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We employ Monte Carlo simulations to study a generalized three-dimensional complexucu4 theory of
Ginzburg-Landau form and compare our numerical results with a recent quasianalytical mean-field-type ap-
proximation, which predicts first-order phase transitions in parts of the phase diagram. As we have shown
earlier, this approximation does not apply to the standard formulation of the model. This motivated us to
introduce a generalized Hamiltonian with an additional fugacity term controlling implicitly the vortex density.
With this modification we find that the complexucu4 theory can, in fact, be tuned to undergo strong first-order
phase transitions. The standard model is confirmed to exhibit continuous transitions which can be characterized
by XY model exponents, as expected by universality arguments. A few remarks on the two-dimensional case
are also made.
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I. INTRODUCTION

For a long time the Ginzburg-Landau model has been
considered as paradigm for studying critical phenomena us-
ing field-theoretic techniques.1 Perturbative calculations of
critical exponents and amplitude ratios of the Isingsn=1d,
XY sn=2d, Heisenbergsn=3d, and otherOsnd spin models
relied heavily on this field-theoretic formulation.2 Even
though the spin models contain only directional fluctuations,
while for n-component Ginzburg-Landau fields withnù2
directional and size fluctuations seem to be equally impor-
tant, the two descriptions are completely equivalent, as is
expected through the concept of universality and has been
proved explicitly for superfluids withn=2, where the spin
model reduces to anXY model.3 Therefore it appeared as a
surprise when, on the basis of an approximate variational
approach to the two-component Ginzburg-Landau model,
Curty and Beck4 recently predicted for certain parameter
ranges the possibility of first-order phase transitions induced
by phase fluctuations. In several papers5–9 this
quasianalytical10 prediction was tested by Monte Carlo simu-
lations and, as the main result, apparently confirmed numeri-
cally. If true, these findings would have an enormous impact
on the theoretical description of many related systems such
as superfluid helium, superconductors, certain liquid crystals,
and possibly even the electroweak standard model of el-
ementary particle physics.11,12

In view of these potential important implications for a
broad variety of different fields we performed independent
Monte Carlo simulations of the standard Ginzburg-Landau
model in two and three dimensions in order to test whether
the claim of phase-fluctuation-induced first-order transitions
is a real effect or not.13 Our results clearly support the pre-
vailing opinion that the nature of the transition is of second
order. In turn this implies, of course, that the variational ap-
proximation employed in Ref. 4 is less reliable than origi-
nally thought in view of the apparent numerical confirma-
tions. In order to shed some light on the numerical results of
Refs. 5–9, we generalized the standard model by adding a
fugacity term which implicitly controls the vortex density of

the model. The purpose of this paper is to present for this
generalized Ginzburg-Landau model results on its phase
structure as obtained from extensive Monte Carlo simula-
tions. Employing finite-size scaling analyses we find numeri-
cal evidence that, by tuning the extra fugacity parameter, it is
indeed possible to drive the system into a region with first-
order phase transitions.

The layout of the remainder of this paper is organized as
follows. In Sec. II we first recall the standard model and then
discuss its generalization and the observables used to map
out the phase diagram. Next we describe the employed simu-
lation techniques in Sec. III. The results of our simulations
are presented in Sec. IV, where we first discuss the three-
dimensional case in some detail and then add a few brief
comments on the two-dimensional model to complete the
physical picture. Finally, in Sec. V we conclude with a sum-
mary of our main findings.

II. MODEL AND OBSERVABLES

The standard complex or two-component Ginzburg-
Landau theory is defined by the Hamiltonian

Hfcg =E ddrFaucu2 +
b

2
ucu4 +

g

2
u ¹ cu2G, g . 0, s1d

wherecsrWd=cxsrWd+ icysrWd= ucsrWdueifsrWd is a complex field and
a, b, andg are temperature-independent coefficients derived
from a microscopic model. In order to carry out Monte Carlo
simulations we put the models1d on ad-dimensional hyper-
cubic lattice with spacinga. Adopting the notation of Ref. 4,

we introduce scaled variablesc̃=c /Îsuau /bd and uW =rW /j,
wherej=Îg / uau is the mean-field correlation length at zero
temperature. This leads to the normalized lattice Hamiltonian

