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Abstract: We review the current state on the thermodynamic behavior and structural phases
of self- and mutually-attractive dilute semiflexible polymers that undergo temperature-driven
transitions. In extreme dilution, polymers may be considered isolated, and this single polymer
undergoes a collapse or folding transition depending on the internal structure. This may go as far
as to stable knot phases. Adding polymers results in aggregation, where structural motifs again
depend on the internal structure. We discuss in detail the effect of semiflexibility on the collapse and
aggregation transition and provide perspectives for interesting future investigations.
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1. Introduction

Understanding the basics of polymer chemistry and physics has been a subject of research for
many decades. The fundamental macroscopic equilibrium properties are well described both from a
static and dynamic point of view [1–4]. The understanding of microscopic processes and the involved
transitions was facilitated by employing computer simulations, which have been drastically improved
over the last few decades. This approach is based on a (microscopic) statistical mechanics formulation
of phase space with a proper Hamiltonian that incorporates all relevant interactions. Of course,
this step may involve simplifications, such as implicit solvents or coarse-graining, to focus on the key
processes of interest. The main computational approaches may be grouped into molecular dynamics
(MD) simulations [5–7] and Monte Carlo (MC) methods [6,8–11]. MD is based on numerical integration
of Newton’s equations of motion and delivers information on the thermodynamics, structure and
dynamics from trajectories in phase space. In contrast, MC is based on stochastic sampling of phase
space in the ensemble formulation of statistical physics. Direct dynamical information is traded with
the possibility to define suitable move sets between microstates and the flexibility to devise generalized
ensembles that are especially tailored to the problem at hand. This greatly improves the accuracy, often
by many orders of magnitudes. We focus in this work on the developments and application of the latter
approach with special emphasis on the thermodynamic and structural properties of polymeric systems.

We confine our discussion to linear coarse-grained polymers at low density. This excludes
topics, such as polymer melts [12], polymer networks [13] and polymer nanocomposites [14].
We assume implicit solvents and incorporate excluded volume, self- and mutual-attraction, as well as
semiflexibility. This approach connects chemical or synthetic polymers, which can be rather flexible,
and biopolymers, which are commonly rather stiff.

2. Off-Lattice Polymer Models with Attractive Interaction

There is of course a whole zoo of models available for the study of semiflexible polymers.
These range from lattice models, such as the (interactive) self-avoiding walk [15] or the bond-fluctuation
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model [16,17], over off-lattice models to analytic formulations, such as the (discrete) worm-like
chain [18]. Furthermore, the extension with self- and mutual-interactions is possible in all formulations.
We focus in this work on coarse-grained off-lattice polymer models, consisting of linearly-connected
beads. Self-avoidance and short-range attraction are modeled by a Lennard–Jones, Morse or related
interaction potential, e.g., of the form:

VLJ(r) = 4ε[(σ/r)12 − (σ/r)6]. (1)

This commonly sets the energy and length scale. Semiflexibility is usually introduced by a
worm-like chain-motivated bending energy penalty of the form:

VBend(θ) = κ(1− cos θ), (2)

where θ is the angle between two successive bonds. A last detail involves the rigidity of the bonds by
which the beads are connected, which may be considered either as sticks or springs. The latter may be
approximated by harmonic or anharmonic springs, e.g., with the finitely-extensible nonlinear elastic
(FENE) potential:

VFENE(r) = −
K
2

R2 ln
(

1− [(r− r0)/R]2
)

. (3)

The explicit results we present below in Sections 4 and 5 are mainly based on two polymer
models, namely a bead-stick and a bead-spring model. Our bead-stick model has rigid bonds of
length rb = 1, and all beads interact with the Lennard–Jones potential, where σ = 1 and ε = 1. In our
bead-spring model, the bonds are modeled with the FENE potential, and we consider Lennard–Jones
interactions only between non-bonded monomers, where ε = 1, r0 = 0.7, σ = 2−1/6r0, R = 0.3,
K = 40, following the convention of Milchev, Binder and co-workers [19,20]. This choice introduces a
substantial difference between bonded and non-bonded interactions. Other approaches model bonds
by combining FENE and Lennard–Jones interactions (e.g., the Kremer–Grest model [21]). This has
been shown to allow low-temperature Lennard–Jones crystal behavior in polymers [22]. For numerical
reasons and in order to be consistent with previous literature, the Lennard–Jones potential is cutoff
and shifted at rc = 2.5σ. Semiflexibility is adjusted in both cases by varying κ in VBend(θ).

