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Logarithmic corrections in the two-dimensional XY model
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Using two sets of high-precision Monte Carlo data for the two-dimensidMéalmodel in the Villain
formulation on square X L lattices, the scaling behavior of the susceptibijtand correlation lengtl§ at the
Kosterlitz-Thouless phase transition is analyzed with emphasis on multiplicative logarithmic corrections
(InL)~?" in the finite-size scaling region and @ in the high-temperature phase near criticality, respec-
tively. By analyzing the susceptibility at criticality on lattices of size up to %1fe obtain r=
—0.0270(10), inagreement with recent work of Kenna and Irving on the finite-size scaling of Lee-Yang
zeros in the cosine formulation of th€Y model. By studying susceptibilities and correlation lengths up to
£~140 in the high-temperature phase, however, we arrive at quite a different estimate00d560(17),
which is in good agreement with recent analyses of thermodynamic Monte Carlo data and high-temperature
series expansions of the cosine formulati®0163-18207)00305-9

I. INTRODUCTION Il. SCALING PREDICTIONS

In the Villain XY model* the Boltzmann factor of the
Ever since the seminal work of Kosterlitz and Thoulesscosine formulationBgos=11 4 jeXd Bco£09Vi0( X))], is re-

(KT) in 19732 the two-dimensional2D) XY model has placed by the periodic Gaussian
been the subject of extensive experimental, analytical, and -
numerical investigationd. Physically the interest in this B=H 2 ex
model arises from studies of layers of superconducting ma- Xi n=—w
terials and films of liquid heliuM, Josephson-junction
arrays® and some magnetic systeth§heoretically the pe-

p[—g(via—zwn)z , (1)

where B is the inverse temperature in natural units, and

culiar behavior of the KT phase transition, which is believedvhi‘g: :9( .X+it))_ 0(x) a;]e lattice graldignts. A disltlzussion Of.
to be driven by the unbinding of defect pairs, has attracted ? relation between tbe ]EWO Zar.mtéa?onlsélas v(\;elsas numeri-
much interest. Despite all these efforts, however, the detail§?' COMPANSONSs can be found in Ke1s. 14 an '

of the phase transition are not yet fully understood. The two-point correlation functiops=(cos(),sin(@)],
In a recent Monte CarlgMC) simulation study of Lee- . -
Yang partition function zeros, Kenna and Irvitfgraised G(x)=(s(x)-s(0))=(cogf(x) — 6(0))) )

again the question of logarithmic correctiéiiso the leading  is predicted to behave at the critical temperatlige- 1/3,
finite-size scalindFSS scaling behavior. If the linear lattice &

size is denoted by and the multiplicative logarithmic cor-
rections are parametrized as I(Jn?, their numerical result (Inlxl)z’[ (In(ln|x|)

isr=—0.021), while the standard KT theory would predict G)= [x|7 Injx| /|’ @

quite a different exponent af= —1/16= — 0.0625>° More- _ o
over, by reanalyzing “thermodynamic” MC data of Refs. 10 with r=—1/16 andn=1/4. For the_ power of the logarithmic
and 11 obtained on lattices with>7¢, where¢ is the cor- term we have adopted the notation of Refs. 7 and 8. In the

relation length, Patrascioiu and Selfeobtained an estimate rli%:tfnlﬁ_eratur? pf;as;eh hear critt_icality, 'f;fﬁ T/,
of r=0.077(46), and by analyzing long high-temperature se- » this impfhies for the magnetic susceptibiity,

