundary conditions. Since these critical values are
consistently obtained for open and periodic boundary condi-
tions, we arrive at the important conclusion that FSS in the
POM is well behaved, in clear distinction to the CM. It is

then instructive to compare those values with the related
critical temperatures of the directional-ordering transition in
the CM. In Ref. 13, we obtained Tc;cl=0.1464�2� and
Tc;qu=0.055�1�, which leads us to the conclusion that the
geometric variation from Hamiltonian �1� to �2� results in a
drastic reduction in Tc by 42% for classical fields vs only
13% for the quantum case.

In order to obtain further clarity on the type of the transi-
tion, we go one step further and study the model in three
dimensions for various lattice sizes L=8, . . . ,32. Without
showing details but by performing the same simulations and
FSS analysis as before, we obtain a clear signal for a long-
ranged cube-ordered state below the transition temperatures
Tc;cl

3D =0.365�1� and Tc;qu
3D =0.180�5� for classical and quantum

degrees of freedom, respectively. Interestingly, the increase

(a) (b)

(c) (d)

FIG. 2. �Color online� Snapshots of the plaquette energy distribution on a N=40�40 lattice taken at T=1.0 and T=0.02, respectively. In
the high-temperature regime �a� the system is disordered and a symmetry breaking has occurred in �b� for T less than a critical temperature
Tc. Darker regions �color� represent lower energy. Figures �c� and �d� are snapshots of configurations in spin space corresponding to the high-
and low-temperature phases for L=10. No evident magnetic order is seen. The circles in �c� and �d� signify local energy density where darker
means larger negative energy. Spins are color �gray� coded to make their direction more apparent.
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in Tc �compared to the 2D transition temperatures� is larger
for the classical model.

The proposition that the transition is of Ising type �as
suggested by the symmetry and Binder parameter in Fig.
3�b�� should be reflected in the critical exponents. In Fig. 4
we select two quantities to address this question, namely, the
order parameter D for the 2D case and the slope sB of the
Binder parameter at the critical point for the 3D case. By
performing fits to the ansatz D	L−�/� and sB	L1/�, we
obtain in the classical cases �� /��2D=0.124�2� and
�3D=0.62�2� which are in excellent agreement with the the-
oretical value �� /��2D=1 /8 and high-precision literature21

on �3D. Figure 4 shows this scaling versus the lattice size of

both observables at the critical temperatures in a log-log plot.
The good quality of our data is apparent. This establishes
that the transition in the POM has Ising exponents for both
2D and 3D and—more importantly—that the energetic quan-
tity D really scales like a �magnetic� order parameter. For the
quantum case, this analysis is not so easy but our data is
consistent with this conclusion.

C. Dilution effects in the POM

As the preceding analysis indicates that we have good
FSS behavior in the present model, it is well suited to read-
dress the important question of impurity effects12 in orbital
models. To this end, we employ periodic boundary condi-
tions and define a fraction x of quenched impurity sites, i.e.,
we remove each spin with probability x. Following Ref. 12,
our objective is to study the quantity g�x�=Tc�x� /Tc�0� to
learn about the degree of stability of the Néel-ordered phase
against dilution disturbances. With Tc�x� one refers to the
critical temperature of the phase transition with dilution x. In
order to access Tc�x�, we performed simulations on lattice
sizes L=20,32,42,64,128 �classical case� and L=20,32
�quantum case�, where we generated and studied 100–200
different disorder realizations, respectively. The quantities
�D�av, ���av, and �B�av denote the disorder-averaged values of
the respective quantities defined above.

Studying just the �peaks of the� averaged susceptibility or
the order parameter on moderate lattices sizes
�L=20,32,42�, one could deduce values for g�x� which are
on the order of g�x�
0.70 for the classical case vs
g�x�
0.82 for the quantum model in case of weak impurity
concentration with x=0.01. These values seem to be in quali-
tative agreement with earlier claims and in support of the
conclusion of Ref. 12 that quantum fluctuations make the
ordered phase more robust.

