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Abstract 

We use two-dimensional Poissonian random lattices of Voronoi/Delaunay type to study the effect of quenched coordination 
number randomness on the nature of the phase transition in the eight-state Potts model, which is of first order on regular 
lattices. From extensive Monte Carlo simulations we obtain strong evidence that the phase transition remains of first order 
for this type of quenched randomness. Our result is in striking contrast to a recent Monte Carlo study of quenched bond 
randomness for which the order of the phase transition changes from first to second order. 

PACS: 05SO.+q; 75.1O.Hk; 64.60.01 

1. Introduction 

For systems exhibiting a continuous phase transi- 
tion in the pure case it is well known that the influence 
of quenched random disorder can modify the criti- 
cal behaviour, leading to new universality classes or 
even eliminating the phase transition altogether [ 1,2]. 
Also for systems undergoing a first-order phase tran- 
sition the effect can be very dramatic. Phenomenolog- 
ical renormalization-group arguments suggest that the 
addition of quenched randomness can smoothen the 
transition completely and induce instead a continuous 
phase transition [ 2,3]. For a certain type of quenched 
bond disorder in the two-dimensional q-state Potts 
model with q = 8 this prediction has recently been 
confirmed by extensive Monte Carlo simulations [ 41. 
While the pure model is exactly known to exhibit a 
quite strong first-order phase transition [ 51, the sim- 

ulations with quenched bond disorder gave clear evi- 
dence for a continuous phase transition. From careful 
finite-size scaling analyses the phase transition was 
identified to belong to the Ising model universality 
class. 

In this note we report Monte Carlo simulations of 
the same model subject to a different kind of quenched 
disorder. Instead of using a square lattice with uni- 
form coordination number (= 4) and drawing the 
coupling strengths randomly from two different val- 
ues as in Ref. [4], we consider Poissonian random 
lattices where the coordination numbers vary locally 
between 3 and 00 and the coupling strengths are uni- 
form. The random lattices are constructed according 
to the Voronoi/Delaunay prescription [ 61 (for a re- 
cent study of the Ising model on 2D random lattices 
of this type see Ref. [7] ) for toroidal topology, i.e., 
with periodic boundary conditions. 
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2. Model and simulation 

We used the standard definition of the q-state Potts 
model, 

ZP,,,, = c eePE, E = - c &,,c,j, 

I(J!l (Cd 

(Ti=l,...,q, (1) 

where p = J/keT is the inverse temperature in natural 
units, and (ij) denotes the nearest-neighbor bonds of 
random lattices with V = 250, 500, 750, 1000, 2000, 
and 3000 sites. For each lattice size we generated 20 
independent replica and performed long simulations 
of the eight-state model near the transition point at B = 
0.826, 0.830, 0.830, 0.830, 0.832, and 0.833, respec- 
tively, using the single-cluster update algorithm [ 81. 
After thermalization we recorded 1 000 000 measure- 
ments (taken after 1, 1, 1, 1, 2, 4 clusters had been 
flipped) of the energy E and the magnetization M = 
(qmax{ oi} - V) /( q - 1) in a time-series file, where 
ni < V denotes the number of spins of “orientation”, 
i = 1, . . . , q, in one lattice configuration. Obviously 
it is sufficient to store the integers vq < mm{ni} < 

V. From this data it is straightforward to compute all 
quantities of interest as a function of temperature by 
standard reweighting procedures [ 91. The correspond- 
ing quantities per site are denoted in the following by 
e=E/Vandm=M/V. 
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More precisely we used reweighting to compute, 
e.g., the specific heat, C(‘)(p) = p2V ((e”) - (e)“), 
for each replica labeled by the superindex (i) , and then 
performed the replica average, C(p) = [C”) (p)] E 
& Cy Cci) (/3), denoted by the square brackets. To 
perform the replica average at the level of the C(‘) 
(and not at the level of energy moments) is motivated 
by the general rule that quenched averages should 
be performed at the level of the free energy and not 
the partition function [ lo]. Finally, we determined 
the maximum, C,,,,, = C ( PC,, ) , for each lattice size 
and studied the finite-size scaling (FSS) behaviour 
of C,,, and &,,. The error bars on the two quanti- 
ties entering the FSS analysis are estimated by jack- 
kniving [I I] over the 20 replica. This takes into ac- 
count the statistical errors on the estimates of each 
C”) (p) as well as the fluctuations among the dif- 
ferent Ct’) (p) caused by the quenched randomness. 
The analysis of the magnetic susceptibility, x(p) = 

Fig. 1. Finite-size scaling of specitic-heat and susceptibility max- 

ima. 

PV ([(m”) - (m)2]) proceeds exactly along the same 
lines, yielding xmax and pX_. 

In the case of the (energetic) Binder parameter, 
usually defined on regular lattices as B(P) = 1 - 
(e4)/3(e2)2, the proper definition of the replica av- 
erage is less clear to us. In order to study this prob- 
lem we have therefore computed the following three 
definitions which differ only by the replica averaging 
procedure: B1 (p) = 1 - [ (e4)/3(e2)2], B2(P) = 1 - 

[(e4>l/3i(e2>21, a-d f%(P) = 1 - [(e4>l/3[(e2>12. 
While in spin glass simulations [ 121 usually the ana- 
logue of B3 (with e replaced by the overlap) is used, 
for a random bond Ising chain [ 131 a better scaling 
behaviour was observed for the analogue of BI (with 
e replaced by m). 