3. Monte Carlo Simulation and Analysis Methods

The study of structural phases in polymeric systems generally involves complex, possibly
entangled, structured states. When interested in static properties, Markov chain Monte Carlo
methods are a perfect tool to sample the conformational phase space. A well-known and often
employed realization is the Metropolis algorithm [23] with advanced extensions, such as parallel
tempering [24–27]. Not uncommonly, the involved transitions may be classified as first-order like,
calling for advanced simulation techniques, such as generalized-ensemble methods. These may be
roughly classified in flat-histogram methods and locally-confined-histogram methods. Especially in
the dilute regime, the enhanced conformational entropy causes computational effort. For numerical
purposes, one often reduces the consideration to the conformational phase space, i.e., the potential
energy Ep instead of total energy E. This is legitimate for systems where the momentum part may be
integrated explicitly. There also exists a broad range of modified or generalized dynamic approaches,
such as molecular dynamics in the multicanonical ensemble [28], metadynamics [29] and statistical
temperature molecular dynamics [30]. These rely on molecular dynamics and will not be discussed in
the present scope; instead, we refer to [31] for a recent comparison.

A crucial aspect that we merely want to mention is the choice of suitable Monte Carlo updates for
computer simulations of polymers. This makes the difference between a well-equilibrated successful
simulation and one that does not yield sensible results. Suitable updates are extremely model
dependent and may include local bead displacement, long-range polymer displacement (important for
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dilute aggregation), pivot rotations [32,33] or local-bond rotations [34] and double-bridging moves [35].
A cleverly-designed move set may lead to substantial advances in numerical performance.

3.1. Generalized-Ensemble Methods: Flat Histogram

Generalized-ensemble (GE) methods have a long history, with early contributions, such as
umbrella sampling [36], and later, flat-histogram formulations, such as multicanonical [37–40],
Wang–Landau [41,42], statistical-temperature Monte Carlo [30], stochastic approximation Monte
Carlo (SAMC) [43,44] and 1/t [45] sampling. Recall that in the canonical ensemble, the overall weight
of a specific potential energy is decomposed into the amount of available conformational phase space,
i.e., the conformational density of states Ω(Ep), and the Boltzmann weight. This is expressed in the
partition function:

Zcan =
∫

dEpΩ(Ep)e−βEp , (4)

where β = 1/kBT is the inverse temperature, with kB the Boltzmann constant. The basic idea of
generalized-ensemble methods is to modify the Boltzmann weight, such that the overall weight of
specific energies is enhanced (e.g., for transition states) or decreased (e.g., for unimportant states).
We may directly introduce a generalized weight function WGE(Ep), which leads to a generalized
partition function:

ZGE =
∫

dEpΩ(Ep)WGE(Ep). (5)

A common approach in modern flat-histogram applications is now to approximate Ω(Ep) iteratively.
If we choose WGE(Ep) ≈ Ω(Ep)−1, this allows the sampling of a full range of potential energies with
roughly equal weight in a final production run. For a recent review on flat-histogram methods in
computer simulations of macromolecules, see [46].

Due to the current development of computational resources, it is advisable to consider parallel
implementations of generalized-ensemble methods. The multicanonical method may be easily
extended to parallel architectures and profits from the contributions of independent Markov chains to
the estimate of a mutual probability distribution [47]. The parallelization becomes more cumbersome
for Wang–Landau simulations, but introducing a clever energy-window distribution of walkers ensures
good performance [48]. This is similarly possible for the 1/t algorithm [49].

3.2. Generalized-Ensemble Methods: Locally-Confined Histograms

Another approach could be summarized as locally-confined histogram methods, where the
choice of suitable parameters locally confines the probability distribution to a specific potential-energy
range. A physically-motivated example is microcanonical sampling [50,51], where the conformational
phase space (potential energy) is extended by the momentum phase space (kinetic energy). Explicit
integration of the momentum part yields:

WGE = WNVE = (E− Ep)
(Ndof−2)/2, (6)

where Ndof is the total number of degrees of freedom in momentum space (e.g., for N independent
particles Ndof = 3N). In this scenario, the total energy is kept constant, and the kinetic energy acts as
a reservoir, from which energy may be added to (or removed from) the potential energy. This is in
strong contrast to the heat bath of the canonical ensemble. Conceptually similar formulations include
the Gaussian modified ensemble [52] and the generalized replica-exchange method [53]. In all of
these cases, one typically obtains Gaussian-like potential-energy distributions for different physical or
unphysical control parameters. As a benefit for first-order-like transitions, the transition states in this
generalized ensemble are less suppressed if present at all. A detailed discussion may be found in [54].
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These approaches may be trivially combined with a replica-exchange scheme to sample multiple
control parameters in parallel, but with overlapping histograms. Moreover, a generalized weighted
histogram analysis method (WHAM) [51,55–57] allows an estimation of the density of states and,
thus, opens a route to reweight back into the canonical ensemble analogous to the discussion in the
following subsection.