2

> =2, G(0), (4)

ries expansions, Campostriei al® also arrived at positive

values in the range=0.042(5)-0.062), depending on the X=V< ( 2 s(x)/V

quantity considered. While the estimates of the latter two X

groups are consistent with each other, they are incompatiblg scaling behavior

with the FSS result of Kenna and Irving, which, on the other

hand, is somewhat “closer” to the theoretical prediction. X< E27(InE) "2 [ 1+ O(In(Ing)/Ing) ], (5)
All numerical estimates quoted above were obtained in

the cosine formulation of th&Y model. The purpose of this where

note is to add further evidence in one or the other direction gocexp(bt™?) 6)

by analyzing the logarithmic corrections in the Villain

formulationt* of the XY model, which is actuallysometimes is the correlation length, witiv=1/2 andb being a nonuni-

implicitly) the starting point of most if not all theoretical versal positive constant. Expressiéign terms oft, Eq. (5)

investigations. can also be written as

0163-1829/97/58)/35805)/$10.00 55 3580 © 1997 The American Physical Society



55 LOGARITHMIC CORRECTIONS IN THE TWO. .. 3581

2D XY Villain 2D XY Villain
0.06
095 | ¥
oos | B=075 o3
oy
__ 004} §§§
3 F
g W k)
B slope = 0.0112(4) R oo ¢
£ 003t 1 £ k)
. Q=089 i3 3 3
002 o 1 = 0.2388(4) 1 I3 Ol
(a) (@)
0.01 s . . 0.85
3 4 5 6 7 2 3 4 5
InL Ing
0.06
095 | slope = -0.093(15)
0.05 | =075 - Q=0.59
r=0.047(8)
— 0.04 - §A o Cos
=~ < Ny, < Villain
S slope = 0.0540(19) 090 |
£ oo03f =
Q=061
- slope = -0.1119(34)
e Q=097
002 F - r = -0.0270(10) 1
’ ) (b)  r=0.0560(17)
. . . 0.85 . : '
00, 3 14 1.6 1.8 2.0 08 1.0 1.2 14 18
In(in L) In(in &)

FIG. 1. Finite-size scaling of the susceptibility at criticality. If ~ FIG. 2. Test of the scaling relatioy=¢*~7(In9)~* in the
logarithmic corrections are neglected, the slope (@ gives range £~10---140, rewritten as Ing/é"*)=const-(1/4— 7)In¢
1/4— 5. If p=1/4 is assumed, the slope {b) yields —2r, the  —2rIn(In§). The linear behavior ifb) shows that the data are com-
exponent of the logarithmic correction. patible with »=1/4. As is already obvious frorfe), the exponent
r must then be positive, in disagreement with the theoretical pre-
Yo §27Wt2”[1+ o(t*Int)]. 7) dictionr=—1/16.

Very close toT Eq. (5) cannot hold for a finite system with fore hold the exponents=1/2 and »=1/4 fixed at their
linear sizeL<¢. Here ¢ has to be replaced by, and we theoretically predicted values and ask if any deviation of the
expect to observe a FSS behavior data from the leading scaling behavior can be explained by
the logarithmic corrections in Eq¢s) and (8).
x<L277(InL) 21+ O(n(InL)/InL)]. (8)
Ill. RESULTS

In numerical simulations it proved to be very difficult to
verify the KT scaling laws unambiguously. However, if one  In Ref. 16 we have reported high-precision MC simula-
rejects a power-law ansatz with unnaturally large exponent§ons of the Villain model1), using the single-cluster update
and large confluent correction terms, then, among the tw@lgorithm and improved estimators for the two-point corre-
alternatives, a pure power-law or the exponential KT diver-ation function. This enabled us to obtain on a 126quare
gences, the KT predictions are clearly favored. This is thdattice data for the correlation length up ge~140. Since
conclusion of most numerical studies of the cosinel>8¢ this value should be a very good approximation of the
formulation®**and, with even stronger evidence, also of thethermodynamic limit. By performing fits of to the KT pre-
Villain formulationt® considered here. In this note we shall diction (6) and ofy to Eq.(5) (without the logarithmic term
therefore not study this fundamental question again. Wavith four free parameteréthe prefactorp, », and B;) we
rather assume Eq&)—(8) to be qualitatively valid and try to  obtained 8,=0.752(5) andv=0.48(10). The estimate of
determine the exponentg v, andr. Unfortunately even this . is in very good agreement with the more precise value of
goal is far too ambitious, since a precise determination of al3;=0.7524(7) obtained in Ref. 17 from a study of the dual
three critical exponents together with tHeonuniversal discrete Gaussian modedee also Ref. J8Using the ansatz
value of 3. would require much more accurate data than ond7), i.e., including the theoretically predicted correction
can hope to generate with present day techniques. We therg-26 did not improve the quality of the fits.
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FIG. 3. Test of scaling similar to Fig. 2, but withdmeplaced by FIG. 4. Correlation length vs reduced temperature. In the range
t=T/T.—1 [cf. Eq.(6)]. £~10---140 the slope is effectively about 0.8, while asymptotically

it should approachy=0.5 according to Eq(6).