Hfc̃g = kBṼ0o
n=1

N F s̃

2
suc̃nu2 − 1d2 +

1

2o
m=1

d

uc̃n − c̃n+mu2G ,

s2d

with
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Ṽ0 =
1

kB

uau
b

gad−2, s̃ =
a2

j2 , s3d

wherem denotes the unit vectors along thed coordinate axes,
N=Ld is the total number of sites, and an unimportant con-

stant term has been removed. The parameterṼ0 merely sets
the temperature scale and can thus be absorbed in the defi-

nition of the reduced temperatureT̃=T/ Ṽ0.
After these rescalings and omitting the tilde onc, s, and

T for notational simplicity in the rest of the paper, the parti-
tion functionZ considered in the simulations is then given by

Z =E DcDc̄e−H/T, s4d

where

Hfcg = o
n=1

N Fs

2
sucnu2 − 1d2 +

1

2o
m=1

d

ucn − cn+mu2G s5d

and eDcDc̄;eD RecD Im c is short for integrating over
all possible complex field configurations.

In Ref. 13 we have shown that the disagreement men-
tioned above is caused by an incorrect sampling of the Jaco-
bian which emerges from the complex measure in Eq.s4d
when transforming the field representation to polar coordi-
nates,cn=Rn(cossfnd ,sinsfnd). When updating in the simu-
lations the modulusRn= ucnu and the anglefn, one has to
rewrite the measure of the partition functions4d as

Z =E
0

2p

DfE
0

`

RDRe−H/T, s6d

whereDR;pn=1
N dRn andR;pn=1

N Rn is the Jacobian of this
transformation. While mathematically indeed trivialsand of
course properly taken into account in Ref. 4d, this fact may
easily be overlooked when coding the update proposals for
the modulus and angle in a Monte Carlo simulation program.
While for the angles it is correct to use update proposals of
the form fn→fn+df with −DfødføDf swhere Df is
chosen such as to assure an optimal acceptance ratiod, a simi-
lar procedure for the modulus,Rn→Rn+dR with −DRødR
øDR, would be incorrect since this ignores theRn factor
coming from the Jacobian. In fact, if we purposely ignore the
Jacobian and simulate the models6d serroneouslyd without
the R factor, then we obtain a completely different behavior
than in the correct case; cf., e.g., Fig. 2 below. As already
mentioned above these results reproduce14 those in Refs. 5
and 9, and from this data one would indeed conclude evi-
dence for a first-order phase transition whens is small. With
the correct measure, on the other hand, we have checked that
no first-order signal shows up down tos=0.01.

To treat the measure in Eq.s6d properly one can either use
the identity RndRn=dRn

2/2 and update the squared moduli
Rn

2= ucnu2 according to a uniform measureswhere the update
proposalRn

2→Rn
2+d with −DødøD is correctd or one can

introduce an effective Hamiltonian,

Heff = H − Tko
n=1

N

ln Rn, s7d

with k;1, and work directly with a uniform measure forRn.
The incorrect omission of theR factor in Eq.s6d is equiva-
lent to settingk=0. It is well known11 that the nodesRn=0
correspond to core regions of vortices in the dual formulation
of the model. The Jacobian factorR sor equivalently the term
−o ln Rn in Heffd tends to suppress field configurations with
many nodesRn=0. If the R factor is omitted, the number of
nodes and hence vortices is relatively enhanced. It is thus at
least qualitatively plausible that in this case a discontinuous,
first-order “freezing transition” from a vortex dominated
phase can occur, as is suggested by a similar mechanism for
the XY model11,15,16and defect models of melting.17,18

In the limit of a large parameters, it is easy to read off
from Eq. s5d that the modulus of the field is squeezed onto
unity and once hence expects that irrespectively of the value
of k the XY model limit is approached with its well-known
continuous phase transition in three dimensionss3Dd at Tc
<2.2 and the Kosterlitz-ThoulesssKTd transition in two di-
mensionss2Dd at TKT <0.9, respectively. While for the stan-
dard model withk=1 this behavior should qualitatively per-
sist for all values ofs, from the numerical results discussed
above one expects that fork=0 the order of the transition
turns first order below a certainstricriticald s value. The
purpose of this paper is to elucidate this behavior further by
studying the phase diagram in thes-k plane—i.e., by con-
sidering an interpolating model withk varying continuously
between 0 and 1.

