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Nature of phase transitions in a generalized compleji{* model
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We employ Monte Carlo simulations to study a generalized three-dimensional comftetheory of
Ginzburg-Landau form and compare our numerical results with a recent quasianalytical mean-field-type ap-
proximation, which predicts first-order phase transitions in parts of the phase diagram. As we have shown
earlier, this approximation does not apply to the standard formulation of the model. This motivated us to
introduce a generalized Hamiltonian with an additional fugacity term controlling implicitly the vortex density.
With this modification we find that the complé®* theory can, in fact, be tuned to undergo strong first-order
phase transitions. The standard model is confirmed to exhibit continuous transitions which can be characterized
by XY model exponents, as expected by universality arguments. A few remarks on the two-dimensional case
are also made.
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[. INTRODUCTION the model. The purpose of this paper is to present for this

generalized Ginzburg-Landau model results on its phase

For a long time the Ginzburg-Landau model has beerstructure as obtained from extensive Monte Carlo simula-
considered as paradigm for studying critical phenomena ugions. Employing finite-size scaling analyses we find numeri-
ing field-theoretic techniquésPerturbative calculations of cal evidence that, by tuning the extra fugacity parameter, it is

critical exponents and amplitude ratios of the Isimg1), indeed possible to drive the system into a region with first-
XY (n=2), Heisenbergn=3), and otherO(n) spin models order phase transitions.
relied heavily on this field-theoretic formulatidnEven The layout of the remainder of this paper is organized as

though the spin models contain only directional fluctuationsfollows. In Sec. Il we first recall the standard model and then
while for n-component Ginzburg-Landau fields witte=2  discuss its generalization and the observables used to map
directional and size fluctuations seem to be equally imporout the phase diagram. Next we describe the employed simu-
tant, the two descriptions are completely equivalent, as ifation techniques in Sec. Ill. The results of our simulations
expected through the concept of universality and has beeare presented in Sec. IV, where we first discuss the three-
proved explicitly for superfluids witm=2, where the spin dimensional case in some detail and then add a few brief
model reduces to aXY model? Therefore it appeared as a comments on the two-dimensional model to complete the
surprise when, on the basis of an approximate variationgbhysical picture. Finally, in Sec. V we conclude with a sum-
approach to the two-component Ginzburg-Landau modelmary of our main findings.

Curty and Beck recently predicted for certain parameter

ranges the possibility _of first-order phase transitions in_duced Il. MODEL AND OBSERVABLES

by phase fluctuations. In several papets this

quasianalyticaf prediction was tested by Monte Carlo simu-  The standard complex or two-component Ginzburg-
lations and, as the main result, apparently confirmed numeri-andau theory is defined by the Hamiltonian

cally. If true, these findings would have an enormous impact

on the theoretical description of many related systems such )= f ddr[a|¢|2+ 9|¢|4+ Z| Vyl2|, y>0, (D

as superfluid helium, superconductors, certain liquid crystals, 2 2

and possibly even the elfzctroweak standard model of ebvherelp(F):¢x(F)+iwy(F):|¢(F)|e‘¢(” is a complex field and

em.?,nf,?gvpgpltﬂgs%hyifﬁﬁa| important imolications for a & b, andy are temperature-independent coefficients derived
broad variety of diffeprent fields v?/e performped independentfrom a microscopic model. In order to carry out Monte Carlo
Monte Carlo simulations of the standard Ginzburg-LandauS'mmatlonS we put the modé1) on ad-dimensional hyper-

model in two and three dimensions in order to test whetherCUbIC lattice with spacing. Adopting the notation of Ref. 4,

the claim of phase-fluctuation-induced first-order transitiondVe introduce scaled variableg=/ V(lel/b) and G=r7¢,

is a real effect or not® Our results clearly support the pre- Whereé=\y/|a| is the mean-field correlation length at zero
vailing opinion that the nature of the transition is of secondtemperature. This leads to the normalized lattice Hamiltonian
order. In turn this implies, of course, that the variational ap- N[~ 1
proximation emplqyed in Ref. 4 is less rehaple than origi- H[ ] :kBVOE c_’(|¢n|2_ 12+ = |9 - ¢n+#|2 ,
nally thought in view of the apparent numerical confirma- 1] 2 2,5

tions. In order to shed some light on the numerical results of )
Refs. 5-9, we generalized the standard model by adding a

fugacity term which implicitly controls the vortex density of with

d
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whereu denotes the unit vectors along ttieoordinate axes, _ ) )
N=LY is the total number of sites, and an unimportant conWith k=1, and work directly with a uniform measure f@j.

stant term has been removed. The param@@emerely sets The incorrect omission of thR factor in Eq.(6) is equiva-

e . 1 -
the temperature scale and can thus be absorbed in the delf'r‘—nt to settingx=0. It IS well knovvﬁ that the node,=0 .