However, our simulations on bigger lattices for x=0.01
reveal that the transition is, in fact, vanishing in the thermo-
dynamic limit, implying g�x�=0, ∀x�0. This conclusion
can be drawn, for example, from the data shown in Fig. 5.
While the order parameter �D�av seems to indicate some
crossover which gets weaker for larger L, the Binder param-
eter �B�av clearly shows no crossing, i.e., no sign of critical
behavior. Remarkably, quite large lattice sizes L
128 are
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FIG. 3. �Color online� Results from classical and quantum MC
simulations for the 2D POM. �a� The order parameter D for various
lattice sizes L=10 to L=96 for the classical model employing peri-
odic boundary conditions. The inset shows the plaquette structure
factor Spl for L=20, L=32, and L=42. The order parameter indi-
cates a clear crystallization effect for T�0.086. �b� The classical
Binder parameter B close to the transition temperature supporting a
second-order phase transition. The inset shows the susceptibility �
on a logarithmic scale for L�16. Generally, steeper curves in �a�
and �b� correspond to larger lattice sizes. �c� The critical tempera-
tures Tc from FSS of the maxima locations of the susceptibility for
both the classical and quantum cases and two different boundary
conditions �open=obc, periodic=pbc�.
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FIG. 4. �Color online� FSS of the order parameter D for a 2D
system and for the slope sB of the Binder parameter for a 3D sys-
tem. Both quantities are calculated at the critical temperatures and
yield the expected Ising exponents.

SANDRO WENZEL AND WOLFHARD JANKE PHYSICAL REVIEW B 80, 054403 �2009�

054403-4



needed to see this. These data obviously rule out the pres-
ence of a true phase transition in the vacancy diluted classi-
cal POM.

This situation is further reminiscent of the ordinary 2D
Ising model subjected to a random field �at a fraction x of the
sites� which is known not to exhibit a finite-temperature
phase transition from theoretical22 and numerical works.23

While in the Ising model the random field destroys the Z2
up-down spin symmetry, dilution in the POM breaks the
A−B plaquette symmetry. Such random local symmetry
breaking is also known to destroy long-range order in, e.g.,
2D antiferromagnetic Ising models with nearest- and next-
nearest-neighbor interactions.24

By the same argument it is clear that there is no phase
transition in the 2D classical CM at any finite dilution x and
the statements and conclusions of Ref. 12 are therefore at
variance with the findings in this work. We also see no argu-
ment why the quantum CM should behave differently in this
respect and suspect that quantum effects merely increase the
stability of the low-temperature state on finite and small clus-
ters of spins—an observation that might still be useful for
applications.

IV. CONCLUSION

We have introduced and investigated a plaquette orbital
model related to the Kitaev model and the CM. The present
work establishes that this model exhibits an unconventional
finite-temperature phase transition from a disordered to a
Néel-ordered state in the energy distribution. It thus displays
antiferromagnetic features without possessing magnetic or-
der. By symmetry arguments and MC simulations, the criti-
cal exponents were determined to be in the Ising universality
class. The geometric variation from the CM to the plaquette
orbital model results in a substantial lowering of the ordering
temperature for the classical model, which is not the case for
quantum spins. Our subsequent analysis of the POM in the
presence of impurities shows that long-range ordering is lost
for �any� weak disorder concentration. This finding also
sheds concluding light on the somewhat controversial issue
concerning the effect of impurities on the ordered phase in
the compass model.12,13 A more detailed analysis of the na-
ture of the ground states for arbitrary JA, JB and its quantum
phase transitions9,25 would be an interesting continuation of
this work as would be a thorough investigation of the exci-
tations in the POM. Apart from its possible relevance for
protected qubits, the present model should also be of imme-
diate interest for the physics of orbital models in relation to
transition-metal oxides.26
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