To be precise we always worked with the proper func-
tional measure in Eq.s6d and replaced the standard Hamil-
tonianH by

Hgen= H + Ts1 − kdo
n=1

N

ln Rn = H + Tdo
n=1

N

lnucnu, s8d

where we have introduced the parameterd=1−k, such that
d=0 sk=1d corresponds to the standard model andd=1 sk
=0d to the previously studied modified model with its first-
order phase transition for small enoughs.

In order to map out the phase diagram in thes-k and
s-d plane, respectively, we have measured in our simulations
to be described in detail in the next section among other
quantities the energy densitye=kHl /N, the specific heat per
site cv=skH2l−kHl2d /N, and in particular the mean-square
amplitude

kucu2l =
1

N
o
n=1

N

kucnu2l, s9d

which will serve as the most relevant quantity for compari-
son with previous work.4–9 For further comparison and in
order to determine the critical temperature, the helicity
modulus
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Gm =
1

NKo
n=1

N

ucnuucn+mucossfn − fn+mdL
−

1

NTKFo
n=1

N

ucnuucn+musinsfn − fn+mdG2L s10d

was also computed. Notice that the helicity modulusGm is a
direct measure of the phase correlations in the direction ofm.
Because of cubic symmetry, all directionsm are equivalent
and we always quote the averageG=s1/ddom=1

d Gm. In the
infinite-volume limit, G is zero aboveTc and different from
zero belowTc. We also have measured the vortex densityv
sof vortex points in 2D and vortex lines in 3Dd. The standard
procedure to calculate the vorticity on each plaquette is by
considering the quantity

m=
1

2p
sff1 − f2g2p + ff2 − f3g2p

+ ff3 − f4g2p + ff4 − f1g2pd, s11d

wheref1, . . . ,f4 are the phases at the corners of a plaquette
labeled, say, according to the right-hand rule andfag2p

stands fora modulo 2p: fag2p=a+2pn, with n an integer
such thata+2pnP s−p ,pg, hencem=n12+n23+n34+n41. If
mÞ0, there exists a vortex which is assigned to the object
dual to the given plaquettesa site in 2D and a link in 3Dd.
Hence, in two dimensions,pm, the dual ofm, is assigned to
the center of the original plaquette. In three dimensions, the
topological point charges are replaced bysorientedd line ele-
mentspl i which combine to form closed networkss“vortex
loops”d. The vortex “charges”pm or pl i can take three val-
ues: 0, ±1sthe values ±2 have a negligible probabilityd. The
quantities

v =
1

L2o
x

u p mxu s2Dd, s12d

v =
1

L3o
x,i

u p l i,xu s3Dd s13d

serve as a measure of the vortex density. We further analyzed
the Binder cumulant

U =
ksmW 2d2l
kmW 2l2 , s14d

wheremW =smx,myd with

mx =
1

N
o
n=1

N

Rescnd, my =
1

N
o
n=1

N

Imscnd, s15d

is the magnetization per lattice site of a given configuration.

III. SIMULATION TECHNIQUES

Let us now turn to the description of the Monte Carlo
update procedures used by us. To be on safe grounds, we
started with the most straightforwardsbut most inefficientd
algorithm known since the early days of Monte Carlo simu-

lations: The standard Metropolis algorithm.19 Here the com-
plex field cn is decomposed into its Cartesian components,
cn=cx,n+ icy,n. For each lattice site a random update pro-
posal for the two components is made, e.g.,cx,n→cx,n
+dcx,n with dcx,nP f−D ,Dg, and in the standard fashion ac-
cepted or rejected according to the energy changedHgen. The
parameterD is usually chosen such as to give an acceptance
rate of about 50%, but other choices are permissible and may
even result in a better performance of the algorithmsin terms
of autocorrelation timesd. All this is standard20 and guaran-
tees in a straightforward manner that the complex measure

DcDc̄ in the partition functions4d is treated properly.
The well-known drawback of this algorithm is its critical

slowing downslarge autocorrelation timesd in the vicinity of
a continuous phase transition,20 leading to large statistical
errors for a fixed computer budget. To improve the accuracy
of our data we therefore employed the single-cluster
algorithm21 to update the direction of the field,22 similar to
simulations of theXY spin model.23 The modulus ofc is
updated again with a Metropolis algorithm. Here some care
is necessary to treat the measure in Eq.s4d properly ssee
above commentsd. Per measurement we performed one
sweep with the Metropolis algorithm andn single-cluster
updates. For all simulations in two and three dimensions the
number of cluster updates was chosen such thatnkuCul<Ld