. ~ ~ correspond to core regions of vortices in the dual formulation
nition of the reduced temperatule=T/V,,.

of the model. The Jacobian factBr(or equivalently the term
After these rescalings and omitting the tilde ¢no, and ror eq y

; AT . =2 In R, in Heg) tends to suppress field configurations with
T for notational simplicity in the rest of the paper, the parti- many node®R, =0. If the R factor is omitted, the number of

tion functionZ considered in the simulations is then given by ho4es and hence vortices is relatively enhanced. It is thus at
least qualitatively plausible that in this case a discontinuous,
7= f DyDye T, (4) first-order “freezing transition” from a vortex dominated
phase can occur, as is suggested by a similar mechanism for
the XY model*151®and defect models of melting:*®
where In the limit of a large parametar, it is easy to read off
from Eq. (5) that the modulus of the field is squeezed onto
A I 13 unity and once hence expects that irrespectively of the value
Hly] =2 §(|¢n|2 -1+ EE [ ¢n+n|2 (5 of « the XY model limit is approached with its well-known
=t #=1 continuous phase transition in three dimensi¢®B) at T
=~ 2.2 and the Kosterlitz-Thouleg&T) transition in two di-
: : : ) mensiong2D) at Ty = 0.9, respectively. While for the stan-
all possible complex field configurations. dard model withx=1 this behavior should qualitatively per-

_ In Ref. 13 we have shown that the disagreement mengg; for 41| values of, from the numerical results discussed
tioned above is caused by an incorrect sampling of the Jacg;

bi hich p h I X ibove one expects that fa=0 the order of the transition

|;’:1n whic femgrgesh rofml(; € complex .measurelm @9. 4 lurns first order below a certaiftricritical) o value. The
when transforming t efe representan.n tq polar coor "purpose of this paper is to elucidate this behavior further by
nates,,,=R,(cod ¢y), sin(¢,)). When updating in the simu-

) . studying the phase diagram in tleex plane—i.e., by con-
lations the moduluR,=|y| and the anglef,, one has to  gjgering an interpolating model with varying continuously
rewrite the measure of the partition functiof) as

between 0 and 1.
To be precise we always worked with the proper func-

and szpDEEfD ReyD Im ¢ is short for integrating over

2 s
Z:f Dqﬁf RDReH/T (6) tional measure in Eq6) and replaced the standard Hamil-
0 0 ’ tonianH by
whereDR=TI)\,dR, andR=II\_,R, is the Jacobian of this N N
transformation. While mathematically indeed _triv(alnd of Hgen=H +T(1 - K> INR,=H+T&Y, Infy), (8
course properly taken into account in Ref, this fact may n=1 n=1

easily be overlooked when coding the update proposals for

the modulus and angle in a Monte Carlo simulation programynere we have introduced the parameferl -, such that
While for the angles it is correct to use update proposals of—( (k=1) corresponds to the standard modél afvdl (k
the form ¢, — ¢+ ¢ with ~Adp=35p<A¢ (whereAd is  _q) 15 the previously studied modified model with its first-
chosen such as to assure an optimal acceptance, soni- order phase transition for small enough

lar procedure for the modulu&, — Ry + 4R with ~AR< ¢R In order to map out the phase diagram in e and

gAR, would be mcorrgct since th's ignores th .factor o-6 plane, respectively, we have measured in our simulations
coming from the Jacobian. In fact, if we purposely ignore theto be described in detail in the next section among other

Jacobian and simulate the modé) (erroneously without " . o
the R factor, then we obtain a completely different behaViorgil::rl“g?(sl—:ge—?S}e;)%mdzr:dlﬁmgrﬁ(’;ﬁ; Stﬁgcmz::it Ege
than in the correct case; cf., e.g., Fig. 2 below. As already v ' P q

mentioned above these results reprodfiteose in Refs. 5 amplitude
and 9, and from this data one would indeed conclude evi-
dence for a first-order phase transition whers small. With 1 N
the correct measure, on the other hand, we have checked that B NE el 9)
no first-order signal shows up down t©=0.01. n=1