Further data of the susceptibility at criticality on lattices
with up to 512 sites showed a clear scaling behavior for mate of 7%~0.267. Notice that this effectivey is above
L=100, x<L?7, with »=0.2495=1/4 at =0.74, and  1/4, while from FSS without logarithmic corrections we
7=0.2389(6)% 1/4 at B=0.75. This is obviously not con- wouyld have extracted an effective that is smaller than
sistent with the prediction thag=1/4 at 8. Since the esti-  1/4. In Fig. 2b) we show the same data, but similar to Fig. 1
mate of B from two completely independent simulations e now again fixp=1/4 at the theoretical value and assume
agreed so well we concluded in Ref. 16 thdi3;)#1/4,in  that Eq.(5) with the logarithmic correction is valid. Since
disagreement with the KT prediction. To reconcile simula-then Ing/¢"%) = const- 2rin(Ing), we expect a straight line
tions and theory we speculated that the scaling curvexfor when Ing/¢”) is plotted against In(l§). This is indeed the
mlght still Change for much |al’ger SyStem SiZeS, but this is OEase, and from the fit over all available data po«“&th
course not very convincing. Mainly based on our negativey—0.97) we obtain
experience with theé~ Y18 correction in they(T) fits, we did
not try, however, to attribute the observed discrepancy to
logarithmic corrections. / r=0.0560+0.0017, (10

The data ap3=0.75 and a fit in the range=64 accord- . o . .
ing to In(x/L”%) = const (1/4— 5)InL is reproduced in Fig. in qualltatlve agreement with the results in Ref_s_. 12_ a_nd 13,
1(@). In Fig. 1b) we show the same data, but now fix WhICh are also derived from the approach to cr|t|cgl|ty in the
n=1/4 at the theoretical value and assume that(Bgwith high-temperature phase. The valli®) is clearly d|ffergnt
the logarithmic correction is valid. Since then ("% from Eq. (9), and is very far from'the the?retlca! eﬁtlmate
—const-2rin(InL), we expect a straight line when '~ —1/16=—0.0625. In retrospective this “explains™ why
In(x/L"") is plotted against In(ln). As is demonstrated in we d'd. not otgserve any Improvement when trying .f't$ of
Fig. 1(b) this is clearly the case. Also shown is a linear fit X_(;I/’%ﬁwnh thet" correction fixed to the theoretical prediction

which is of high statistical qualitygoodness-of-fit parameter

_ ; Wé repeated the analysis leading to the Villain model
=0.61 I . ) i : .
Q=0.61) and yields a slope of 0.0540(19), or estimate(10) also with the three data points for the cosine

r=—0.0270+0.0010 (99 model in Ref. 16(with £~21, 40, and 7Dand obtained a

compatible value ofr=0.0448). Furthermore, using the

in good agreement with the estimaterof —0.02(1) from  more extensive data sets of Refs. 10 and 11 we find consis-
the FSS of Lee-Yang zeros in Refs. 7 and 8. To summarizéent values of =0.050(10) and =0.049(10), respectively.
this subsection, by allowing for logarithmic corrections we We also tried to use the scaling for(® which requires as
can reconcile the numerical estimate @&f~0.752 with the input information the value oB.. Using the most accurate
KT prediction »(8.)=1/4. The value of the exponemt  estimate of3.=0.7524 we find the result shown in Fig. 3.
however, is clearlyotin agreement with the theoretical pre- Again the linear scaling looks almost perfect, but from the
dictionr=—1/16=—0.0625. slope we now read off an even larger value of