3.3. Reweighting from Generalized Ensembles

If the final data stem from an equilibrated Markov chain Monte Carlo simulation, i.e., with a fixed
set of weights W(Ep), then it is possible to reweight the data to obtain estimates of canonical expectation
values. A necessary condition is that the relevant ranges of the desired canonical potential-energy
probability distribution are covered by the sampled histogram. The canonical expectation value is
obtained from a generalized ensemble as:

〈O〉β =
〈Oe−βEp /WGE(Ep)〉GE

〈e−βEp /WGE(Ep)〉GE
. (7)

In the following, we set kB = 1, which together with ε = 1 in Equation (1) leads to a dimensionless
temperature. It is common to discretize WGE(Ep) despite having continuous energy domains.
While this may introduce sampling problems if the energy bins are too large, it does not introduce
systematic errors in the reweighting of the time series. Due to the fixed weights, the explicit (discrete)
simulation weight can be simply divided out, and the desired (continuous) weight is multiplied to
the observable for each measurement in the dataset. Error bars may be estimated in the same way by
applying the jackknife or bootstrap method [58,59].

3.4. Canonical and Microcanonical Analysis

For semiflexible polymers, there is not necessarily a clear path towards a thermodynamic limit
because of the finite nature of the system of interest. Therefore, a classification of transitions for finite
systems becomes relevant. In most cases, a proper combination of canonical and microcanonical
analysis yields the most concise picture.

The signatures of a structural phase transition are usually well identified as peaks in the thermal
derivatives of canonical observables, such as the specific heat CV = (d〈E〉/dT)/V. The thermal
derivative is obtained as d〈O〉/dT = kBβ2 (〈OE〉 − 〈O〉〈E〉). However, sometimes, signals are not
as clear. The collapse transition in off-lattice polymers, for example, may only show a shoulder in
the specific heat, but shows a clear signal in the thermal derivative of the squared radius of gyration
R2

gyr = ∑N
i=1(ri − rcm)2/N or the end-to-end distance Ree = |r1 − rN |, where ri is the position vector

of the i-th monomer and rcm is the center-of-mass vector. In other cases, it is advisable to introduce
explicit order parameters that capture the expected changes that occur during the transition, e.g.,

the phase-separation parameter Γ2 = 1
2M2 ∑i,j

(
ri

cm − r j
cm

)2
for aggregation, where the superscript

refers to one of the M polymers. If multiple polymers are involved, one commonly employs periodic
boundary conditions in terms of the minimal-image convention, which has to be considered in the
above definitions for the calculation of vector differences.

In many cases, it is helpful to consider in addition a microcanonical analysis [60–63]. For Monte
Carlo studies, one usually defines the conformational entropy S(Ep) = kB ln Ω(Ep) and its successive
derivatives, the conformational microcanonical inverse temperature kBβ(Ep) = dS(Ep)/dEp,
or β(Ep) = d ln Ω(Ep)/dEp and γ(Ep) = dβ(Ep)/dEp. This encodes all relevant transitions for which
the energy is a suitable reaction coordinate and allows for a classification of the transition order for
finite systems [60,63]. If β(Ep) shows a back-bending, which corresponds to a positive peak in γ(Ep),
the transition may be classified as first order and is accompanied by a double-peak energy probability
distribution [61]. If β(Ep) shows an inflection point with negative slope, i.e., a negative peak in γ(Ep),
the transition may be classified as second order instead. This analysis may be very helpful, especially
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when signals of several transitions overlap in the canonical ensemble. For a recent discussion of the
mapping to the full microcanonical ensemble in terms of total energy, see [64]. The microcanonical
analysis is particularly suitable for flat-histogram methods, because they directly yield an estimate of
the density of states.

4. Phase Behavior of Isolated Semiflexible Polymers

The structural motifs of a semiflexible polymer depend strongly on the variation of external
parameters, such as temperature or salt concentration, as well as the formulation of relevant
interactions, such as excluded volume effects, hydrophobicity, etc. It is a major challenge to
understand and predict the outcome of these variations, especially in the context of biopolymers
or proteins. For example, the formulation of a tube-like polymer model [65,66] allowed studying
the structural motifs and metastable states that arise due to the interplay of excluded volume effects,
hydrophobicity and hydrogen bonding [67]. Here, thickness (defined, e.g., in terms of the global radius
of curvature [68]) plays a crucial role in the formation of secondary structures, such as helices [69–71].
Still on this level, well-parameterized lattice protein models allow one to investigate the effect of
hydrophobicity and its relation to cold denaturation [72].

Currently, there is again a growing interest in the role of knots in single polymers [73–76]
and proteins [77–83]. This is particularly interesting in the context of DNA packing [84,85] with
possible implications for DNA sequencing, especially since DNA can be interpreted as a semiflexible
homopolymer [86–88]. Here, self-avoidance is a crucial aspect for the formation of knots by geometric
hindrance, where thickness can be understood as the diameter of the coarse-grained beads. The usual
picture is that knots occur with a certain probability within structural regimes, e.g., within extended
coils, globules or densely-packed toroids. However, most approaches model polymers with purely
repulsive monomer-monomer interactions, i.e., similar to a self-avoiding walk, or assume them to
be flexible. We will show below that for specific parameter combinations, including both attractive
monomer-monomer interactions and bending stiffness, knots can fully characterize stable structural
regimes on their own.