;N, where kuCul is the average cluster size. SincekuCul
scales with system size as the susceptibility,x=NkmW 2l
.Lg/n, andg /n=2−h=7/4 at theKosterlitz-Thouless tran-
sition in 2D andg /n=2−h<2 in 3D,n was chosen~L1/4 in
2D and~L in 3D. In the 2D case most of the simulations
were performed forL=10, 20, and 40, and in 3D we usually
studied the lattice sizesL=10, 15, 20, and 30. For each simu-
lation point we thermalized with 500–1000 sweeps and av-
eraged the measurements over 10 000 sweeps. In the cases of
strong first-order phase transitions we employed a variant of
the multicanonical scheme24 where the histogram of the
mean modulus is flattened instead that of the energy. All
error bars are computed with the Jackknife method.25 In the
following we only show the more extensive and accurate
data set of the cluster simulations, but we tested in many

FIG. 1. Mean-square amplitude of the standard three-
dimensional complex Ginzburg-Landau model withk=1 and s
=0.25 on a 103 cubic lattice.
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representative cases that the Metropolis simulations coincide
within error bars; for an example, see Fig. 1.

IV. RESULTS

A. Three dimensions

In the first set of simulations we concentrated on the two
most characteristic casesk=0 andk=1 and performed tem-
perature scans on a 153 lattice for various values of the pa-
rameters. Our results for the mean-square amplitude, the
helicity modulus, and the vortex-line density are compared
for the two cases in Fig. 2. In the plots fork=0 on the left
side, we see that all three quantities exhibit quite pronounced

jumps for smalls values, which is a clear indication that in
this regime the phase transition is of first order. Ats=0.25,
for example, we observe already on very small lattices a
clear double-peak structure for the distributions of the energy
and mean-square amplitude as well as the mean modulus
ucu=s1/Ndon=1

N ucnu which is depicted in Fig. 3. Notice that
already for the extremely small lattice size of 43 the mini-
mum between the two peaks is suppressed by more than 20
orders of magnitude. This is an unambiguous indication for
two coexisting phases and thus clearly implies that the model
undergoes a first-order phase transition in the small-s regime
for k=0. Due to the pronounced metastability, these simula-
tions had to be performed with a variant of the multicanoni-

FIG. 2. Mean-square amplitudekucu2l, helicity modulusGm, and vortex-line densitykvl of the three-dimensional generalized complex
Ginzburg-Landau model on a 153 cubic lattice for different values of the parameters=0.25, . . . ,3.0 for the casek=0 sleftd and the standard
formulation withk=1 srightd.
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cal scheme24 where, instead of flattening the energy histo-
gram, extra weight factors for the mean modulus were
introduced. With this simulation technique we overcome the
difficulty of sampling the extremely rare events between the
two peaks of the canonical distribution. A closer look at the
k=0 plots shows that the crossover from second- to first-
order transitions happens aroundst<2.5. For the standard
model with k=1, on the other hand, we observe forall s
values a smooth behavior, suggesting that theXY-model-like
continuous transition persists also for smalls values. This is
clearly supported by a single-peak structure of all distribu-
tions just mentioned; for the case of the mean modulus, see
Fig. 3. This supports the prevailing opinion that the standard
complexucu4 model always undergoes a second-order phase
transition. In fact, we have checked that down tos
=0.01no signal of a first-order transition can be detected for
the standard model parametrized byk=1. The resulting tran-
sition lines in thes-T plane fork=0 andk=1 are sketched
in Fig. 4, with the thick line fork=0 indicating the approxi-
mate regime of first-order phase transitions.

Next we concentrated on the smalls regime and per-
formed a rough finite-size scalingsFSSd analysis for s
=0.25 on moderately large 103, 153, 203, and 303 lattices. In
Fig. 5 we compare results for the energy, mean-square am-
plitude s9d, helicity moduluss10d, and vortex-line density

s13d for k=0 and k=1. Apart from the transition region
where a strong size dependence is of course expected, we
notice only a small dependence on the variation of the lattice
size. On the basis of these results, we do not expect a sig-
nificant change of the qualitative behavior for much larger
lattices and hence used similar moderate lattice sizes for
most of our further investigations.