To treat the measure in E() properly one can either use
the identity Rnan:dR%IZ and update the squared moduli which will serve as the most relevant quantity for compari-
R%=|y)? according to a uniform measutehere the update son with previous work® For further comparison and in
proposalR%— R2+ 5 with ~A< §<A is correc} or one can order to determine the critical temperature, the helicity
introduce an effective Hamiltonian, modulus
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n=1 09 r ¥ "
1 N 2 H o
TN E |':bn||¢’n+,u|3in(¢n - ¢n+,u) (10) A 081 : *
NT n=1 o % *
= & *
was also computed. Notice that the helicity modulysis a Vo7t H Ut
direct measure of the phase correlations in the directign. of ¥ .
Because of cubic symmetry, all directiopsare equivalent 06 | Byt |
and we always quote the averalje(l/d)zd:ll“ . In the cluster update ——
o i T e b Metropolis update -
infinite-volume limit, I" is zero aboveTl. and different from 05 . . . .
zero belowT.. We also have measured the vortex density 0 0.5 1 1.5 2 25
(of vortex points in 2D and vortex lines in 3DThe standard T

procedure to calculate the vorticity on each plaquette is by

considering the quantity FIG. 1. Mean-square amplitude of the standard three-

dimensional complex Ginzburg-Landau model wits1 and o
=0.25 on a 18 cubic lattice.

1
m= 2_([¢1 = Golont[b2— d3lon
s

+[ 3= balon+ [hs— D1lm), (12) Iation;: The gtandard Metropplis glgoritHﬁ’nl—!ere the com-
plex field «, is decomposed into its Cartesian components,

whered, ... ,¢, are the phases at the corners of a plaquette/,n:,r/,xynﬂi/,y'n_ For each lattice site a random update pro-
labeled, say, according to the right-hand rule drd,,  posal for the two components is made, €.y, — ¥xn
stands fore modulo 27 [a],,=a+2mn, with n an integer  + &y, with 8y, , € [-A,A], and in the standard fashion ac-
such thata+27n e (=, 7], hencem=n;,+Ny3+ N34+ Ny, If cepted or rejected according to the energy chaitgig,, The
m=+0, there exists a vortex which is assigned to the objecparameten is usually chosen such as to give an acceptance
dual to the given plaquett& site in 2D and a link in 3D rate of about 50%, but other choices are permissible and may
Hence, in two dimensionsim, the dual ofm, is assigned to even result in a better performance of the algorifimterms
the center of the original plaquette. In three dimensions, thef autocorrelation timgs All this is standaré® and guaran-
topological point charges are replaced(byiented line ele-  tees in a straightforward manner that the complex measure
ments:|; which combine to form closed network$vortex DyDy in the partition function(4) is treated properly.

loops”). The vortex “charges*m or *l; can take three val- The well-known drawback of this algorithm is its critical
ues: 0, +1(the values +2 have a negligible probabilitfhe  gjowing down(large autocorrelation timgsn the vicinity of
quantities a continuous phase transitiéh)eading to large statistical
1 errors for a fixed computer budget. To improve the accuracy
v= PE |#mJ (2D), (12 of our data we therefore employed the single-cluster
X

algorithn?! to update the direction of the fietd,similar to
simulations of theXY spin modef® The modulus ofy is
1 updated again with a Metropolis algorithm. Here some care
v ‘FE [*lixl (3D) (13) is necessary to treat the measure in E). properly (see
. above commenjs Per measurement we performed one
serve as a measure of the vortex density. We further analyzexsveep with the Metropolis algorithm amul single-cluster

the Binder cumulant updates. For all simulations in two and three dimensions the
os number of cluster updates was chosen such ntj&) ~ L9
U:%, (14) =N, where(|C|) is the average cluster size. Sin¢€|)
(k%) scales with system size as the susceptibiligy N(z2)
where i=(uy, y) With =L and y/v=2-7=7/4 at theKosterlitz-Thouless tran-