In the following, we focus on the effect of bending stiffness, where the energy and length scales of
the self- and mutual-attraction are fixed, but the strength of the bending penalty is varied. This includes
mean-field studies [89], numerical studies of lattice models [90–92] and off-lattice models [93–98],
analytical approaches [99] and experimental studies [100]. It was shown that the variation of a single
parameter, such as the stiffness, may strongly influence the arising structural motifs and, moreover,
may affect the order of the accompanying transitions. Interestingly, already, the variation of the
short-range attraction range [101–103] may alter the structural transition of a flexible polymer to
directly fold into its frozen state or even foster new low-temperature states. Similarly, a modification
of the bond-interaction range alters the second-order collapse transition into a first-order condensation
transition of coupled monomers [104]. Extending the model by torsional angles and adjusting a
proper combination of confined bending and torsional angles again leads to the stabilization of helical
structures [105,106].

4.1. Structural Phase Diagram

The variation of polymer stiffness inevitably leads to a modification of the structural motifs
for finite temperatures. For infinite, or sufficiently high, temperatures, the polymers will behave as
random coils because conformational entropy dominates the energy reduction by contact formation
or stiffening. Notice that our discussion here is not in terms of the persistence length, which in the
worm-like chain limit may be related to the local stiffness as lp/σ ≈ κ/kBT and connects the energy
and temperature scale. This concept is not trivially applied to multiple length and energy scales,
especially for self- and mutual-attraction (for a recent debate on a proper definition, see, e.g., [107]).

Basic statistical mechanics implies that lowering the temperature boosts the role of energetic
minimization. The self-attractive semiflexible polymer achieves this by forming additional
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non-neighboring monomer contacts (local collapse) or by aligning neighboring bonds (local stiffening).
Fixing the energy scale to the monomer-monomer interaction, i.e., keeping ε = const. in Equation (1),
and varying the stiffness κ thus leads to a competition between local collapse and local stiffening.
As an illustration, we present in Figure 1 exemplary structural phase diagrams for a bead-stick
polymer (Figure 1a), adapted from [98], and a bead-spring polymer (Figure 1b), simulated with parallel
multicanonical simulations. (Our parallel multicanonical simulations for κ ∈ [0, 26] with ∆κ = 0.5
employ 64 cores in energy ranges that cover T ∈ [0.1, 5]. In the final production run, we record a total
of 2.56 million measurement points.) Due to our parameterizations, both models describe polymers
of linear equilibrium extension Nr0 = 28. The basic shape for these off-lattice polymers is quite
similar and in accordance with other results [97]. Of course, the explicit temperature and stiffness
at which a transition occurs is highly model-dependent. We denote the collapse transition line as all
initial temperature-induced transitions from an extended (E) or rod-like regime (R) into a compact (C),
bent (D) or hairpin (H) regime.
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Figure 1. Comparison of structural phase diagrams for a single semiflexible polymer with
self-attraction: (a) bead-stick polymer (N = 28, logarithmic temperature scale, adapted from [98]);
and (b) bead-spring polymer (N = 40, linear temperature scale from parallel multicanonical
simulations). Black circles and orange squares correspond to peak positions of CV and dR2

gyr/dT,
respectively. The background color encodes the squared radius of gyration, i.e., the polymer extension.
Representative conformations are shown for the bead-stick polymer in the respective regimes and are
similar in both cases, except for the knotted regimes (bead-stick) and toroidal regimes (bead-spring [97]).
The collapse transition line is here denoted as all initial temperature-driven transitions from an extended
structure into a compact structure.

Details of the models become relevant again for the low-temperature conformations. For off-lattice
models, this includes the formation of stable knots [98] (see Section 4.3), toroidal loops [97,99] and the
arrangement of the compact frozen states, which may form icosahedral structures [97,108]. This appears
to depend on many details, such as the explicit relations between the bonded and non-bonded length
and energy scales, with many open questions remaining.

The structural phase diagram observed for off-lattice polymers is quite similar to the ones observed
for discrete lattice polymers [89,91,92]. However, while for off-lattice polymers the collapse transition
line into globular or folded structures vanishes for large stiffness, one may observe for relatively stiff
lattice polymers a freezing transition temperature that further increases with stiffness. We suspect
that this “freezing” transition is in fact a transition into a linear rod and should be rather denoted
stiffening transition instead of folding. This would coincide with the crossover in the off-lattice model
from extended (E) to rod-like (R) structures, which can be seen in Figure 1 as a color gradient from
blue to red.
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4.2. Order of the Collapse Transition Line

The influence of stiffness on the collapse transition, more explicitly the morphological variation
or the type, has been a long-standing subject of investigation [89–100]. The collapse transition of
a flexible polymer is a second-order phase transition in the limit N → ∞ [2]. This means that the
transition causes a continuous change of an order parameter. The situation becomes less clear for
non-zero stiffness κ because the formulation of the thermodynamic limit is not obvious. Still, a common
conclusion is that stiffness changes the continuous collapse transition to a discontinuous collapse or
folding transition.