To exemplify the big differences between the models with
k=0 andk=1, we choose in the following the cases=1.5,
where we shall characterize for bothk values the phase tran-
sitions in some detail. Let us start with the nonstandard case
k=0, where the first-order phase transition aroundT<0.36
is also pronounced but much less strong than fors=0.25.
Still, in order to get sufficiently accurate equilibrium results,
the simulations for lattices of sizeL=4, 6, 8, 10, 12, 14, 15,
and 16 had to be performed again with our modulus variant
of the multicanonical method. As can be inspected in the
histogram plots for the mean modulus shown in Fig. 6, the
frequency of the rare events between the two peaks in the
canonical ensemble for a 163 lattice is about 50 orders of
magnitude smaller than for configurations contributing to the
two peaks.

In order to characterize the transition more quantitatively
we estimated the interface tension26

FL
s =

1

2Ld−1 ln
PL

max

PL
min , s16d

wherePL
max is the value of the two peaks andPL

min denotes
the minimum in between. Here we have assumed that for
each lattice size the temperature was chosen such that the
two peaks are of equal height which can be achieved by
histogram reweighting. The thus defined temperatures ap-
proach the infinite-volume transition temperature as 1/Ld,
and for the final estimate ofFs=limL→`FL

s, we performed a
fit according to27

FL
s = Fs +

a

Ld−1 +
b lnsLd
Ld−1 . s17d

As is shown in Fig. 6, the finite-lattice estimatesFL
s are

clearly nonzero. The infinite-volume extrapolations17d tends

FIG. 3. Top: histogram of the mean modulusucu on a logarith-
mic scale for a 43 cubic lattice,k=0 ands=0.25, reweighted to the
temperatureT0<0.0572 where the two peaks are of equal height.
Bottom: histogram for the same quantity and lattice size atT=1.1
close to the second-order phase transition fork=1 ands=0.25.

FIG. 4. Transition lines in thes-T plane fork=0 andk=1. The
thick line for k=0 indicates first-order phase transitions while all
other transitions are continuous.
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to increase with system size and yields a comparably large
interface tension ofFs=0.271s5d.

Let us now turn to the second generic casek=1, where
the model definitely exhibits fors=1.5 a second-order phase

transition aroundb;1/T<0.8. To confirm the expected
critical exponents of theOs2d or XY model universality class,
we simulated here close to criticality somewhat larger lat-
tices of sizeL=4, 8, 12, 16, 20, 24, 32, 40, and 48 and

FIG. 5. Energy densitye, mean-square amplitudekucu2l, helicity modulusGm, and vortex-line densitykvl on 103, 153, 203, and 303 cubic
lattices fors=0.25 andk=0 sleftd andk=1 srightd, respectively.
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performed a standard FSS analysis. From short runs we first
estimated the location of the phase transition to be atb0
=0.7795<bc. In the long runs atb0 we recorded the time
series of the energy densitye=E/N, the magnetizationmW , the
mean modulusucu, and the mean-square amplitude28 ucu2, as
well as the helicity modulusGm and the vorticityv. After an

initial equilibration time we took about 1 000 000 measure-
ments for each lattice size. Applying the reweighting tech-
nique we first determined the maxima of the susceptibility,
x8=NskmW 2l−kumW ul2d, of dkumW ul /db, and of the logarithmic de-
rivatives d lnkumW ul /db and d lnkmW 2l /db. The locations of
these maxima provide us with four sequences of pseudo-
transition pointsbmaxsLd for which the scaling variablex
=sbmaxsLd−bcdL1/n should be constant. Using this fact we
then have several possibilities to extract the critical exponent
n from slineard least-squares fits of the FSS ansatzdUL /db
>L1/nf0sxd or d lnkumW upl /db>L1/nfpsxd to the data at the
variousbmaxsLd sequences. The quality of our data and the
fits starting atLmin=8, with goodness-of-fit parametersQ
=0.85–0.90, can be inspected in Fig. 7. All resulting expo-
nent estimates and consequently also their weighted average,

1/n = 1.493s7d, n = 0.670s3d, s18d

are in perfect agreement with recent high-precision Monte
Carlo estimates for theXY model universality class.22,29Note
that hyperscaling impliesa=2−3n=−0.010s9d, which also
favorably compares with recent spacelab experiments on the
l transition in liquid helium.30

FIG. 6. Top: histogram of the mean modulusucu for k=0 and
s=1.5 on a logarithmic scale for various lattice sizes ranging from
L=4 stop curved to L=16 sbottom curved, reweighted to tempera-
tures where the two peaks are of equal height. Bottom: FSS ex-
trapolation for Lù6 of the interface tensionFL

s, yielding the
infinite-volume limit Fs=0.271s5d.