sition in 2D andy/ v=2-7~2 in 3D, n was chosenrcLY*in
1 N 1 N 2D and«L in 3D. In the 2D case most of the simulations
Hx = NE Re(yn), my= NE Im(¢r), (15  were performed fot. =10, 20, and 40, and in 3D we usually
n=1 n=1 studied the lattice sizds=10, 15, 20, and 30. For each simu-
is the magnetization per lattice site of a given configuration/ation point we thermalized with 500-1000 sweeps and av-
eraged the measurements over 10 000 sweeps. In the cases of
lll. SIMULATION TECHNIQUES strong first-order phase transitions we employed a variant of
the multicanonical scherffe where the histogram of the
Let us now turn to the description of the Monte Carlo mean modulus is flattened instead that of the energy. All
update procedures used by us. To be on safe grounds, vegror bars are computed with the Jackknife metffoih the
started with the most straightforwafBut most inefficient  following we only show the more extensive and accurate
algorithm known since the early days of Monte Carlo simu-data set of the cluster simulations, but we tested in many
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FIG. 2. Mean-square amplitud@/|%), helicity modulusl’,, and vortex-line densityv) of the three-dimensional generalized complex
Ginzburg-Landau model on a 46ubic lattice for different values of the parameter0.25, ... , 3.0 for the case=0 (left) and the standard

formulation with k=1 (right).

representative cases that the Metropolis simulations coincid@mps for smallo values, which is a clear indication that in
within error bars; for an example, see Fig. 1.

IV. RESULTS

A. Three dimensions

this regime the phase transition is of first order.¢t0.25,

for example, we observe already on very small lattices a
clear double-peak structure for the distributions of the energy
and mean-square amplitude as well as the mean modulus
lyl=(1/N)=N_, || which is depicted in Fig. 3. Notice that

In the first set of simulations we concentrated on the twaoalready for the extremely small lattice size of the mini-

most characteristic cases=0 and«=1 and performed tem-

mum between the two peaks is suppressed by more than 20

perature scans on a Afattice for various values of the pa- orders of magnitude. This is an unambiguous indication for
rametero. Our results for the mean-square amplitude, thetwo coexisting phases and thus clearly implies that the model
helicity modulus, and the vortex-line density are comparedindergoes a first-order phase transition in the smaégime

for the two cases in Fig. 2. In the plots fe=0 on the left
side, we see that all three quantities exhibit quite pronouncetions had to be performed with a variant of the multicanoni-

for k=0. Due to the pronounced metastability, these simula-
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FIG. 4. Transition lines in the-T plane fork=0 andx=1. The

42 thick line for k=0 indicates first-order phase transitions while all
ar other transitions are continuous.
35
3t 1 (13) for k=0 and k=1. Apart from the transition region
—~ 25} . where a strong size dependence is of course expected, we
|§ ol | notice only a small dependence on the variation of the lattice
* 151 size. On the basis of these results, we do not expect a sig-
' nificant change of the qualitative behavior for much larger
T lattices and hence used similar moderate lattice sizes for
05t 1 most of our further investigations.
0 ' : . . : To exemplify the big differences between the models with
0 02 04 06 08 1 12 k=0 andk=1, we choose in the following the case=1.5,
(b) vl where we shall characterize for bathvalues the phase tran-

sitions in some detail. Let us start with the nonstandard case
k=0, where the first-order phase transition arodired0.36

is also pronounced but much less strong thander0.25.
Still, in order to get sufficiently accurate equilibrium results,
the simulations for lattices of side=4, 6, 8, 10, 12, 14, 15,
and 16 had to be performed again with our modulus variant

cal schem#& where, instead of flattening the energy histo—oTc the multicanonical method. As can be mspectt_ed in the
gram, extra weight factors for the mean modulus Werehlstogram plots for the mean modulus shown in Fig. 6, the

introduced. With this simulation technique we overcome thefrequency of the rare events between the two peaks in the

difficulty of sampling the extremely rare events between thecanomcal ensemble for a ?L(T:att'lce IS about 50. orders of
two peaks of the canonical distribution. A closer look at themagnltude smaller than for configurations contributing to the
two peaks.