We mentioned above that identifying the collapse transition in the canonical analysis may be quite
difficult, especially for low stiffness; there is merely a shoulder in the specific heat [109]. This introduces
difficulties in the identification of the transition order, where an often employed distinction is the
scaling of the specific-heat peak. The microcanonical analysis (see Section 3.4), on the other hand,
provides an illustrative approach to study the order of the collapse transition. We consider the
bead-spring polymer (N = 40) discussed in Figure 1b of the previous subsection. Figure 2a shows the
second derivative of the microcanonical entropy γ(Ep) for selected stiffness κ. As expected, we find a
negative peak for flexible polymers and semiflexible polymers with low κ. This is a finite-size signature
of a second-order transition. With increasing κ, the peak location shifts to higher energies, and the
peak height approaches zero. There occurs a crossover at κ ≈ 6 where the peak location starts shifting
to lower energies again, and the peak height becomes positive for stiffer polymers. This corresponds
to a finite-size signature of a first-order transition. In the formal definition of a phase transition, one
would need to consider the limit N → ∞ for which the peak height approaches zero, either from above
(first order) or below (second order). However, as we mentioned before, this requires a thorough
protocol as to what to fix in this limit and is an interesting future study.
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Figure 2. Microcanonical analysis of the collapse transition line for a bead-spring polymer (N = 40).
(a) The transition energies E′p are identified as the peak location of γ(Ep). It can be seen that for low κ,
the transition peak is below zero (second order), but with increasing κ, there is a crossover to peaks
above zero (first order). (b) A rescaled plot of the microcanonical inverse temperature β(Ep)− β(E′p)
around the transition energy Ep − E′p shows the crossover from second-order (no back-bending) to
first-order transition (back-bending).

Identifying the peak locations in Figure 2a as E′p, we show in Figure 2b a rescaled inverse
microcanonical temperature β(Ep)− β(E′p) shifted to its inflection point location. This serves as a
good illustration of the crossover from a continuous second-order collapse transition for rather flexible
polymers (low κ) to a discontinuous first-order collapse (or folding) transition for stiffer polymers
(high κ) reflected by the prominent back-bending. The crossover value κ ≈ 6 is consistent with the
change of structural motifs in polymer aggregation [110]. Moreover, the change in transition order
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may be related to similar observations for varying interaction length scales [101–103], if one considers
that the stiffness induces an effective linear length scale along the polymer, which competes with the
monomer-monomer interaction length scale. It is a worthwhile future study to investigate how this
crossover value depends on polymer length, number and model, connected to the involved length and
energy scales.

4.3. Knots as Stable Phase

The most surprising regions of the phase diagram for the semiflexible bead-stick polymer in
Figure 1a are stable polymer knots, labeled by “K”. These structural phases are novel in that the
emerging knots are thermodynamically stable and may hence be considered as a topological order
parameter [98]. Their properties are considerably different from those of knots frequently observed
in the swollen and globular phases of flexible polymers [73–76], where they form just by chance and
disappear again after a while.

Closer inspection reveals that the knotted conformations in the phase diagram for the 28-mer can
be identified according to the usual classification scheme as Cn = 41, 51 and 819. Here, the integer C
counts the minimal number of crossings of any projection of a knot onto a two-dimensional plane, and
the subscript n distinguishes topologically-different knots characterized by the same integer value C.
A typical example found in the simulations, the 51 knot, is shown in Figure 3a. These are so-called
torus knots, which are known to form preferentially in viral DNA [86]. For the identification of the
knot type, one determines for each polymer conformation the Alexander polynomial ∆(t). For the
definition and properties of the Alexander polynomial and a detailed description of mathematical knot
theory in general, see the book by Kauffman [111]. A useful variant is described in [112], in which a
specific product ∆p(t) ≡ |∆(t)× ∆(1/t)| of the Alexander polynomial ∆(t) is evaluated at t = −1.1.
This proved to identify the smaller knots uniquely. Of course, in a strict mathematical sense, the
identification of knots in an open polymer is topologically not well defined. To circumvent this
problem one first has to apply a suitable (virtual) closure prescription. For a detailed discussion,
see [98,112].