FIG. 7. Least-squares fits fork=1 ands=1.5 on a log-log scale,
using the FSS ansatzdfsmd /db~L1/n at the maxima locations. The
fits using the data forLù8 lead to an overall critical exponent
1/n=1.493s7d or n=0.670s3d.

FIG. 9. Thek dependence of the mean-square amplitudekucu2l
as a function of temperature on a 153 lattice for s=0.25.

FIG. 8. Log-log plot of the FSS of the susceptibility fork=1
ands=1.5 atb=0.780 08<bc. The line shows the three-parameter
fit a+bLg/n, yielding for Lù16 the estimateg /n=1.962s12d.

NATURE OF PHASE TRANSITIONS IN A… PHYSICAL REVIEW B 71, 024512s2005d

024512-7



Assuming thus 1/n=1.493 we can improve our estimate
for bc from linear least-squares fits to the scaling behavior of
the variousbmax sequences. The combined estimate from the
four sequences isbc=0.780 08s4d. To extract the critical ex-
ponent ratiog /n we can now use the scaling relation for the
susceptibilityx=NkmW 2l.a+bLg/n at bc. For Lù16 we ob-
tain from the FSS fit withQ=0.70 shown in Fig. 8 the esti-
mate of

g/n = 1.962s12df9g, s19d

where we also take into account the uncertainty in our esti-
mate of bc; this error is estimated by repeating the fit at
bc±Dbc and indicated by the number in square brackets.
Here we find a slight dependence of this value on the lower
bound of the fit rangefLmin,48g; i.e., one would have to
include larger lattices for a high-precision estimate of the
critical exponent ratiog /n, but this was not our objective
here. Still, these results are in good agreement with recent
high-precision estimates in the literature22,29and clearly con-
firm the expected second-order nature of the phase transition
in the standard complexucu4 model, governed byXY model
critical exponents.

A similar set of simulations fors=0.25 atbc=0.9284s4d
for lattice sizesL=4, 8, 12, 14, 16, 20, 24, 28, 32, and 40
gave the exponent estimates 1/n=1.498s9d, n=0.668s4d, and
g /n=1.918s71df8g, which are less accurate but again com-
patible with theXY model universality class. At any rate
these results definitely rule out the possibility of a first-order
phase transition in the standard model at smalls values.
When going to even smallers values, the FSS analysis is
more and more severely hampered by the vicinity of the
Gaussian fixed point which induces strong crossover scaling
effects. Since consequently very large system sizes would be
required to see the true, asymptoticsXY-model-liked critical
behavior we have not further pursued our attempts in this
direction. Here we only add the remark that fors=0.01 the
energy and magnetization distributions exhibit a clear single-
peak structure for all considered lattice sizes up toL=20,

showing that in the standard model withk=1 a phase-
fluctuation induced first-order phase transition is very un-
likely even for very smalls values.

We also checked the critical behavior along the line of
second-order transitions fork=0. Specifically, ats=5—i.e.,
sufficiently far away from the crossover to first-order transi-
tions at st<2.5—we obtained from FSS fits to data at
bc=0.97253s4d for lattices of sizeL=4, 8, 12, 16, 20,
24, 28, 32, and 40 the exponent estimates 1/n=1.489s7d,
n=0.671s3d, and g /n=1.913s82df13g. As expected by sym-
metry arguments, also these results for the second-order re-
gime of thek=0 variant of the model are in accord with the
XY model universality class.

In a second set of simulations we explored the two-
dimensional s-k parameter space of the generalized
Ginzburg-Landau model in the orthogonal direction by per-
forming simulations at fixeds values andk varying from
k=0 to 1. For the mosts values we concentrated on the
crossover region between first- and second-order phase tran-
sitions when varyingk. For two selected valuess=0.25 and
s=1.5, we studied thek dependence more systematically by
simulating all values fromk=0 to 1 in steps of 0.1. In addi-
tion we performed two further runs in the crossover regime
at k=0.85 and 0.95 fors=0.25 as well as atk=0.15 and
k=0.25 for s=1.5. In Fig. 9 we show the resulting mean-
square amplitudes for all simulated values ofk at s=0.25 as
a function of the temperature, indicating again that for small
k the transitions are first-order like while fork closer to
unity the expected second-order transitions emerge. From
Fig. 9 we read off that fors=0.25 the crossover between the
two types of phase transitions happens aroundktss=0.25d
<0.8, and the analogous analysis fors=1.5 yields ktss
=1.5d<0.2. The resulting transition lines for these twos
values are plotted in Fig. 10, where the thick lines indicate
again first-order phase transitions.