k=0 plots shows that the crossover from second- to first- ! d h e th . tativel
order transitions happens aroung=2.5. For the standard n order to characterize the transition more quantitatively
we estimated the interface tensién

model with k=1, on the other hand, we observe falt o

FIG. 3. Top: histogram of the mean moduﬂt_ﬁ on a logarith-
mic scale for a & cubic lattice,x=0 ando=0.25, reweighted to the
temperaturel = 0.0572 where the two peaks are of equal height.
Bottom: histogram for the same quantity and lattice siz&=al.1
close to the second-order phase transitionserl ando=0.25.

values a smooth behavior, suggesting that{lYfemodel-like 1 pmax
continuous transition persists also for smaNalues. This is Fi=——g3In 'r‘nm, (16)
clearly supported by a single-peak structure of all distribu- 2L P

tiqns just 'mentioned; for the case of thg mean modulus, sefhere P js the value of the two peaks anR[”i” denotes

Fig. 3. This supports the prevailing opinion that the standargne minimum in between. Here we have assumed that for

complex|y|* model always undergoes a second-order phasgach |attice size the temperature was chosen such that the
transition. In fact, we have checked that down @ o peaks are of equal height which can be achieved by

=0.01no signal of a first-order transition can be detected forhistogram reweighting. The thus defined temperatures ap-

the standard model parametrized by 1. The resulting tran-  yrgach the infinite-volume transition temperature a&®/
sition lines in theo-T plane fork=0 andx=1 are sketched 414 for the final estimate dFs=lim, _..F?, we performed a

in Fig. 4, with the thick line for=0 indicating the approxi- according t8’
mate regime of first-order phase transitions.

Next we concentrated on the small regime and per- s_rs, @ bin(L)
formed a rough finite-size scalin=SS analysis for o FL=F +|_d_—1+F- an
=0.25 on moderately large 1015°, 20°, and 36 lattices. In
Fig. 5 we compare results for the energy, mean-square amis is shown in Fig. 6, the finite-lattice estimaté$ are
plitude (9), helicity modulus(10), and vortex-line density clearly nonzero. The infinite-volume extrapolatid) tends
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FIG. 5. Energy densitg, mean-square amplitudg/{?), helicity modulusl’,,, and vortex-line densityv) on 1, 15°, 20%, and 3G cubic
lattices fora=0.25 andk=0 (left) and k=1 (right), respectively.

to increase with system size and yields a comparably larggansition aroundB=1/T=0.8. To confirm the expected

interface tension oF$=0.2715). critical exponents of th®(2) or XY model universality class,
Let us now turn to the second generic casel, where we simulated here close to criticality somewhat larger lat-

the model definitely exhibits forr=1.5 a second-order phase tices of sizeL=4, 8, 12, 16, 20, 24, 32, 40, and 48 and
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FIG. 8. Log-log plot of the FSS of the susceptibility far=1

ando=1.5 atB=0.780 08= B.. The line shows the three-parameter
fit a+bL¥”, yielding for L= 16 the estimatey/»=1.96212).

initial equilibration time we took about 1 000 000 measure-
ments for each lattice size. Applying the reweighting tech-
nique we first determined the maxima of the susceptibility,
X' =N{(?—{|ul)?), of d(|x|)/dB, and of the logarithmic de-
rivatives d In{|z|y/dB and dIn{z?/dB. The locations of
these maxima provide us with four sequences of pseudo-
transition pointsB,a{L) for which the scaling variable
=(BmadL)— Bo)LY” should be constant. Using this fact we

1" then have several possibilities to extract the critical exponent
v from (linear least-squares fits of the FSS ansdtz /dg

~ 1lv ~|p ~ 1lv
o=1.5 on a logarithmic scale for various lattice sizes ranging from L, fo(x) or d In<|,u,| )dp=L fp(x). to the data at the
L=4 (top curve to L=16 (bottom curve, reweighted to tempera- Ya1l0US BmadL) sequences. The quality of our data and the
tures where the two peaks are of equal height. Bottom: FSS exits starting atLy,=8, with goodness-of-fit paramete3
trapolation for L=6 of the interface tensiorF}, yielding the ~=0.85-0.90, can be inspected in Fig. 7. All resulting expo-
infinite-volume limit FS=0.27%5). nent estimates and consequently also their weighted average,

FIG. 6. Top: histogram of the mean modulm for k=0 and

performed a standard FSS analysis. From short runs we first
estimated the location of the phase transition to beBat
=0.7795= B.. In the long runs ap, we recorded the time
series of the energy densigr E/N, the magnetizatiop, the
mean modulusy], and the mean-square amplité®p/?, as
well as the helicity modulu§’, and the vorticityv. After an