Let us next consider the scaling behavior of the thermo+ =0.0922(28). Qualitatively this can be understood as fol-
dynamic data near criticality in the high-temperature phaseows. Going from Eq.(5) to Eq. (7) we replace I§ by
In Ref. 16 we neglected logarithmic corrections in Ef.  t~ "=t~ Y2 Asymptotically this follows from the scaling be-
and tested the relation i¢”*=const+ (1/4— 7)In¢ graphi-  havior of ¢ in Eq. (6). This implicitly assumes, however, that
cally. This plot is reproduced in Fig.(@. We see that the the constant in the proper relation£iconst-bt™”, can be
curve has a negative slope, correspondingpte1/4. We  neglected. Ift is not really asymptotically small, this is not
also observe, however, that the data are curved and that faustified. In fact, the plot of In(l& vs —Int in Fig. 4 does
large ¢ the slope decreases. By definin§™ from the local ~ show effectively an almost linear behavior, but with a slope
slopes, we obtained at the scale &£110...140 an esti- completely different from the asymptotic value=1/2.
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0.88 . i . . . . retically predicted values of andr. The double valuedness
in Fig. 5b) is caused by the fact thdt(¢)=In(In&)/In(&)
(@) : -
o # assumes a maximum  f .= 1/e~0.3679 at
o0& — g’::g;‘l‘lc " 7] max=€°~15.15. We see that both the data for-64 or
- £>40 can be well fitted with a simple linear function. With
£ 086 a parabolic ansatz the acceptable fit range can even be ex-
2 tended to smaller values afor £. From Fig. 5 it is obvious,
= however, that we are still too far away from the truly asymp-
N, 085 f . . . L .
< totic regionx— 0 to take this as a convincing evidence that
additive logarithmic corrections can reconcile simulations
0.84 | and theory.
. S . IV. DISCUSSION
0'830.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 . .
In(in L)/In L In summary we have shown that, when multiplicative
logarithmic corrections are taken into account, numerical
2.4

simulation data of the 2IXY Villain model are quite con-
(0) sistent with the leading KT predictions even at a quantitative

23} ineartt T level with critical exponents fixed to the theoretical values of
——— parabolic fit T v=1/2 andn=1/4. Estimates of the logarithmic correction
— e exponent, however, turn out to be quite inconsistent. Scal-
=22 ] ing analyses in the FSS region yield a negative
£ = (r=—0.03---0.02) and analyses in the high-temparature
S 21 phase a positiver~0.04--0.08) value, both being quite
= different from the theoretical prediction of=—1/16=
so b —0.0625. This is obviously related to the fact that analyses
' neglecting logarithmic corrections tended to estimate
n>1/4 using thermodynamic data ang<1/4 in the FSS
1.9 . . : . region. We have no good explanation for this observation
0.32 0.33 0.34 0.35 0.36 0.37

In(in £)In £ other than the common, but unfortunately probably correct
statemertt"?°that the studied system sizes are still much too

FIG. 5. Test for additive logarithmic corrections (@ the data Smﬁ” to rZSéOI(\j/e' these EI.SCIjlepant())Ies. . h |
at criticality and(b) the thermodynamic data. Here the exponents ote added in proofSimilar observations have recently

7 andr are assumed to take the theoretically predicted value©€€n reported by J. Salas and A. D. Sokaipublished for
7=1/4 andr = — 1/16. the logarithmic corrections at the phase transition of the two-

dimensional four-state Potts model.

Finally it was of course tempting to enquire if the ob-
served discrepancies between the numerical data and the
theoretical expectations can be blamed on the additive loga- | would like to thank Ralph Kenna for the inspiring dis-
rithmic corrections in Eq95) and(8). To test this possibility cussions which initiated this analysis, and Erhard Seiler for a
we have replotted in Fig. 5 the data at criticality in the formcopy of their updated paper prior to publication. This work
x/L277(InL)™% vs In(InL)/InL and the thermodynamic data was financially supported by the DFG, which | gratefully
in the form /&2~ 7(In&)~? vs In(In&)/In&, assuming the theo- acknowledge.
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