(a)

(b)

Figure 3. Characterization of the transition into polymer knots for a semiflexible bead-stick polymer
(N = 28) adapted from [98]. (a) Typical knot of type 51 (at κ = 7.50, T = 0.045). (b) Two-dimensional
(potential) energy histogram p(ELJ, EBend) at the D3–K51 transition for κ = 8.0 at T = 0.18, signaling
clear phase coexistence. The inset shows the one-dimensional histogram p(E) of the total (potential)
energy E = ELJ + κEBend, which corresponds to a projection along the diagonal of the two-dimensional
histogram. In this projection, the two peaks fall on top of each other, so only a single peak is
visible in p(E).
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A related observation concerns the nature of the transitions between the knot phases and the frozen
or bent phases. Since these transitions connect two structured states, one would expect first-order-like
characteristics, similar to other solid-solid transitions. However, as the inset of Figure 3b shows
for the D3–K51 transition, this expectation may not be true since the (potential) energy distribution
p(E) exhibits only a single peak, suggesting a second-order-like transition. There is no indication
for the typical double-peak structure at a first-order-like phase transition and, hence, no signal of
latent heat [113,114]. The true nature of the transition is only revealed when one considers the
two-dimensional (potential) energy distribution p(ELJ, EBend), for which indeed, two clearly separated
peaks are visible in Figure 3b [98]. The peak in front corresponds to the (unknotted) bent phase D3
and the other in the back to the phase characterized by the K51 knot, presented in Figure 3a. The total
(potential) energy E = ELJ + κEBend is the projection along the diagonal of this two-dimensional
histogram along which the two peaks fall on top of each other, which explains why only a single peak
shows up in p(E) and no latent heat is observable.

Previous studies of semiflexible polymers have reported no knot phases, considering a particular
bead-spring model [97]. Our own test simulations of the bead-spring model Equations (1)–(3) lead to
the same conclusion; see Figure 1b. We suspect that the reason for this difference lies in the choice of
the ratio of length scales, i.e., the equilibrium length of neighboring bonds rb and of non-neighboring
monomer-monomer interactions rn (determined from the minimum of the Lennard–Jones potential in
Equation (1)). This ratio rn/rb is typically set to unity (see Figure 1b and [97]), where bent conformations
are energetically favored over knots. For our bead-stick parameterization, however, rn/rb ≈ 1.12,
which seems to induce the stable knots. To verify this conjecture, more work is necessary.

5. Aggregation of Dilute Semiflexible Polymers

Aggregation in dilute solutions of semiflexible polymers describes the competition between
an entropic soluble regime where polymers are effectively isolated and an energetic aggregated
regime where polymers form clusters or aggregates. Here, many questions are still open, and one
often considers explicit heteropolymers/peptides or proteins connected to specific problems. In this
context, there has been much recent effort, including full atomistic approaches [115], heteropolymer
models [62,116–118], tube-like homopolymers [119], extended lattice models [120] and even single-site
lattice models [121–123], to name only a few. Of course, there is a huge amount of molecular dynamics
studies. In the following, we focus on the statistical mechanics of aggregation in dilute homopolymer
models. Flexible polymers were shown to exhibit nucleation hierarchies [124] known from droplet
formation. An interesting future question is how this analogy carries over to larger system sizes or to
the underlying process itself [123,125,126].

Extending the discussion to multiple chains calls for the necessity to formally introduce a
non-zero density ρ = NM/V, with M the number of polymers of length N and V the system volume.
The system may be commonly confined in a cubic periodic box of linear length L with V = L3 or
in a geometric confinement, e.g., in a sphere of radius RS with V = 4π

3 R3
S. We consider only dilute

homopolymers, such that both cases are in fact equivalent in the limit of large system sizes because of
the translational invariance in the former and the merely effective repulsive interactions in the latter.
Still, the introduction of translational entropy increases the computational effort extremely and results
in a competition of entropy maximization by spreading of polymers with energy minimization by
forming an aggregate. In the simulation protocol and the analysis setup of our own polymer studies,
we tried to connect as closely as possible to recent related investigations of particle condensation [127].
Here, generalized-ensemble methods may be particularly helpful. However, it is important to include
update moves, such as long-range polymer displacements, to allow a decent sampling of the void space.
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5.1. End-to-End Order Parameter

For the aggregation of semiflexible polymers, it is useful to introduce an end-to-end correlation
parameter CR measuring the correlation between the end-to-end vectors R̂i (normalized to unit length).
This is similar to a nematic order parameter and allows one to distinguish between amorphous
aggregates, where R̂i are uncorrelated, and bundles, where R̂i are aligned. We choose:

CR =
2

M(M− 1) ∑
i<j

(
R̂i · R̂j

)2 , (8)

such that for completely aligned bundles CR = 1 and for uncorrelated polymers CR = 1/3, e.g.,
polymers in the fragmented regime or in amorphous aggregates [110]. An illustration for M = 4
polymers of length N = 13 is shown in Figure 4. With increasing polymer number, the probability of
complete alignment may decrease either due to twisting of bundles (see the discussion below) or by
less ordered bulk aggregates. However, for the system sizes discussed in this context, CR serves as a
good distinction between amorphous aggregates and polymer bundles.
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κ = 2
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Figure 4. End-to-end correlation parameter CR for M = 4 semiflexible polymers of length N = 13 at the
selected bending stiffness values. The aggregate morphology changes from uncorrelated (κ = 2) over
initially correlated (κ = 6) to correlated (κ = 12). For a full κ overview with exemplary conformations,
see Figure 5.