Finally, by combining all numerical evidences collected
so far with additional data not described here in detail, we
find the phase structure in thes-k plane depicted in Fig. 11.
All points in the lower left corner for smalls and smallk

FIG. 10. Phase diagram in thek-T plane of the three-
dimensional generalized complex Ginzburg-Landau model fors
=0.25 ands=1.5. The transitions along the thick line fork,kt are
of first order, and the transitions fork.kt are of second order. The
points labeledkt at the intersection of these two regimes are
tricritical points.

FIG. 11. Phase structure in thes-k plane of the generalized
complex Ginzburg-Landau model in three dimensions, separating
regions with first- and second-order phase transitions, respectively,
when the temperature is varied. All continuous transitions fall into
the universality class of theXY model which is approached for all
k-values in the limits→`.
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FIG. 12. Energy densitye, mean-square amplitudekucu2l, helicity modulusGm, and vortex densitykvl of the two-dimensional model on
102, 202, and 402 square lattices fors=1 andk=0 sleftd andk=1 srightd, respectively. The straight line in theGm plots indicates the universal
KT jump Gm=s2/pdT at T=Tc, which clearly is only compatible with the data for the standard model withk=1.
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exhibit temperature-driven first-order phase transition when
the temperature is varied, while all points in the upper right
corner display a continuous transition of theXY model type.
This means in particular that for the standard model param-
eterized byk=1 this is always true. Quantitatively theXY
model is reached for allk values in the limiting cases
→`.

B. Two dimensions

We conclude the paper with a few very brief remarks on
the two-dimensional generalized model where the Kosterlitz-
Thouless nature of the standardXY model transition would
require more care for a precise study. Here we only report
results of some runs ats=1 for 102, 202, and 402 square
lattices. As the main result, we find that the standard observ-
ablese, kucu2l, G, andkvl exhibit qualitatively the same pat-
tern as in three dimensions. This is demonstrated in Fig. 12
where again the two casesk=0 andk=1 are compared. For
k=0, the data are indicative of a first-order transition around
T<0.2, while the behavior of the standard model withk
=1 is consistent with the expected Kosterlitz-Thouless tran-
sition aroundT<0.4. Note in particular thatsonlyd the data
for k=1 are compatible with the expected universal jump of
the helicity modulus atTc, Gn=s2/pdT, indicated by the
straight line in the corresponding plots. A careful investiga-
tion of the first-order transitions in the generalized model
with k=0 will be reported elsewhere.

V. SUMMARY

The possibility of a phase-fluctuation-induced first-order
phase transition in the standard three-dimensional Ginzburg-

Landau model as suggested by approximate variational
calculations4 cannot be confirmed by our numerical simula-
tions down to very small values of the parameters. Our
results suggest, however, that a generalized Ginzburg-
Landau model can be tuned to undergo first-order transitions
by a mechanism similar to that discussed in Ref. 15 when
varying the parameterk of an additionalo ln Rn term in the
generalized Hamiltonians8d. As in Ref. 15 this can be un-
derstood by a duality argument. For 0øk,1 the extra term
reduces the ratio of core energies of vortex lines of vorticity
two versus those of vorticity one, and this leads to the same
type of transition as observed in defect melting of crystals.

The phase transitions of the standard model as well as the
continuous transitions of the generalized model are con-
firmed to be governed by the critical exponents of theXY
model or Os2d universality class, as expected by general
symmetry arguments. For the generalized model it would be
interesting to analyze in more detail the tricritical points
separating the regions with first- and second-order phase
transitions. Such a study, however, is quite a challenging
project and hence left for the future.

Exploratory simulations of the two-dimensional case,
where the standard model exhibits Kosterlitz-Thouless tran-
sitions, indicate that a similar mechanism can drive the tran-
sition of the generalized model to first order also there.

ACKNOWLEDGMENTS

E.B. thanks the EU network HPRN-CT-1999-00161 EU-
ROGRID, “Geometry and Disorder: from membranes to
quantum gravity,” for a grant. Partial support by the German-
Israel-FoundationsGIFd under Contract No. I-653-181.14/
1999 is also gratefully acknowledged.