3. Results 

Already a first qualitative inspection of our data 
gave a clear indication that the first-order nature of the 
phase transition on regular lattices (square, triangular, 
. . . ) persists on quenched random lattices. To make 
this statement more quantitative let us first consider 
the FSS of the specific-heat and susceptibility maxima. 
If the hypothesis of a first-order phase transition is 
correct, we expect for large system sizes an asymptotic 
FSS behaviour of the form (see Ref. [ 14,161 and for 
a general overview see, e.g., Ref. [ 1.51) 

C max=ac+bcV+... , 

and 

(2) 
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Fig. 2. Finite-size scaling of Binder-parameter minima. 

X ,,=a,+b,V+... . (3) 

Our data shown in Fig. 1 are clearly consistent with 
the ansatz (2)) (3). The least-square fits yield UC = 
23.3(2.0), bc = 0.0659(30), with a goodness-of-fit 
parameter Q = 0.16 (corresponding to a chi-square 
per degree of freedom of 1.7)) and ax = -0.70( 43)) 
6, = 0.0629( 13), with Q = 0.45. 

In Fig. 2 we show the scaling of the Binder param- 
eter minima which is expected to be of the form 

Bi,min = aB, + b,/v + . . . . (4) 

Since the data for Bl and Bz are almost indistinguish- 
able, we have only shown B, . Again the data con- 
firms the hypothesis of a first-order phase transition, 
and from the fits we obtain UB, = 0.6240(20), be, = 
-18.8(1.4), Q = 0.17, uBz = 0.6236(22), bB2 = 
-18.5(1.4),Q =0.47,anduB, =0.61125(68),bB, = 
-16.45(71), Q = 0.55. Notice the much higher accu- 
racy of B3. 

The locations of the extrema of C(p), x(p), and 
Bi (j3) define pseudo-transition points which, at a first- 
order phase transition, should scale according to 

PC”, =po+cc/v+... 3 (5) 

etc., where /30 is the infinite volume transition point. 
Our data and the corresponding fits through all 
data points are shown in Fig. 3. The resulting es- 
timates for PO are 0.83360( 14) from C,,,,, (Q = 
0.51), 0.83365(14) from xmax (Q = 0.47), and 
0.83362( 13) from B3,min (Q = 0.23). On the scale 
of Fig. 3 the data points for Bl,,i, and B2,min could 
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Fig. 3. Finite-size scaIing of pseudo-transition points. 

hardly be disentangled from B3,min and are therefore 
omitted. The results for /30 are 0.83371(14) from 
BI,,i” ((2 = 0.40) and 0.83350( 13) from B2,min 
(Q = 0.25). Taking the average of the different 
estimates we finally obtain 

PO = 0.83362 * 0.00013. (6) 

Notice that this value is very close to the exactly 
known transition point of the eight-state Potts model 
on a triangular lattice (pIiang = 0.85666. . .) [ 51. 

Finally we had a closer look at the replica fluctua- 
tions. As an example we show in Fig. 4a the curves 
C(‘) (p) for all 20 replica with V = 1000 as well as the 
resulting replica average C(p) = [ Cci) (p) 1. We see 
that all curves look very similar but are displaced by 
a constant amount in p. This is illustrated in Fig. 4b 
where we plot the same data versus p - /3,$&, where 
p,!& is the location of the specific-heat maximum for 
the ith replica. Here all curves fall almost on top of 
each other and define quite nicely a kind of master 
curve. This suggests that the main effect of the ran- 
domness in the coordination numbers is to define a 
temperature reference point that is fluctuating among 
the different replica. This makes it plausible that coor- 
dination number randomness is not sufficiently strong 
to change the nature of the phase transition. 

4. Conclusions 

Summarizing, we have obtained clear numerical 
evidence for a first-order phase transition in the eight- 
state Potts model on quenched random lattices of 
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Fig. 4. (a) The specific heat C (0 for each of the 20 replica as a 

function of inverse temperature, and the replica average C = [ C”) ] 

(full circles). (b) The same data plotted versus p - /3$x, where 
&& denotes the maximum location for the ith replica. This shows 

that the main effect of the randomness in the coordination numbers 
can be parametrized by a random temperature’ offset. 

Voronoi/Delaunay type. We can safely exclude the 
possibility of a crossover to a continuous transition 
as was observed for a certain type of quenched bond 
randomness on square lattices [ 41. 

In this brief note we have confined ourselves to FSS 
analyses of standard observables. It would be interest- 
ing to extend the analysis to quantities that are directly 
related to the probability distributions of the energy 
or magnetization, such as the interface tension and 
the “ratio-of-weight” definition of pseudo-transition 
points (which gave very precise estimates for regular 
square lattices) [ 161. A quite elaborate study in this 
direction based on a much larger set of 128 replica 
will be published elsewhere [ 171. 
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