5.2. Structural Motifs Induced by Semiflexibility

In Section 4.1, we have seen that stiffness results in the variation of structural motifs for isolated
polymers, ranging from spherically-symmetric globular conformations for flexible polymers to
hairpin or multiple-bent conformations for stiffer polymers. Here, we want to discuss the effect
of semiflexibility on the structural motifs of aggregates, including M = 4 bead-spring polymers of
length N = 13 in a cubic box with density ρ = 10−3 and minimal-image convention (the system
setup and model parameters are completely analogous to [110]). This system is small and dilute
enough that all polymers will be included in the aggregate after the temperature-driven transition.
We will qualitatively recapture and, thus, extend the results for M = 2 and M = 8 polymers from [110].
Figure 5 shows the structural phase diagram for the considered system. The background color encodes
the end-to-end correlation parameter CR, and the black dots, as well as blue squares denote possible
transition points from peaks in the specific heat CV or the phase-separation parameter Γ2 [116,124],
respectively. As expected, we observe for high temperatures a solute or fragmented regime, where the
polymer may be considered isolated, and the structural properties follow the single-chain behavior.
Upon a temperature decrease, the system shows a stiffness-dependent response in the formation
of aggregates. Flexible polymers (κ < 6) are seemingly uncorrelated within the aggregate, which
may be called amorphous. A further temperature decrease may enforce coiled structures, but the
polymers remain uncorrelated. On the other hand, stiffer polymers (κ > 6) form bundles, which
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is reflected in the end-to-end correlation. Lowering the temperature even further results in twisted
bundles known from biopolymer systems, e.g., from amyloid protofibrils [128] or actin networks [129].
This is consistent if we interpret the bead-spring model as a coarse-grained model of either protofibrils
or actin filaments. Moreover, a clear understanding of bundling is of importance for the design of
specific polymeric materials [130]. In this limit of rather stiff polymers, the structural properties
may be well-approximated by worm-like chain-based approaches, e.g., for the study of unbinding
transitions [131,132] and the twisting of filaments [133–135].
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Figure 5. Structural phase diagram of M = 4 polymers of length N = 13 in the temperature-stiffness
plane. The color map encodes the end-to-end correlation parameter from uncorrelated (CR = 1/3,
orange) to correlated (CR = 1, white). Black dots denote peaks in the specific heat; blue squares indicate
peaks in the phase-separation parameter with signal strength encoded in the color intensity. From the
solute (S) regime, the polymers aggregate into amorphous aggregates (A1) or polymer bundles (A2) for
low or high bending stiffness, respectively. At even lower temperatures, more ordered structures occur
(Fi). Representative conformations are shown next to the diagram.

There exists an intermediate regime (κ ≈ 6), where the aggregate re-orders between correlated
and uncorrelated structural motifs in sub-aggregation transitions, i.e., below the initial aggregation
transition. The resulting structures and the order of the sub-aggregation transition therein strongly
depend on the number of involved chains [110]. An illustration is provided in Figure 6 for M = {2, 4, 8}
polymers at temperatures below the aggregation transition. For two polymers, the sub-aggregation
transition from “bundles” into entangled hairpins is first-order like, while already for four polymers,
the transition into bundled hairpins shows second-order-like signatures. The scenario changes for
eight polymers, which start by first forming amorphous aggregates in the intermediate regime before
rearranging into bundles in a second-order-like transition. The latter behavior may be expected to be
relevant for increasing polymer numbers.

The primary aggregation transition is of first order over the full stiffness range due to the
competition between entropy maximization and energy minimization. This is connected to a
free-energy barrier of aggregation, which was shown to gradually increase with stiffness [110].
Thus, the formation of polymer bundles requires overcoming a higher barrier than the formation of
amorphous aggregates. This is consistent with observations of increasing lag times in the formation of
amyloid fibrils compared to amorphous aggregates [136].
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Figure 6. Size-dependence of the sub-aggregation re-ordering transitions within the aggregate for κ = 6.
Representative conformations are presented in the intermediate-stiffness regime for M = {2, 4, 8}
polymers of length N = 13. M = 2 polymers show a first-order-like bundle-to-hairpin structural
transition [110], while the finite-size transition for M = 4 polymers from elongated bundles to bundled
hairpins is second-order like. M = 8 polymers show a second-order-like amorphous-to-bundle
transition followed by the formation of twisted bundles at even lower temperatures [110].

5.3. Competition between Single-Chain Collapse and Many-Chain Aggregation

If dilute semiflexible polymers at high temperature behave as isolated chains, then they inevitably
undergo the collapse transition discussed in Section 4.1. An immediate question arises: How does the
discontinuous aggregation transition interfere with this single-chain transition, which as we have seen
varies from a continuous to a discontinuous transition with stiffness.