1/v=1.4937), v=0.6703), (18

are in perfect agreement with recent high-precision Monte
Carlo estimates for th¥Y model universality clas®:?°Note
that hyperscaling impliesr=2-3r=-0.01Q9), which also
favorably compares with recent spacelab experiments on the

1000 ' \ transition in liquid heliunm®

+*;
100 ¢ e e
- »"'* -
1 7 2 1
e din<p®>/dp —+—
X d|n<ﬁi|>/d€ Y
dU/d -
0.1 :
10
L - ) . )
) 0 0.2 0.4 0.6 0.8 1
FIG. 7. Least-squares fits fa==1 ando=1.5 on a log-log scale, T

using the FSS ansat#f(u)/dB«< LY at the maxima locations. The
fits using the data foL.=8 lead to an overall critical exponent
1/v=1.4937) or v=0.67Q3).

FIG. 9. Thex dependence of the mean-square amplit(jgé)
as a function of temperature on a3l4ttice for 0=0.25.
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FIG. 10. Phase diagram in the-T plane of the three- FIG. 11. Phase structure in thex plane of the generalized

dimensional generalized complex Ginzburg-Landau modeldfor complex Ginzburg-Landau model in three dimensions, separating
=0.25 ando=1.5. The transitions along the thick line fer< «; are  regions with first- and second-order phase transitions, respectively,
of first order, and the transitions far> «; are of second order. The \yhen the temperature is varied. All continuous transitions fall into
points labeledx; at the intersection of these two regimes are the universality class of th¥Y model which is approached for all
tricritical points. k-values in the limito— oo,

showing that in the standard model with=1 a phase-
1Iﬂuctuation induced first-order phase transition is very un-
ikely even for very smallr values.

We also checked the critical behavior along the line of

Assuming thus 1#=1.493 we can improve our estimate
for B from linear least-squares fits to the scaling behavior o
the variousB,ax Sequences. The combined estimate from the
four sequences 8:=0.780 084). To extragt the cri_tical €X" second-order transitions far=0. Specifically, ab=5—i.e.,
ponent ratioy/ v we can now use the scaling relation for the g iciently far away from the crossover to first-order transi-
susceptibility y =N(u) =a+bL"" at B.. For L=16 we ob-  {jons at ,~2.5—we obtained from FSS fits to data at
tain from the FSS fit witlQ=0.70 shown in Fig. 8 the esti- 3.=0.972534) for lattices of sizeL=4, 8, 12, 16, 20,
mate of 24, 28, 32, and 40 the exponent estimates=11.4897),

Yiv=1.96212)[9], (19) v=0.6713), and y/»=1.91382)[13]. As expected by sym-

metry arguments, also these results for the second-order re-

where we also take into account the uncertainty in our estigime of thex=0 variant of the model are in accord with the
mate of 3., this error is estimated by repeating the fit at XY model universality class.
Bt AB. and indicated by the number in square brackets. In a second set of simulations we explored the two-
Here we find a slight dependence of this value on the lowedlimensional o-x parameter space of the generalized
bound of the fit rangd Ly, 48]; i.e., one would have to Ginzburg-Landau model in the orthogonal direction by per-
include larger lattices for a high-precision estimate of theforming simulations at fixedr values and« varying from
critical exponent ratioy/ v, but this was not our objective k=0 to 1. For the most values we concentrated on the
here. Still, these results are in good agreement with recenfrossover region between first- and second-order phase tran-
high-precision estimates in the literatt#é°and clearly con-  sitions when varyingc. For two selected values=0.25 and
firm the expected second-order nature of the phase transitiaf=1.5, we studied th& dependence more systematically by
in the standard complep¢|* model, governed bXY model  simulating all values fronk=0 to 1 in steps of 0.1. In addi-
critical exponents. tion we performed two further runs in the crossover regime