1J. Zinn-Justin,Quantum Field Theory and Critical Phenomena,
3rd ed.sClarendon Press, Oxford, 1996d.

2H. Kleinert and V. Schulte-Frohlinde,Critical Properties of
F4-TheoriessWorld Scientific, Singapore, 2001d.

3H. Kleinert, Phys. Rev. Lett.84, 286 s2000d.
4P. Curty and H. Beck, Phys. Rev. Lett.85, 796 s2000d.
5P. Curty and H. Beck, cond-mat/0010084sunpublishedd.
6H. Fort, hep-th/0010070sunpublishedd.
7G. Alvarez and H. Fort, Phys. Rev. B63, 132504s2001d.
8G. Alvarez and H. Fort, Phys. Lett. A282, 399 s2001d.
9G. Alvarez and H. Fort, Phys. Rev. B64, 092506s2001d.

10The method of Ref. 4 usesXY model data as input.
11H. Kleinert,Gauge Fields in Condensed MattersWorld Scientific,

Singapore, 1989d, Vol. I.
12V. M. Loktev, R. M. Quick, and S. G. Sharapov, Phys. Rep.349,

1 s2001d.
13E. Bittner and W. Janke, Phys. Rev. Lett.89, 130201s2002d.
14There is another difference between our update and the update

described in the Refs. 5 and 9: namely, that we donot restrict the
modulus of the field to a finite interval. This can cause further
systematic deviations but we explicitly checked that this is un-
important for the main point here.

15W. Janke and H. Kleinert, Nucl. Phys. B270, 399 s1986d.

16P. Minnhagen and M. Wallin, Phys. Rev. B36, 5620 s1987d;
G.-M. Zhang, H. Chen, and X. Wu,ibid. 48, 12 304s1993d; D.
Yu. Irz, V. N. Ryzhov, and E. E. Tareyeva,ibid. 54, 3051
s1996d.

17H. Kleinert,Gauge Fields in Condensed MattersWorld Scientific,
Singapore, 1989d, Vol. II.

18W. Janke, Int. J. Theor. Phys.29, 1251s1990d.
19N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,

and E. Teller, J. Chem. Phys.21, 1087s1953d.
20W. Janke, Math. Comput. Simul.47, 329 s1998d; in Computa-

tional Physics: Selected Methods—Simple Exercises—Serious
Applications, edited by K. H. Hoffmann and M. Schreiber
sSpringer, Berlin, 1996d, pp. 10–43.

21U. Wolff, Phys. Rev. Lett.62, 361 s1989d; Nucl. Phys. B 322,
759 s1989d.

22M. Hasenbusch and T. Török, J. Phys. A32, 6361s1999d.
23W. Janke, Phys. Lett. A148, 306 s1990d.
24B. A. Berg and T. Neuhaus, Phys. Lett. B267, 249s1991d; Phys.

Rev. Lett. 68, 9 s1992d.
25B. Efron, The Jackknife, the Bootstrap and Other Resampling

PlanssSociety for Industrial and Applied MathematicsfSIAMg,
Philadelphia, 1982d.

26W. Janke, inComputer Simulations of Surfaces and Interfaces,

E. BITTNER AND W. JANKE PHYSICAL REVIEW B71, 024512s2005d

024512-10



NATO Science Series II, Mathematics, Physics and Chemistry,
Vol. 114, Proceedings of the NATO Advanced Study Institute,
Albena, Bulgaria, 2002, edited by B. Dünweg, D. P. Landau, and
A. I. Milchev sKluwer, Dordrecht, 2003d, pp. 111–135.

27U. Hansmann, B. A. Berg, and T. Neuhaus, Int. J. Mod. Phys. C
3, 1155s1992d.

28Recall that ucu;on=1
N ucnu /N and ucu2;on=1

N ucnu2/N, such that
ucu2Þ ucu2.

29M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E.
Vicari, Phys. Rev. B63, 214503s2001d.

30J. A. Lipa, J. A. Nissen, D. A. Stricker, D. R. Swanson, and T. C.
P. Chui, Phys. Rev. B68, 174518s2003d.

NATURE OF PHASE TRANSITIONS IN A… PHYSICAL REVIEW B 71, 024512s2005d

024512-11