Using a dilute setup, it was observed that collapse and aggregation are not separate processes
anymore [124], similar as for protein folding and binding [116]. It was argued that the structural motif
of the aggregate governs the collapse or folding behavior of the individual polymers. Similar results
were found for specific lattice proteins, where the single-chain folding transition was below the binding
transition [137]. However, the aggregation or binding transition depends on the density [125,137]
as βagg = a1 ln ρ + a2, which follows from entropic (ideal-gas based) arguments. It was argued that
this may indeed lead to a folding-docking mechanism [137]. On the other hand, recent results
for semiflexible polymers indicate that the isolated chains follow the collapse transition up to
the point of aggregation, where the collapse is reversed in order to form energetically-favorable
aggregates [125,126]. This is consistent with the self-templated nucleation observed for the aggregation
of proteins and peptides [119]. In general, the dominance of global versus local structure strongly
depends on the relation of intra- and inter-chain interactions. If the energy reduction from aggregation
is more beneficial than from attached globules, then multi-chain aggregation may be expected to reverse
single-chain collapse. These considerations are for systems in equilibrium. If such a rearrangement
can actually be observed in experiments, however, depends on the involved free-energy barriers and
corresponding transition time scales.

To illustrate this behavior, Figure 7 shows a microcanonical analysis of M = 4 semiflexible
bead-spring polymers of length N = 13 at density ρ = 10−3 (as in Figure 5) compared to a single
chain (the data for the single chain are again obtained from parallel multicanonical simulations as in
Section 4.2). The stiffness was chosen to be stiff enough to yield a first-order-like collapse transition
with a back-bending in β(Ep) and a positive peak in γ(Ep); compare Section 4.2. As observed in the
canonical analysis of [125,126], the high-temperature or high-energy regime of a many-chain system
coincides with the single-chain behavior or isolated chain regime. Lowering the temperature or energy,
both curves coincide until the point of aggregation, a first-order finite-size transition with back-bending
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in β(Ep) and positive peak in γ(Ep). As for the continuous collapse transition in flexible polymers,
this completely dominates the single-chain collapse or folding transition. As can be seen on the
average-energy scale (x-axis), the aggregation leads to much smaller energies. It may thus be expected
for the chosen parameters that many-chain aggregation dominates the single-chain behavior even for
very low densities, for which the aggregation branch in the microcanonical inverse temperature should
merely shift to higher β. In the present case, the energy scales of inter- and intra-chain interactions are
identical, and a systematic study of the inter- and intra-chain interactions may shed some light on the
effect of this choice.
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Figure 7. Microcanonical illustration of the competition between single-polymer collapse and
many-polymer aggregation on the example of M semiflexible bead-spring polymers (κ = 4, N = 13)
showing (a) the microcanonical inverse temperature β(Ep) and (b) its derivative γ(Ep). The stiffness
was chosen to be stiff enough to yield a first-order-like collapse transition; compare also Figures 1 and 5.
Thus, both collapse and aggregation show a back-bending in β(Ep) and a positive peak in γ(Ep).

6. Conclusions

We provided a brief overview about the structural transitions and motifs that occur in a statistical
mechanics description of dilute semiflexible polymers with self- and mutual attraction in a solvent.
The solvent quality is here directly linked to the temperature scale. Dilute polymers undergo a
continuous collapse transition if the stiffness is low, which changes to a discontinuous transition into
folded conformations for increasing stiffness. We illustrated this crossover by means of microcanonical
analyses. The further increase of stiffness causes merely a low-temperature stiffening of the single chain.

Interestingly, a mismatch of interaction length scales seems to induce a novel structural phase of
thermodynamically-stable knots of various types. Their properties are considerably different from
those of knots observed in the swollen and globular phases of flexible polymers, which form by chance.
Intriguingly, the transitions into these knotted conformations from other structured states happen with
almost no latent heat, although we observed a clear phase coexistence. This suggests that the knot
type may be considered as a topological order parameter.

With increasing density, multiple dilute semiflexible polymers start to form aggregates at low
temperature or in bad solvent. We demonstrated that an end-to-end correlation order parameter
is suitable to identify the resulting structural motifs. Rather flexible polymers form amorphous,
uncorrelated structures while for increasing stiffness polymer bundles are forming. With decreasing
temperature, these become twisted for reasons of energy minimization, a motif known from biological
systems. The primary aggregation transition is a first-order-like transition, accompanied by a
free-energy barrier that increases with stiffness. Since the individual polymers above the aggregation
behave as isolated chains, they also undergo a collapse transition upon temperature decrease.
The resulting competition of energy scales is dominated by the process of aggregation if the inter-chain
interactions are reasonably strong. In this case, aggregation results in a partial reversion of the collapse
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process in order to form the equilibrium aggregate motif. Of course, the intra-polymer interaction
may be tuned in such way that pre-folded chains attach to an aggregate, known from polymer and
protein crystallization.

We have shown that many questions about the structural phases of semiflexible polymers have
been answered using Monte Carlo methods and proper analysis techniques. However, many other
questions remain still open or have only been raised by recent developments. In the future treatment
of these problems, generalized-ensemble Monte Carlo simulations seem to be a reliable partner.
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