A similar set of simulations for=0.25 at3.=0.92844)  at k=0.85 and 0.95 forr=0.25 as well as ak=0.15 and
for lattice sizesL=4, 8, 12, 14, 16, 20, 24, 28, 32, and 40 «=0.25 for 0=1.5. In Fig. 9 we show the resulting mean-
gave the exponent estimatesyt/1.4989), »=0.6684), and  square amplitudes for all simulated values«adt 0=0.25 as
v/v=1.91871)[8], which are less accurate but again com-a function of the temperature, indicating again that for small
patible with theXY model universality class. At any rate « the transitions are first-order like while for closer to
these results definitely rule out the possibility of a first-orderunity the expected second-order transitions emerge. From
phase transition in the standard model at smalvalues. Fig. 9 we read off that forr=0.25 the crossover between the
When going to even smaller values, the FSS analysis is two types of phase transitions happens aroufid=0.25
more and more severely hampered by the vicinity of the=0.8, and the analogous analysis fer1.5 yields (o
Gaussian fixed point which induces strong crossover scaling1.5=0.2. The resulting transition lines for these two
effects. Since consequently very large system sizes would bglues are plotted in Fig. 10, where the thick lines indicate
required to see the true, asymptofi<Y-model-like critical  again first-order phase transitions.
behavior we have not further pursued our attempts in this Finally, by combining all numerical evidences collected
direction. Here we only add the remark that t6¥0.01 the  so far with additional data not described here in detail, we
energy and magnetization distributions exhibit a clear singlefind the phase structure in the « plane depicted in Fig. 11.
peak structure for all considered lattice sizes up.t20,  All points in the lower left corner for smalt and smallx
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FIG. 12. Energy densitg, mean-square amplitud@/|?), helicity modulusl,,, and vortex densityv) of the two-dimensional model on
107, 2%, and 48 square lattices forr=1 andx=0 (left) andx=1 (right), respectively. The straight line in the, plots indicates the universal
KT jump I',=(2/m)T at T=T, which clearly is only compatible with the data for the standard model wAtfi.
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exhibit temperature-driven first-order phase transition wherhandau model as suggested by approximate variational
the temperature is varied, while all points in the upper rightcalculation$ cannot be confirmed by our numerical simula-
corner display a continuous transition of t& model type. tions down to very small values of the parameterOur
This means in particular that for the standard model parameesults suggest, however, that a generalized Ginzburg-
eterized byx=1 this is always true. Quantitatively th¢y ~ Landau model can be tuned to undergo first-order transitions
model is reached for alk values in the limiting caser by a mechanism similar to that discussed in Ref. 15 when
— 00, varying the parametet of an additionalX In R, term in the
generalized Hamiltonia8). As in Ref. 15 this can be un-

B. Two dimensions derstood by a duality argument. Fo0«<1 the extra term

reduces the ratio of core energies of vortex lines of vorticity

We conclude the paper with a few very brief remarks ont th f vorticit d this leads to th
the two-dimensional generalized model where the Kosterlitz VO VErsus tnose ot vorticity one, and this iéads 1o the same

Thouless nature of the standax model transition would YP€ Of transition ag.observed in defect melting of crystals.
require more care for a precise study. Here we only report The phase transitions of the standar_d model as well as the
results of some runs at=1 for 1%, 20% and 46 square continuous transitions of the generalized model are con-
lattices. As the main result, we find that the standard obser\f-Irmed to be gove_rned k_)y the critical exponents of Xié
ablese, (|¢f2), T, and(v) exhibit qualitatively the same pat- model or O(2) universality class, as 'expected by general
tern as in three dimensions. This is demonstrated in Fig. 1ymmetry arguments. For the genera_llzed quel. I WOUI.d be
where again the two casas-0 andx=1 are compared. For Interesting to analyze in more detail the tricritical points
k=0, the data are indicative of a first-order transition aroun eparating the regions with first- and second-order phase

T~0.2 while the behavior of the standard model with ransitions. Such a study, however, is quite a challenging

=1 is consistent with the expected Kosterlitz-Thouless tranprOJeCt and henc'e left for the future. . .
Exploratory simulations of the two-dimensional case,

sition aroundT=0.4. Note in particular thafonly) the data - .
for k=1 are compatible with the expected universal jump Ofwhere the _standard mogje! exhibits K(_)sterlltz-ThpuIess tran-
sitions, indicate that a similar mechanism can drive the tran-

the _heI|c_|ty T“Od“'us afle, F”?(Z/W)T’ indicated _by th(_a sition of the generalized model to first order also there.
straight line in the corresponding plots. A careful investiga-

tion of the first-order transitions in the generalized model ACKNOWLEDGMENTS
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